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1. Introduction. In recent years the work of several mathematicians has been
directed towards a study of the formal powers of the symmetric, second-order differen-
tial expression M, where, for suitably differentiable complex-valued f, M is defined by

(1.1) M[f]1=—=(pf") +af on I ('=d/dx).

Here I is an interval of the real line, and the coefficients p and q are real-valued, with
p > 0, on I. The formal powers M", where n = 1,2, 3,..., of M are defined by
M' =M and M" = M[M"™'] for n =2,3,...; this definition requires certain
differentiability properties of the coefficients p and g if M" is also to be a differential
expression.

The first result on the relationship between M and M?, as symmetric differential
expressions, were given by CHAUDHURI and EVERITT in [1]. Since then there have
been contributions to the properties of M", and more general polynomials in M,
from EVErITT and Giertz [3], [4] and [5], KAUFFMAN [6], KuMaR [7], REaD [9]
and ZeTTL [10]. In particular [5] is a survey article on the general powers M" of M.

For the general definition of a real-valued formally symmetric (equivalently formal-
ly self-adjoint) differential expression see [2, Ch. X111, 2.1] or [8, section 15]. When M
is given by (1.1) and the power M" exists then M" is also formally symmetric. In the
particular case of (1.1) with p = 1,i.e. p(x) = 1 (x €I), we have

(12) MIf1= /" +af on I
and
(1.3) M2[f] = f“ — (2af') + (a* = q")f on I.

Here derivatives of order greater than 2 are denoted by f©) and f.

The results discussed in this paper are concerned with M and M?, as given by
(1.2) and (1.3), in the case when the interval I is the half-line [0, c0). In particular
one of the results, see Theorem 1 below, answers a previously unsolved problem posed
by Chaudhuri and Everitt in 1969, see [1, section 12].
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Since we deal only with the half-line [0, ©) we use the abbreviations L* for the
Hilbert function space (0, ), and AC,. for AC,, [0, o), i.e. those complex-
valued functions defined on [0, c0) which are absolutely continuous on all compact
sub-intervals of [0, o0).

Throughout the paper we assume that the coefficient ¢ in (1.2) and (1.3) satisfies
the following basic conditions:

(14) (1) q s real-valued on [0, )
(U) ql € ACIoc >

which ensure that both M and M? exist as formally symmetric differential expressions
on [0, o).

In these circumstances the minimal closed symmetric operator generated by M
in I? has deficiency indices either (1,1) or (2,2), the limit-point and limit-circle clas-
sifications at oo, respectively, of Weyl; see [2, page 1306] or [8, section 17-5]. Similarly
the deficiency indices corresponding to M? in I? are (2,2), (3,3) or (4,4) and we refer
to M? as limit-r at o0 when these are (r, r) for r = 2, 3 or 4, respectively.

The problem raised in [1, section 12] concerned the existence of coefficients g
such that M, given by (1.2), is limit-point and M? is limit-3, both at co. At the time
of writing of [1] it was known that M? is limit-4 if and only if M is limit-circle and
that M? is frequently limit-2 when M is limit-point, but the general theory and exam-
ples available left the above problem open. Since then, several mathematicians have
tried to find an example of such a coefficient g or, conversely, to prove that M?
is limit-2 if and only if M is limit-point at oco. The situation is further complicated
by a recent result in [4] which states that if g satisfies (1.4) and, additionally, for some
non-negative numbers k and X

(1.5) q(x) = —kx* (xe[X, )

then M is limit-point at co (previously known, see [8, section 23]) and M? is limit-2
at co. This shows that if there is a coefficient g for which M is limit-point at co and M*>
is limit-3 at oo, then g will have to enjoy excursions through the —kx? barrier, for
every positive number k, and yet do so in a way as to keep M in the limit-point case
at oo.

An answer to this problem has now been obtained and is given in

Theorem 1. There exist coefficients q which satisfy the basic conditions (1.4) such
that when the differential expressions M and M* on [0, ) are defined by (1.2)
and (1.3) then

(a) M is limit-point at oo
(b) M? is limit-3 at co.
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Proof. This is given in sections 2 and 3 below.

