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Czechoslovak Mathematical Journal, 27 (102) 1977, Praha 

ON COMMUTATIVE SEMIGROUPS WHICH ARE 
UNIONS OF A FINITE NUMBER OF PRINCIPAL IDEALS 

M. SATYANARAYANA, Bowling Green 

(Received January 24, 1975) 

The class of semigroups under the title includes the finitely generated commutative 
semigroups and noetherian commutative semigroups. We develop here some proper­
ties of noetherian semigroups related to its prime ideal structure. It is shown that 
archimedean semigroups which are unions of a finite number of principal ideals are 
noetherian semigroups and they are exactly unions of two principal ideals. We 
describe completely their ideal structure. One of the surprising results in this paper 
is that finitely generated archimedean semigroups without idempotents can have 
at most two generators and they cannot admit a ring structure. We shall prove also 
an analogue of Hilbert's basis theorem for semigroups. 

Throughout this paper all semigroups under consideration are commutative. 
n 

An ideal Л in a semigroup S is said to be finitely generated if Л = U (х,их;5) = 
n i = 1 

= (JXiS^. It is called a principal ideal or is principally generated if Л = xS^ 
i = l 

for some x e S. S can be trated as an ideal and every ideal different from S is called 
proper. A semigroup S is called a noetherian semigroup if every ascending chain 
of ideals terminates at a finite stage or equivalently every ideal is finitely generated. 
S is cMed finitely generated if there exist x^, X2, • •., x„ in S such that every element 
is a product of powers of x^'s. An ideal Л is primary (prime) if xy e A and x ф A 
then for some integer n y" e A [y G A). For any ideal A in a semigroup S, ^A = 
= {x e S : x" G yl for some integer n]. If Л is a primary ideal, then ^A^ is a prime 
ideal. An ideal A is called S-primary if ^/A = S. It can be shown that every ideal in 
a noetherian semigroup is an intersection of finite number of primary ideals. The 
semigroup S = {xĵ -̂ yv with max multiplication is a noetherian semigroup and S is 
a principal ideal. But S is not a finitely generated semigroup. So one will be interested 
in knowing which noetherian semigroups are finitely generated. The results in sections 
1 and 2 supplement the works of LEVIN [5], MCALISTER and CAROLL [6], and 
PETRICH [7]. Some of the properties of noetherian semigroups may be found in [9] 
and [10]. We follow the notation and terminology of A. H. CLIFFORD and G. B. 
PRESTON [1], for all concepts not defined in this paper. 
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1. NOETHERIAN SEMIGROUPS 

Lemma 1.1. Let H be the collection of all ideals in a semigroup S, which are not 
principal [finitely generated). If H ф 0, then there exists a prime ideal which is 
not principal [finitely generated). 

Proof. We shall prove the theorem when no ideal in H is principal. Similar proof 
can be given for finitely generated case. Let {A^} be a chain of ideals in H. If \JÄ^ = 
= xS\ then A^ = xS^ for some a, which is not true. So [JA^EH. Then by the 
appHcation of Zorn's lemma to H (partially ordered by the inclusion relation) 
a maximal element P in H is guaranteed. Now the proof is completed by showing 
that P is a prime ideal. Suppose that P is not a prime ideal. Then there exist a, b ф P 
and ab e P. By maximality of P, P u bS^ — xS^, which implies x e P ov xe bS^. 
If xeP, then P = xS\ which is not true. So, if x e bS\ then P ^ bS\ Since ab e P 
and a Ф P, P : bS^ = {t : bS4 ^ P} is a.n ideal containing P properly. Again by the 
maximality of P, P : bS^ = ySK Now we assert P = byS^, which is evidently a con­
tradiction. Clearly byS^ ^ P. Now if Г e P, te bS^ and so t = br, since t ф b. 
But br e P, so that reP : bS^ = ySK Thus t e byS^ and hence P Ç bySK 

An immediate consequence of 1.1 is 

Corollary 1.2. / / every prime ideal including S is principal [finitely generated) 
in a semigroup S, then every ideal in S is principal [finitely generated). 

Theorem 1.3. Let S be a semigroup, which is a union of a finite number of principal 

ideals. If every proper prime ideal is principal, then the following are true: 

a) every ideal is an intersection of a principal ideal and an S-primary ideal. 
b) If S = S^' then every proper ideal is principal. 

