Czechoslovak Mathematical Journal

H. Fath el Bab
On isotropic tensors

Czechoslovak Mathematical Journal, Vol. 27 (1977), No. 1, 54-60

Persistent URL: http://dml.cz/dmlcz/101445

Terms of use:

© Institute of Mathematics AS CR, 1977

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101445
http://dml.cz

Czechoslovak Mathematical Journal, 27 (102) 1977, Praha

ON ISOTROPIC TENSORS

H. FAaTH EL BaB, Cairo

(Received January 16, 1975)

1. Let M be an oriented Riemannian two-dimensional manifold of class C® with
the boundary M. Let {U,} be an open covering of M such that there is, on each U,,
a field of orthonormal frames {v;, v,} with v, v, € T(M); let {w', w?} be the dual
coframes. On U,, the metric form of M is given by

() 9= (@) + (@)
Let the 1-form w? be defined by

1

®) do' = —0® A 0}, do® =o'

A oF.
Then the Gauss curvature of M is given by
3 do} = —Ko' A o?.

On M, be given a quadratic form S; its expression in U, be
(4) S = Syy(@0') + 2S5,0'0 + S,,(0?)?.

The covariant derivatives S;; = S;; of the symmetric tensor S (with respect to the
coframe ', ®?) be defined by

(5) dSy; — 2812(9% = S;110' + S11,0? s
dS;, + (51.1 - Szz) 0} = S;510" + Si0? R

dS,, + 281,07 = Sy@' + S3;,07 .
Then

(6) J(S) = 5121(51.12 - 5222) + SI.ZZ(SZZL - 81“)

is an invariant. We are going to prove this auxiliary result as well as the following
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Theorem. Let the data be as above. Further, suppose that: (i) K > 0 on M; (ii)
J(S) = 0 on M; (iii) there is a function A:0M — R such that S = g on OM.
Then there is a function A : M — R such that S = Ag on M.

I am going to prove this result by means of an integral formula which is a generali-
zation of an integral formula introduced by A. Svic [L] Svec constructed a certain
1-form t on surfaces of E*; he claims this form to be invariant without proving it.
In what follows, I am going to prove this; in fact, I am going to show that 7 is in-
variant on oriented surfaces of E2. Because of that, 1 restrict myself to the case that
M is a surface of E?; it is easy to see that the general proof of our Theorem is
exactly the same. From a general point of view, remark that I get an integral
formula for a symmetric tensor without supposing this tensor to be of the Ricci type;
see, p. ex., [2].

2. Let M < E? be a surface of class C*. Let us cover M by domains U, such that
there is, on each U,, a field of orthonormal frames {m; v,, v,, v3} Withme U, = M;
vy, v, € T,,(M). Then

(7))  dm = o'v, + v,
2 3
do, = 0lv, + @dv;, dv; = —wiv, + wiv;, dvy = —wiv, — w3, ;
(®) do' = o’ A 0}, dol=of A of
with @* =0, !+ w;=0.

From w® = 0, we get the existence of functions a, b, ¢ such that

) 0} = aw' + bw?, o = bo' + cw?;
further,
(10) da — 2bo} = aw! + fo?,

db + (a — ¢) o = o' + yo?,

de + 2bw? = yo' + dw? .
As always, let

(11) 2H=a+c, K=ac—b?

define the mean and Gauss curvature resp.

Let {m; Wi, Wa, w3} be another field of orthonormal frames on U, i.e.,

(12) Uy

vy = Ewy; & =65 =1

£, COSQ.W — & SINQ.W,, v, =sin¢@.w, +cosg.w,,
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and ¢ a function on U,. Further, let
(13) dm = 'w; + 7%w,,
2
dw, = 3w, + Tiw,, dw, = —Tiw, + Tw,, dwy = —Tow, — 3w, ;
(14) 3 = a*t! 4 b*t?, 13 = b¥t! + c*1?;
* o . | *..2
da* — 2b*1{ = a*t' + f*t?, etc.