In the proof of Theorem 1 two particular results are used which are themselves
of interest and these are stated here separately since they throw some light on the
nature of the integrable-square solutions of the differential equations associated
with M and M?2. These equations are

(1.6) M[y] =0 on [0,0) and M?*[y]=0 on [0, ©);

both regular at all points of [0, o) but with singular points at co.

Theorem 2. Assume that (1.4) holds and that the equation M*[y] = 0 on [0, o)
has exactly 3 linearly independent solutions which are of integrable-square on
[0, o), i.e. solutions in I*(0, ©); then M? is limit-3 at oo, M is limit-point at oo
and the equation M[y] = 0 on [0, o) has exactly one linearly independent solution
in I*(0, o).

Theorem 3. Assume that (1.4) holds; then the following two statements are equi-
valent:

(1) The equation M*[y] =0 on [0, o) has exactly three linearly mdependent
solutions in I*(0, oo).

(2) The equation M[y] =0 on [0, ©) has real-valued solutions ¢ and ¥ * 0
such that

¢ ¢ I2(0, ), YFeI*0, )

X

where F(x) =f ¢* (xe[0, )).

0

We outline the contents of the paper. Section 2 contains proofs of Theorems 2
and 3 and associated results. The proof of Theorem 1 is given in section 3. In section 4
there are some remarks about the extent of the oscillations in such coefficients g
as determined by the construction in the proof of Theorem 1. There is a list of
references.

Acknowledgement. We acknowledge the support of the Science Research Council
of the United Kingdom for the Symposium on Spectral Theory and Differential
Equations 1973 —74, held at the University of Dundee, which enabled M. Gieriz
to visit Scotland in the summer of 1974.

2. Proof of Theorem 2 and Theorem 3. From now on we assume that g satisfies the

basic conditions (1.4). It is then a standard result that the number of linearly in-
dependent solutions in I? of the eigenvalue problem

(21) M?*[y] =24y on [0, )
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does not depend on 4 as long as Z is a complex but non-real number, and also that this
number is r if and only if M? is limit-r. The situation is more complicated when A
is real. However, the following statements are known to hold true, see e.g. [5]:

(a) When M? is limit-r and 2 is real, then (2.1) has at most r linearly independent
solutions which are of integrable square on [0, co), that is in I?.

(b) M? is limit-4 if and only if M is limit-2 (that is, in the limit-circle condition) in
which case all solutions of (2.1) are in I?, also for every real /.

Theorem 2 is an almost direct consequence of (a) and (b). In fact assume, as in
Theorem 2, that the equation M?[y] = 0 on [0, o0) has exactly 3 linearly independent
solutions in I?. Then M? can not be limit-2 according to (a), and it can not be limit-4
in view of (b). Thus M? must be limit-3 and, again from (b), M must be limit-1 so
that the equation M[y] = 0 may have at most one linearly independent solution
in I? according to (a). But if it has no such solution, then M*[y] = 0 can have at
most two linearly independent solutions in I?, since every solution of M[y] = 0
is also a solution of M?[y] = 0. This completes the proof of Theorem 2.

To prove Theorem 3 we begin by considering certain solutions of M*[y] =0
given in terms of solutions of M[y] = 0. Let f and f, be any two linearly independent
real-valued functions which satisfy M[y] = 0, and are normalised so that f; I3 —
— fif> = 1. Define f5 and f, by

70 = 1) [ =10 [ (el 0),
‘ 0 Jo

and

1) = 11(%) j =19 j if (xe[0)).

A direct calculation verifies that

M[fa] =/f; and M[f4] =/,

and it follows that f; (i = 1, 2, 3, 4) are all solutions of M?[y] = 0. They are linearly
independent, since if

f=afi +af, +asfs+afs=0
then
M[f] =a3fy +asf, =0,

which shows that a; = a, = 0 and thus also a; = a, = 0.