Proof. We shall prove firstly that every primary ideal Q such that ^ /ß ф S is 
a principal ideal. By hypothesis the proper prime ideal P = ^Q is of the form aS^ 
for some a e S. This implies that there exists a natural number r such that a*" e Q. 
Therefore P** = a^'S^ ç Q. In the case when Q is contained in every power of P we 
have Q = P^ = a^S^. On the other hand let there exist a natural number m 
such that ß Ç P'" and ß Ф P^ + \ Since P'" is a principal ideal, ß = P'^A for some 
ideal A, and ß ф p^' + i impHes that A <^ P. Since ß is P-primary we must have that 
P"" Ç ß so that Q = P"^ and hence ß is principal. Now by 1.2 S is noetherian and 
so any arbitrary ideal A is of the form ß j n Q2 r\ ... n Q„, where ß^'s are primary 
ideals such that P . = ^Q^ ^'^Qj = Pj for i Ф j . We may assume P^ Ф 5 for 
i = 1, 2 , . . . , m and Pi = S for m + 1 ^ I ^ n. Clearly ^[Qm+i n ...n Q„) = S 
and hence ßm+iJ^ • • • n ß„ is a 5-primary ideal. Now we claim that ß i n ß2 n ... 
. . . n ß ^ = ß i ß 2 .. . ß^, which proves that ß i n ß2 n .. . n ß ^ is a principal ideal 
since every one of ß j , ..., Q^ is a principal ideal. This establishes (a). For this 
order these P / s 1 g / ^ m so that we can assume without loss of generality that P^ 
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is maximal in {PjT. P2 maximal in { P j ^ and so forth. This means no P^ Ç Pj for 
/ Ф j . Now assume for r < m ßi. n Q2 ^ ••• ^ 6r = Ô1Ô2 ••• or- Then Q^ n 
n Ö2 ^ • • • ^ Qr+1 == (6 i '^ Ö2 ^ . • • П Q,) n 2,+1 = öS^ n Ö,+1 for some a e 5, 
since every one of g j , Q2, •••, 6r is principal. Let x = aye Qr+i^ By the choice 
of Pi s a Ф P^+i since a e Pr+i implies -sJ{aS^) = V(ß i <^ Q2 ^ • • - ^ Qr) = P i ^ 
n P2 П ... n P,. and thus P^ ^ P^+1 for i < r + 1, which is not true. Hence y e Q,+ ^ 
since Qr+i is a primary ideal such that ^jQr+i = P^. Thus aS^ n ö^+i — <̂ '̂ -̂
6^+1, which implies aS^ n Qr+i ~ aS^Q^+i. Therefore by induction, Qi (^ Qi ^ •' 
'•' (^ Qm= Q1Q2 '•• Qm- The proof of this part (a) is adopted from [4]. 

To prove (b), it suffices to show there are no proper 5-primary ideals by virtue 
n 

of (a). We can write S = \J ^iS\ where XiфXjS^ for i ф j . Then the condition 

S = S^ imphes that x,- e xfS^ for every i and so XiS^ = eiS^ where ei is an idem-
n 

potent. Thus S = и e^S. Now, if Л is a proper ideal such that ^A = S, then e"'eÄ 

for some n,-, so that A = S, which is not true. 

Lemma 1.4. Let S be a semigroup in which 5 Ф S^ and every maximal ideal is 
principal. Then S has at most two maximal ideals and for any proper prime 
ideal P, either P is a principal ideal or P = xP for some x e S. 

Proof. Let a E S\S^^. Then iS \ a is a maximal ideal and so by hypothesis S\a = 
= bSK Clearly Ь ф a. Let beS^. Thus S \ a = 5 ^ If M - cS^ is any maximal 
ideal and if с e S^ then M ^ S^ and M = S^ = S\ a. Now if с ^ 5 ^ then сфБ\а, 
so that с = a. Thus M = aS^. Hence in the case when b e S^, S can have at most 
two maximal ideals, namely, S\a and aS^. Let Ьф8^. Then S = au bS^ = 
= a и b и S^. We claim that S\a and S\b are the only two maximal ideals. 
If M = cS^ is a maximal ideal, then consider the case when с ф S^. This implies с = a 
or b, so that M = S\a or S\b. The case that с e S^ is inadmissible, since otherwise 
M = S^, which implies that the maximal ideal S^ is contained properly in the 
maximal ideal S\a. 