From (7), (13) and (12), we get

(15) ' =g cosp.0 +sing.0?, 1= —¢gsing.w' 4 cosep.w?,
ie.,
(16) ' =¢gcosp.t' —¢gsing.7?, w* =sing.t' +cosg.1?.
Further, it is easy to see that
(17) 2 — dp = g0} ;
(18) 3= g8,c080.0; + & sing. 0},
T3 = —g8, 5N Q. @) + £,C080.0;
(19) ®) = £,6,C05Q.T) — g, sinQ. 13,
w3 =g, sing.13 +¢e,c050. 1
and
(20) a* = ¢g,cos?@.a+ 2ee,sinpcosp.b + e, sin’@.c,
b* = —g,sinpcosp.a — g&,sin@.b + eeycos? . b+
+ e sinpcose.c,
c* = gysinfa.a — 2ee,sinpcos@.b +e,co8p.c.
Thus
@1) H* = e,H, K*=K,

the well known results. By a little more complicated calculation, we obtain

(22) o* = ge,cosP @.a + e, singpcos’ @. B+ e, sin* pcosp.y +

+ esin*p. 5,

B* = —g.8,sin @ cos? @ . a + (e, cos® ¢ — 2, sin® ¢ cos @) B +
+ (2e4¢, sin @ cos® @ — &6, sin’® @)y + &, sin* @ cos ¢ . 5,
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Y* = ey sin® @cos @ .o+ (g sin® @ — 2, sin ¢ cos? o) p —
— (268, sin® @ c0s @ — &2, cos® @)y + ¢, sin ¢ cos? 0.0,
0% = —greysin’ ¢ .o + 3e;,5in? @ cos ¢ . f — 3¢,¢, sin ¢ cos? ®.y+
+&,c08% ¢ .5
using (10), (14), (17) and (20).
Now, introduce the 1-form
(23) ® = Ri0' + Ry0?,
Rii=(a—c)f+bly—a), R,:=(a —¢)y + b(s - p),

this being exactly the form 7 introduced in [1]. From (14) and (16), we get

(24) Rf =cosg.R, +¢sing.R,, RY¥= —sing.R; + ¢ cos¢.R,,
ie.,
(25) ¥ =g, P .

Thus we have proved that @ is an invariant form on oriented surfaces.

3. Now, consider the quadratic form (10) on our surface M. From
(26) S = S (') + 28;,0'0 + S,,(w?)? = STi(e")? + 28%,0 + S3.(7%)?
and (15), (16), we get
(27) STi = cos’ .Sy + 2 sinpcosp.S,, + sin? ©.S,5,,

Stz = —singcos .S,y — & sin? ¢. S, + ¢ cos? ©.S, +

+singcos¢.S,,,

83, = sin?¢@.Sq; — 2e;singcosg. Si; +cos?p.S,,.
From (11) and similar equations
(28) dsty — 28T,ti = St,¢' + ¥ 12,

dst, + (ST1 - S;:z) T = STt + STaat?,
ds3, + 287,11 = Sint' + 83,12
we obtain
cos> . Syyy + 2¢,8in @ cos . Sy, +sin . S,,, =

* : *
=g COSQ.S{q; — & sing.STy,,
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cos? @ . Sy, + 261 sin g cos ¢, Si22 +sin’ ¢ . Syyy =

*
: * sp.S
=51n(p.5111+co (4 112,

-2
—singcos .St TESINTQ.S 4 g cos? .S

121 +sin@pcos .S, =

* i *
_=81005(p.5121 &1 Sm(p'Slzz,

a2
: - 2
—sin @ cos @ . St1z — €1 SIN P .Sy, + & cos ¢.S

122 +sin@cos @ . S,,, =

*
. *
=sin¢g.Si1 T+ cos ¢ . Sy,

sin . Sy — 260SINQCOSQ S 4 cos2 0 .S,

oo *
=g COS@.Si21 ~ & SINQ.ST,

sin? @.S112 — 28 sin @ cos ¢ | S5, + cos? ©.S55,

. * *
=sing.Sy,1 +C08¢p.S5,,,

ie.,

(29) STi4

*
SIIZ

*
121

*
Sl22

*
S221 -

o —
SZZ2 -
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g1 cos> ¢ . Si1q + sin ®cos’ @ S, + 2singcos® @. S, +
+ 2¢; sin? ¢ cos ¢ | Sia; + &sin g cos ¢ . Sypp + sin® ¢ . S,,,,
~&18in @ cos® 9. S, + cosd ¢ .Sy, — 2sin> @ cos @.S, +
+ 2 sinpcos’ . S,,, g15in° @ . Syp1 + sin® 9 cOs @ . Syy,,
~¢gy sin @ cos? ¢ . Si11 — sin? @ cos @.S112 —
~sin® @ cos . S, + cosd g . Sty — &g sin® @. Syp; +