In one direction, the proof is now essentially contained in the following lemma
concerning properties of certain pairs of functions in I3 ..
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Lemma 1. Let f and g be two functions which are defined and locally of integrable-
square on [0, oo). Assume that

rx

f¢? and gFel’ where F(x)=||f|* (xe[0, ®));
JO
then
g e’ and fG e’ where G(x)=| |g9|* (xe[0, w)),
fgeL and fHeDL where H(x)= | |fg| (xe[0, x)).

Proof. Let f and g satisfy the conditions of the lemma. The assumption that f is
not in I? implies that F(x) = 3 | f |2 tends to infinity with x and thus that there
existsa y in (0, o) for which F(y) = 1and F(x) = 1(x > y). The assumption gF e I?
then implies g € I and g \/F € I?, and it follows that also f./G is in I?, where
G(x) = [7 |g|? since a partial integration and the fact that F is increasing give

[lr6l = o[l + [loor1 = [l < o

Since G is continuous and bounded this proves that fG is in 7.
The inequality, valid for 0 < y < x < oo,

[Jr:lfgl]z = U:|9FJ’/F[]2 < L[gF[ f (F/|F?} = [1 — 1/F(x)] J:lgFlz

proves that fg is in L.
The analogous inequality

) = [ [Vl = vreon [ lor
shows that FH*(x) — 0 (x > o0) and since
([l = ey 0 2 [Tporn = (eme) -+ 2{ [ [(lp)

also that fH e I*. This completes the proof of Lemma 1.

Now assume that the statement (2) in Theorem 3 holds true, with ¢ and  nor-
malised so that @y’ — @'y = 1. Then ¢ and ¥ satisfy the conditions of Lemma 1
with f = ¢ and g = . Thus € I?, oy € Land the functions defined by

o(x) j o(x) j o¥ and w(x)j:w (xe [0, )
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are all in I2. With

(22) £ = o(x) j :w// — () J (,,

(23) Fi5) = o) j v - ) j v

it follows that ¥, f3 — ¢ [¢ @y and fy — ¢ [¢ y? are three linearly independent
I?-solutions of M?[y] = 0. Since ¢ is a fourth solution which is not in I2, it is clear
that (1) is satisfied.

Conversely, assume that the statement (1) holds true. Then, from Theorem 2,
M must be in the limit-point condition at co and M [y] = 0 must have exactly one
linearly independent I*-solution. Let ¢ and y be real-valued solutions of M[y] = 0
which satisfy ¢ ¢ >, € I? and @y’ — ¢y = 1, and let f; and f, be defined by (2.2)
and (2.3) so that {@, ¥, f3, f4} is a basis for the solutions of M*[y] = 0. According
to (1) there exist linearly independent vectors (a,, a;, a,) and (b,, bs, b,) in R®
for which a,¢ + asf; + a,f, and b,¢ + by f; + b,f, are both in I?. It follows
that f; + a¢ e L? for some unique real number a (eliminating f,, above in case both
a, + 0 and b, # 0). Put

Fx) = r@z and H(x) = a + J:“"” (xe [0, ).

[

Then ¢H — YF = f5 + ap € I?, and the identity (/5 + ap)® = (pH)? + (YF)* —
— F(H?) gives

@.4) J (fs + ag)t = 2 J :(¢H)2 + j :(w)z — (FH)(x) (xe[0, w)),

after a partial integration of the last term.

We shall show that F € I?, so that the statement (2) follows, by obtaining a contra-
diction from (2.4) in case Y F is not in I*.

If YF ¢ I? it is clear from (2.4) that
@) Ux) = (FH?) (x) - 2 f (oHY > 400 (x> o),
0
and since the function V defined by

V(x) = F3(x) j :(w)z (xe (0, )

satisfies V' = ?F~3U it follows from (2.5) and the definition of F that V' (as well
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as V) is non-negative for sufficiently large x. Thus ¥(x) > $C?, say, that is

f (OH)? > 1C? FY(x),

0

for some constant C > 0 and large x. Returning to (2.5) we obtain
0 < U(x) < (FH?) (x) — C* F*(x),

that is, H(x) > C \/F(x) for all large x. Now this inequality gives us the required
contradiction. In fact, let X be so large that

fwwz < C*4.
X

Then for x > X,

e oo o [
< (C/z + (a + f :|<p¢|> /\/F(x)> JF()

where the term in ( ) is <C when x is large enough, since F(x) - oo (x - o0).
Thus YF € I? and the proof of Theorem 3 is complete.