To prove the second part consider any proper prime ideal P. If a ф P, then P ^ 
^ S\a = bSK This implies that P = bS^ if b e P 2ind P = bP if b ф P since P 
is a prime ideal. Let aeP. If b e P also, then P = S. If b ф P, then P я S\b. 
In the first part we have proved S \ Ь is a maximal ideal and so S \ Ь = xS^ for 
some X. Then as before P = xS^ or P = xP. 

Theorem 1.5. Let every maximal ideal in a semigroup S be principal. / / S Ф S^ 
00 

and f] x"S = 0 for every x e S, then S is a union of two principal ideals and every 
/ 1 = 1 

ideal is an intersection of a principal ideal and an S-primary ideal. 

Proof. By 1.4, every proper prime ideal is principal. If a e S\S^', then by hypo-
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thesis, the maximal ideal 5 \ a is of the form bS^ for some b in S. Therefore S = 
= a u bS^ = aS^ u bS^. Now the conclusion is evident from 1.3. 

rt 

Theorem 1.6. Let S be a noetherian semigroup such that S = (JxiS^. Suppose 
i=i 

a Ф XiaS^ for all a in S, which is not a product of powers of x/s. Then S is finitely 
generated. In particular if S is a noetherian cancellative semigroup without 
identity, then S is finitely generated. 

Proof. Suppose there exists an element a such that a is not a product of x,'s. 
Then a = x,-5i, where a ф s^ and s^ is not a product of powers of x/s . Hence 
s I — XjS2- If Sj^ s^S ov S2 = 5i, then we have s^ e XjS^S^, which is not true by hypo­
thesis. Thus s^S^ is properly contained in S2SK Proceeding in this manner, we have 
a non-terminating chain of ideals, s^S^ c: S2*Ŝ  с ... . This is impossible by the 
noetherian condition. The second assertion follows now immediately by noting 
that in cancellative semigroups the condition a = ab imphes that b is an identity. 

Proposition 1.7. Let S be a semigroup which is a union of finite numbers of ideals. 
Then S contains idempotents if S = S^^. If S is cancellative, then S contains an 
identity if and only if S = 5^. 

n n 

Proof. Let S = и XiS^ with x̂  ф Xj u XjS for i ф j . Since S = S^, U xß^ = 
n 1=1 i = 1 

= и (-̂ ^ ^ XjXjS) which imphes x,- = x? or x̂  = x]s for every /. Thus S contains 
i = l 

idempotents. If S is cancellative, S can have at most one idempotent, which is the 
identity itself. Hence the second part is evident. 

2. ARCHIMEDEAN SEMIGROUPS 

We begin with a well-known result [7; 148]. 

Lemma 2.1. A semigroup S is archimedean if and only if S has no prime ideals 
except S. 

Theorem 2.2. / / S is an archimedean semigroup, then every proper ideal is prin­
cipal and S is a union of at most two principal ideals if either one of the following 
conditions is satisfied 

i) S is a union of a finite number of principal ideals. 
ii) S contains a maximal ideal which is finitely generated. 

n 

Proof. Assume (i). Let S = \J XiS^. If H is the collection of all proper ideals 
i = i 

which are not principal and if {A^} is a chain of ideals in H, then S ф U^a» since 
otherwise Xj e Ai^ and so all Xj G AJ where j = max {1^, 2 ,̂ ..., i^}. Thus Aj — S, 
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which is impossible. J{ A = aS^, then there exists Ai containing a. Hence A^ = aS^, 
which is not true. Thus \JA^ e H. Then by Zorn's lemma there exists a maximal 
element P e H. As in lemma 1.1, P can be shown to be a prime ideal, which contra-

n 

diets 2.1. Thus every proper ideal is principal. Let S = U •^i'^' with XiфxJS^ for 
i=l 

i = j . If /Î > 2, S Ф X|S^ u XjSK Hence from the first part x^S^ u X2S^ is a princi­
pal ideal and so x^^S^ ^ X2S^ or X2-Ŝ  Ç ^iS^- This contradicts the choice of x -̂'s. 
Thus n S 2. In the second case if S contains a maximal ideal M which is finitely 
generated, then S = M и a и aS, a ф M.So S is a. union of finite number of principal 
ideals. Hence this conclusion follows from (i). 