. S2 . 2 S +
+éismecost . §,, + €¢ SIN @ COS™ @ - D221

+sin> pcos 9. S,,, ,

.3
2 . . —
61SIN7 @ COS P . Sy — sin @ cos? ¢ . Syyp + SN @ Sizg
3
i 2 , . Sias —
~SMQCosT PS8y, — g sin® @cos . Syaz + &€ Q. Stz
~ ¢ sinfpcoso .S ; 20 .8,25
1S~ @ P . 5221 + sin @ cos? @ . S222
in2 in@cos® .S, —
e8P COS PS4 + sin @. §;,, — 28N :
. 2
2 sin @ cos” ¢ . S5,
~ 2&; sin” ¢ cos ¢ . Si2; + £, cos® @ . Sp2q +SINP ’
. .2 S —_
3 : Ccos 0121
~ersin® . S, + sin? g cos . Sy, + 25in° ¢ ¢

3
: 2 . +cos’@.S,,,.
~ 2&; sin @ cos? ¢ . St2; — & sin @ cos® @ - Sr21



From this

(30) 5121(31_12 - Szzz) + SI.ZZ(S221 - Su_l) =
= ST21(ST12 - szz) + S’fzz(s;u - Sti1),

i.e.,
(31) J(S) = JX(S).
Consider the 1-form
(32) ¥ = Tio' + T,o?,
Ty :=(Sy; — S22) S121 + S12(S221 — Si11) s
T, := (Sy; — S22) St22 + S12(S222 — Si12) -
From (27) and (30),
(33) T =coso.Ty+esing.T,, Ty = —sing.T, +¢cosep.T,,
ie.,
(34) Yr =g ¥,
and the form ¥ (32) is thus invariant on oriented surfaces.
The equations (11) imply
(35) {dSi1; — (Siaa + 2Si5) 03} A @' +
+ {dSy12 + (St11 — 25122) 03} A @? = 28 ,Ko' A w?,
{dS120 + (Si11 — Si22 — S221) @3} A 0! +
+ {dSi2, + (St12 + Si21 — S225) @3} A @? = (S5, — Siy) Koo' A 0?,
{dS,,1 + (25151 — Syyn) 03} A 0 +
+ {dS;,; + (25122 + S221) @]} A @ = —2S,K0' A @,
and we get the existence of functions Tj, ..., Ty such that
(36) dSii1 — (Si12 + 2855) 0 = Tyo' + (T, — 51,K) @?,
dSy1; + (Siy1 = 28125) 0f = (T, + S(,K) 0! + Ty0?,
dSy51 + (Si11 = Si22 = Sa21) @0 = Tyw' + (Ts + 5;,K) 0?,
dS(52 + (Si12 + Si21 = S222) 0f = (Ts + $5:K) 0" + Te0?,
dS,y1 + (28121 = S125) 0 = Ty0' + (Tg + S(,K) 0?,
dS,,, + (28125 + Sy51) 0F = (Ts — S1,K) 0! + Ty0?.
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By means of these formulas, we get
(37) a¥ = _{25121(5112 = S55,) + 25122(5221 - Si) +

+ ((Sll - S22)2 + 4S%Z)K} COI A CUZ .

The Stokes formula f

b4 =J‘ d¥ reads now
oM M

(38) f {(S“ - Szz) (5121601 + 51.22“’2) +
oM
+ 815(85210" — Sy 0" + 852,07 — S1120%)} =
= —J {20(8) + ((S11 — $5,)* + 4S1,) K} ' A 007
M

The proof of our Theorem follows easily. On the boundary M, we have S =
= S,, =4, S;, = 0, and the left-hand side of (38) is thus equal to zero. Because
of K > 0and J(S) 2 0, we get (Sy; — S,,)> + 483, = 0,ie., S;y — S,, = S, =
= 0. We are finished setting S;; = S,, = A.
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