3. Proof of Theorem 1. To prove Theorem 1 it is sufficient, according to Theorem
2, to produce differential expressions M for which (1) of Theorem 3 holds true. To
achieve this it is not only sufficient but also necessary for us to ensure that the
equation M[y] = 0 on [0, ) has solutions ¢ and ¥ which satisfy (2). As it turns
out, such solutions must necessarily be of an oscillatory nature on [0, o), with an
unbounded sequence of discrete and simple zeros. In the following lemma we give
additional conditions on the zeros of the linearly independent I[?-solution ¥ which
ensure that M? is, indeed, in the limit-3 case.

Lemma 2. Let ¢ and y be two real-valued functions in C*[0, 00) which satisfy
oY’ — @'y =1 0n [0, ). Assume that y has a denumerable increasing sequence
(xu)v=o of zeros, with xo = 0 and x, > o (n — ), and that

0
(i) S {(xy — x4—1)* x7} converges,
n=1

(ii) there exist positive numbers A, B and C such that

Xn X,

y? < A(x, — x,_{)* and Bx, < j ¢* < Cx,

0

Xn~1

for all positive integers n.
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Then (Y"[¥) (x) tends to a finite limit as x tends to a zero of Y; the coefficient q
defined by q(x) = (Y"[¥)(x) (x €[0, )) is in C?[0, ) (where, of course, g is
defined by continuity at the zeros of ¥); and ¢ and y satisfy (2) of Theorem 3
with M defined by M[f] = —f" + qf.

Proof. Let ¢ and y satisfy the conditions of the lemma. The facts that (y"/i) (x) =
= g(x) tends to a finite limit as x tends to a zero of y and that g € C2[0, o0) follow
directly from theassumptions ¢, Y € C*[0, o) and @y’ — ¢’y = 1, which imply that
¢(x) # 0 when y(x) = 0, and that @y = ¢"y. It is also clear from the last equality
that M[¢] = M[y] = 0.

The lower bound in the assumption (ii) implies that ¢ is not in I?. On the other
hand with F(x) = [ ¢* (x € [0, c0)) the upper bounds give, for x in [xy_{, xy).

JN;'(tﬁF)2 <y { J‘ (l/,F)Z} < ACPS {(xs — o 52

n=1 Xn-1 n=1

In view of the assumption (i) it follows that Y F e I?, that is, ¢ and y satisty (2) of
Theorem 3. This completes the proof of Lemma 2.

We now prove Theorem [ by displaying functions ¢ and ¥ which satisfy the con-
ditions of Lemma 2. We shall construct such functions in terms of a real-valued
function f in C*[0, 1] with the properties that

(i) f is infinitely differentiable, positive and convex upwards with
f0)=0, f(0)=k>0. f(1)=B>0 and f'(1)=0,
and that, for some number r € (0, 1),
(i) f(\) = kx (x e [0, r]) and f(v) =B (xe[l —nr1]).
(i) ! (117" = 1/(k2).
Then we shall show that functions f with the above properties do endeed exist,

provided k/B e (1, 2) and r is small enough.
Assuming that f has the properties (i)—(iii), define g on [0, 1] by

o(x) = 1) j (WP (xe0.1]).

where g(O) is defined by continuity.

Since f is positive this function g is negative, and since, by a direct calculation,

(3.1) f9'—fg=1 and fg"=["g on [0,1],
we infer from (ii) that

(32) g is convex downwards with g(0) = —1/k and g(1) =0.
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Near the left end point of [0, 1] we obtain from (iii)

(33 g(x) = ——kx“:(kt)‘zdt +Jlf‘z] — 1k (xe[o,r]),

r

and near the right end point we have

1

(3.4) o(x) = —Bj B = (s = /B (xe[l = r1)).