Combining 2.2 and L6, we have 
n 

Theorem 2.3. Let S be an archimedean semigroup with S = \J XiS\ Suppose 
i=l 

a Ф XiuS^ for all a in 5, which is not a product of powers of XiS, Then S is finitely 
generated. 

A semigroup S is said to be rational if, for each a, b e S, there exist natural 
numbers m, n such that a'" = b'\ 

Theorem 2.4. Let S be an archimedean semigroup without idempotents. Then S 
is finitely generated if and only if S is finitely generated as an ideal. In this case S 
is a rational semigroup with at most two generators. 

Proof. By virtue of 2.3, the 'if and only i f condition is evident from the fact that 
a ^ ab for any a and b in an archimedean semigroup without idempotents [6; 136]. 
From 2.3 follows also S has at most two generators. A result of Levin [5; 370] then 
asserts that S is a rational semigroup. 

OO 

Theorem 2.5. Let S = xS^ be a semigroup in which f) x"S' = 0. Then S is an 
infinite cyclic semigroup generated by x. 

Proof. Suppose there exists an y in S, which is not a power of x. Then y = xs^ = 
00 

= x^S2 = ... . Therefore y e f) x"S = 0. 
« = i 

Theorem 2.6. Let S be a noetherian cancellative semigroup with no idempotents, 
in which every maximal ideal is principal. Then 

i) S is finitely generated archimedean semigroup with at most two generators if S 
has no proper prime ideals. 

ii) If S has proper prime ideals, then every proper ideal is an intersection of a prln-
pal ideal and a S-primary ideal. 

Proof. IÎ S has no proper prime ideals, then S is archimedean by 2.1. Then (i) 
is evident from 2.4. Suppose that S has proper prime ideals. By showing that every 
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proper prime ideal is principal, we obtain the desired result by virtue of 1.2 and 1.3. 
If P is a proper prime ideal and if P is not a maximal ideal, then by noetherian 
condition P с xS\ where xS^ is maximal ideal. If P ф xS\ then x ф P, which 

n 

implies P = xP, Since S is noetherian, P = \JXiS^. We may assume that x^e 
n n t = 1 

G Xy u XjS^ for i Ф 7. Now и XiS^ = (J xx^S^ This implies that X/ = xx^ or x,- = 
1 = 1 i = i 

= XX(5. Then, by the cancellative property x or X5 is an idempotent, which is a contra­
diction. Thus P = xS^\ 

Many of McAlister's results in [6], for finitely generated semigroups do also hold 
good for semigroups which are unions of a finite number of principal ideals. We 
shall briefly mention these results. 

Theorem 2.7. Let S be an archimedean semigroup, finitely generated as an ideal. 
Then 

00 

i) Kernel of S = Ç) S", 
" = i 00 • 

ii) S has idempotents if and only if, f) S" ф 0. 
n = l 

iii) S is a group if and only if S^' = S. 
n 00 

Proof. Assume that S = [J aiS^, where ai ф ajS^ for i ф j . Let x e f) S". By the 
t = l n=l 

archimedean property there exists an integer N such that af = xyi for г = 1, 2, ..., n. 
00 

Since X G П -̂ "5 for sufficiently large n we can have x = a^z. Then the same proof 
n = l 

as in Theorem 4.1 of [6], proves (i). The rest can be proved as in the corollaries 1 
and 2 of 4.1 in [6]. 

Theorem 2.8. Let S be an archimedean semigroup with an idempotent. Then S 
is a union of finite number of principal ideals if and only if S/Ker S is a finite 
nilpotent semigroup, where Ker S is the kernel of S. 

n 

Proof. Let 5 = и ^i-^^- If ^ Ф Ker S and if x^, X2, •.., x^ ^ Ker S, then S/Ker S 

is generated, as an ideal, by the corresponding images of Xj, X2,..., x,„. Clearly the 
images of x^, ..., x„̂  are nilpotent. Therefore 5/Ker S is a finite nilpotent semigroup. 
Conversely if S/Ker S contains a finite number of elements y^,..., y„, then S = 
= eS и tiS^ Kj ... и t„S^ where e is the unique idempotent in S and ^/s are the 
inverse images of y/s under the canonical mapping S -+-> 5/Ker S. Now the result is 
true if -S = Ker S. 