X

It is clear from (i) that f is increasing and satisfies Bx < f(x) < B (xe[0,1]) and
it follows from (3.2) and (3.3) that |g(x)| < 1/k on [0, 1]. Thus

rl 1
(3.5) B[3 <J f* < B* and J g2 < 1k,
0 0
B
p=f(1-x)
17k
y = -9(1-x)
Fig. 1.
In the interval [xg, x;] = [0, 2] ¢(x) = —f1(x) and y(x) = —g;(x). In the intervals [x,_, x,]

9(x) = (= D" 120 — x,_)f(x, — x,21)), W) = (D" Jx, — x,-1) g2 — ,_):
2 (x, — x,_ ). In this particular example, L, = 2/n and B= 1, k = 3, and r = 1; as we shall
see later the set of functions f satisfying (i)—(iii) is non-empty for these values of B, k, and r.

Let (x,)%-, be a sequence of real numbers tending monotonically to inﬁr;ity with n,
with xo = 0and x; = 2,and put L, = x, — x,_,. Define, first f; and g, on [0, L,] =
= [0,2] by f1(x) = —f(1 — x), g4(x) = g(1 — x) (xe [0, 1]) and f,(x) = f(x — 1),
g1(x) = g(x — 1) (x € [1, 2]) and then, for each integer n > 1, f, and g, on [0. L,] by

(3:6)  ux) = f1(2x/L,) and g,(x) = (L,[2) g,(2x/L,) (xe[0.L,]).
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The property (ii) of f ensures that f, is infinitely differentiable on its interval of
definition and takes the constant value — B near the left end point and the value B
near the right end point of this interval. Similarly, (3.3) shows that g, is also infinitely
differentiable and (3.4) that g, vanishes linearly at the end points of its interval of
definition, with slope —1/B near the left end point and slope 1/B near the right one.
It follows from (3.1) that f,g} — f{g; = 1 on this interval. Clearly, from the defini-
tion (3.6), the functions f, and g, inherit these properties for all integers n > 1.
But this means that we may patch the f, : s together, and also the g, : s, to obtain
two functions ¢ and ¢ in C*[0, o0) of the form shown in Fig. 1 by defining, for
each interval I, = [x,-1, X,),

o(x) = (1) fulx — xu1) and Y(x) = (1) gu(x = x,-1) (x€l,).

These functions satisfy @y’ — ¢’y = 1 on [0, ) and since

j @? = (L"/z)szf _ LnJ“fZ and j Y2 = (L?,/"f)flgz
In 0 o I o

it follows from (3.5) that

J "y < I3J(2kP and BL3 < J " 0? < BL,.

Xn—1

Thus ¢ and ¥ satisfy the conditions of Lemma 2 provided we select the sequence
(L,)y=, so that L; = 2 and

(3.7) Z (3x2} = Y {I3(Y L)} converges.
n=1

n=1 k=1

To obtain examples of such sequences we may choose L, = 2n~* with a e (3, 1];
the fact that these satisfy (3.7) is easily verified on using

1 2+ 2logn (x=1).

It remains to verify that there exist functions f with the above properties (i)—(iii).

Intuitively, it seems clear that there are functions which have the properties
stated in (i) and (ii) when 1 < k/B < 2, but for lack of a suitable reference we sketch
a proof of

Lemma 3. Let a, b, ¢ and d be positive real numbers satisfying b < c¢/d < a.
Then there are functions in C*[0,d] which are convex upwards and satisfy

£(0) = 0, £(0) = a, f(d) = ¢, f(d) = b and f™(0) = f™(d) = 0 (n = 2).
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Proof. Define P : [0, 1] — [0, 1] by

X

(3.8) P(x) = KJ' exp {— sl - I%s_} ds (xe[o,1]),

0

where the constant K is determined by the requirement P(1) = 1. It is straight-
forward to verify that P is infinitely differentiable and increases monotonically from
P(0) = 0 to P(1) = 1, with all derivatives vanishing at x = 0 and at x = 1, and
satisfies P(x) + P(1 — x) = 1 (0 < x £ }) so that [, P = 1.