Some of the results so far proved enable us now to assert that some classes of 
semigroups do not admit ring structure. By combining the results in 1.3, 1.5 and 2.2 
of this paper with corollary 1.2 and theorem 1.5 of [8], we have 
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Theorem 2.9. Let S^ be a semigroup S without an identity but adjoined with 0. 
Then S^ cannot admit any ring structure in the following cases: 

i) S = S'^; S is a union of finite number of principal ideals and every proper 
prime ideal is principal, 

00 

ii) S Ф 5^; every maximal ideal in S is principal and f) ^"^ = ^^for every x e 5, 
n = 1 

iii) S is an archimedean semigroup which is a union of finite number of principal 
ideals. 

iv) S is an archimedean semigroup containing a finitely generated maximal ideal. 

3. AN ANALOGUE OF HILBERT BASIS THEOREM 

Given a noetherian ring, one can construct a larger noetherian ring containing the 
previous one as a subring. This is the essence of Hilbert's basis theorem. In [3] we 
can find Bourne's proof on an analogue of Hilbert's basis theorem for finitely 
generated free commutative semigroups. In this section we shall prove a close 
analogue of Hilbert's basis theorem for semigroups. This is suggested by the fol­
lowing example of a semigroup T = {x^, X2, ...} with max. multiplication. If S = 
= {x2, X3, ...} then T = XiS^. T contains S and every ideal in Г and S are finitely 
generated (in fact principal). 

Theorem 3.1. Let S be a subsemigroup of a semigroup Tand T = xS^ for some x 
in T. Then T is noetherian if S is noetherian. 

Proof. Let Ä' be a proper ideal of T. Set A = {a e S : xa e A'}, then A is an ideal 
m 

in s and hence A is of the form \J a^S^, ai e S. Set d^ = xa,-, i = 1, 2, ..., m. Let 
m i = 1 

В = \J diS^. We claim A' = B, since, if у e A' and у =¥ x, then у = xs. Clearly 
i = i 

SEA and hence s = ai or a^s^, S^ES. Therefore y = xai or xa^-s ,̂ which impHes 
that y = di or diS^. Hence A' с в. If у E В, then у = di or diS, so that у = xai 
or xfl/5. Therefore xai or xa^s E A' since â  or a^s e Л. Hence В я A'. Since A' is an 
ideal in Tand di E A', we have 

и diT' ^A' = \J diS' Я и diT' 

Hence A' = \J diTK 

Theorem 3.2. Let S be a subsemigroup of a semigroup T. Suppose T = [J XiS; 

XiXj E XiS or XjS for i Ф j and S £ XiS for every i. Then T is noetherian, if S is 
noetherian. 

Proof. We prove the theorem by induction on the number of generators of T^ 
i.e., the number of x^'s. By 3.1 for n = 1 the result is evident. Suppose that the 
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theorem is true for all Twith the number of generators ^n ~ 1. Let A' be an ideal 
m 

in T. Set A = {a E S : x^a e A'}. A is an ideal in .S and hence A = \J aiS^, ai e S. 
n i=i 

Let di = XiQi for / = 1,2,..., m. If T^ = \J XiS and L^ = A' n T, then T̂  is a sub-
i = 2 

semigroup of Tcontaining S since XiXj e XiS or XjS. L^ is clearly an ideal in T^. Then by 
r m 

induction hypothesis, L^ = \j biT^. We claim first A' = В и L^ where В = (J diS^. 

И xe B, then x = di OÏ diS, s e S. Thus x = х^а,- or х,а^5. Hence x e A\ Clearly 
Li ^ Л' and hence В u L^ ç Л'. Let x e Л'. If x 6 T ,̂ then x 6 Л' n T = L^. If 
x ^ Tj, then X = XiS, seS. Now X ^ S G ^ ' implies by definition of A, se A. So 
s = üit or fl/, where teS. Thus x = х^а^ or x^a^t i.e., x = di or dit, i.e., x e Б. 
Hence Л' = ß u L^ and so 

m r m 

A' = {) diS' и Ь,Т/ = и diS' u (Ь,- u biXjS). 
i = 1 i = 1 i = 1 

Since di, biE A' and Л' is an ideal in T, 
m r m 

и diT' и biT' ^ Л' Ç и ^iS ' u {bi u b,x,S) , 
i = 1 i = 1 i = 1 

m r 

which is a subset of (J diT^ [J bfT^. Thus Л' is finitely generated. 
i = i i = t 
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