Now the assumption bd < ¢ < ad implies that [ = (¢ — bd)/(ad — bd) satifies
0 < I < 1, and thus in turn that in a (s-t)—plane, the line ¢t + s = | has a non-
empty intersection with the half-square determined by 0 =t <t + s < 1. For
each (s, 1) in this intersection, define Q,, : [0, d] — [0, a — b] by

0 0 < x < 1d)
0u(x) = (a — b)P(x :d"_’> (td < x < (t + 5)d)
a—>b ((t+s)d =x=4d).

Then Q, is in C*[0, d] and

rQs, = (ad — bd)quP—i-(ad —bd)(1 —s—1)=(ad — bd) (1 — t — 4s) =

0

=(ad — bd)(1 — I) = ad — c.

Thus each function 1 : [0, d] — [0, c] defined by

(%) = ax — J :QS, (xe [0, d])

satisfies f(d) = c. A direct computation shows that f has the other properties stated
in the lemma as well.

Now let S = S(B, k, r) be the subset of C*[0, 1] containing real-valued functions
which satisfy (i) and (ii). According to Lemma 3, with ¢ =k, b =0, ¢ = B and
d = 1, this set is nonempty, and it follows from the convexity requirement in (i)
that each f in S is bounded by I(x) < f(x) < m(x) in the interval [r, 1 — r], where
the graph of

I(x) = kr + l: : ;'; (x=7r) (xe[r,1—=r])

is the line segment connecting the points (r, kr) and (1 — r, B), and

alx) = kx (xe [0, B/k))
) {B (xe[Bk. 1]) .
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For each s in the open interval (r, B/k), let I, be the line parallel to ! which intersects
the graph of m at the points (s, ks) and (¢, B), say. On rounding off the corners
following the recipe in Lemma 3 we obtain, for any sufficiently small positive number ¢
and all s in (r 4+ & Bk™' — ¢), functions in S with graphs coinciding with that of m
in(0,s — &)U (t + & 1) and with I;in (s + & ¢ — ¢). A continuity argument shows
that S contains functions for which [; (1/f)? takes any prescribed value in the open
interval

(] m e [ s 8).

r

Fig. 2.

In particular, it contains functions which satisfy (iii) when 1/(k?r) lies in this interval.
Putting k/B = b we find after some elementary calculations that this condition takes
the form
(1 + b%r — 2br)/b2r < I/bzr < (b + b*? — Zbr)/bzr,
or equivalently
b<2<b+(1—br),

which is satisfied for b € (1, 2) provided r is small enough — in the two figures above
we have used B = 1, k = Zand r = L.

4. Comments on the above examples. All examples constructed by the method used
in section 3 have the common property that there exist arbitrarily large x for which
q(x) = (¢"[¢) (x) < —x>. In fact, the property (i) for f implies that f”/f must be
strictly negative at some points in (r, 1 — r). Let y be such a point with, say,
(f"If)(y) = —c*. Then at the points y, = x,_; + (L,/2) y we have

a(yn) = /L) (f1lf1) (v) = —(2¢/L,)* .
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Thus if g(y,) = —ya for n > N, then
(2¢/L,)* £ (%=1 + (L2) ¥)> < xi (n > Ny),

so that for N > N,

N N N n
Y {Lx)} > 4c? ZN {L,[x,} =4 Y {L,/ ZlLk}.
n=No =No n=No k=

Here the last sum diverges since Y L, is divergent, just as [* {h(x)/[* h} dx diverges
when [® h is divergent. This contradicts (3.7) and so ¢(y,) < —y, for arbitrarily
large n. On the other hand, given any positive number ¢ the method in section 3
yields coefficients which satisfy g(x) = —x*** (x € [0, o0)). These g : s result from
functions ¢ and ¥ constructed by means of functions f which hold close to sin (nx/2)
on [0, 1], with very small intervals of linearity near the end-points.

Thus the results of this paper still leave open the question whether the condition
(1.5) for M? to be limit-2 at oo is best possible or not in the case when M is limit-
point at co.
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