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STRONGLY PROJECTABLE LATTICE ORDERED GROUPS

JAN JakuBik, Kosice

(Reccived April 9, 1975)

Several theorems proved at first for archimedean vector lattices have turned
out to be valid also for the more general case of archimedean lattice ordered groups.
As an example we can mention here the theorem on the representation of archimedean
vector lattices by means of real functions and its generalization for archimedean
lattice ordered groups (cf., e.g., KANTOROVIC, VULICH and PINsker [11], Chap.
XI1II; BERNAU [2]). '

The following theorem is well known (VEKSLER [13]; cf. also LUXEMBURG and
ZAANEN [10], p. 137):

(A) Let X be a vector lattice that is strongly projectable and o-complete. Then X
is complete.

It is a natural question to ask whether each strongly projectable o-complete lattice
ordered group must be complete. In this note it will be shown that the answer is
negative. The following affirmative result in this direction will be obtained for singular
lattice ordered groups:

Theorem 1. Let G be a singular lattice ordered group that is strongly projectable
and o-complete. Assume that G fulfils the condition

(cx) each bounded set of singular elements of G has its supremum in G.

Then G is complete.

Singular lattice ordered groups were investigated by Iwasawa [7], CoNRAD and
MCALLISTER [5] and by the author [8]. Let us remark that singular lattice ordered
groups and vector lattices are in a certain sense on the opposite sides of the spectrum
of lattice ordered groups. If G is a complete lattice ordered group, then G = 4 x B,
where A is the greatest singular convex [-subgroup of G, and B is the greatest convex
I-subgroup of G that is a vector lattice. Every vector lattice is divisible; on the other
hand, if A is singular, then for each 0 < a € 4 there exists a’e A with0 < a' < «a
such that, if n > 1 is a positive integer, then the equation nx = a’ has no solution x
in A.
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If G is a complete lattice ordered group, then it is strongly projectable (this is
a theorem of RiEsz; cf. [1], Chap. XIII) and obviously G is conditionally orthogonal-
ly complete. Every archimedean lattice ordered group that is signular and con-
ditionally orthogonally complete must be complete [8]. Thus if G is a singular
archimedean lattice ordered group, then the following conditions are equivalent:

(a) G is strongly projectable, c-complete and fulfils (a);
(b) G is conditionally orthogonally complete;
(c) G is complete.

The examples given below show that for archimedean (even s-complete) lattice
ordered groups the strong projectability need not imply (b). The question whether (b)
implies the strong projectability for archimedean [-groups remains open. (This question
is closely related to a problem proposed by CONRAD [4]; cf. § 3 below.) In the case of
vector lattices the answer to the question is affirmative (VEKSLER and GEJLER [14]).

A sequence {g,,} of elements of a lattice ordered group G will be called a funda-
mental ry-sequence, if there exists 0 < e € G such that, for any positive integer n,
we have 2"|gk - g,,,l < e, whenever m, k are positive integers greather than n. The
lattice ordered group G will be called ry-complete if each fundamental ry-sequence
of elements of G is o-convergent. In § 4 it will be proved (Thm. 3) that if G is archi-
medean, projectable, conditionally orthogonally complete and r,-complete, then it is
complete. For a related result concerning vector lattices cf. VEKSLER and GEJLER
[14], Thm. 4.

1. PRELIMINARIES

Let us recall some fundamental notions we shall need in the sequel. For the
terminology, cf. BIRKHOFF [1], Fuchs [6] and CoNraD [3].

Let G be a lattice ordered group. The group operation and the lattice operations
in G will be denoted by + and by A, v, respectively. Let A = G. We denote

A’ = {geG:|g| A |a[ = 0 for each ae 4},
A&& — {Aé}é .
The set A° is called a polar of G. The I-group G is said to be strongly projectable if
each polar of G is a direct factor of G; this is equivalent with the following gondition:

(B) If 0<geG, A<= G, then sup{bed’:0=b < g}

exists in G.

G is called projectable, if for each element a € G, the polar {a}’ is a direct factor
of G.



A subset @ += B < G is called disjoint (or orthogonal), if 0 < b for each b e B,
and by A b, = 0 for each pair of distinct elements by, b, € B. The I-group G is
called (conditionally) orthogonally complete if each (bounded) disjoint subset of G
possesses its supremum in G. The I-group G is said to be complete (o-complete)
if each bounded subset (respectively, each bounded denumerable subset) of G has
a supremum in G.

Let 0 < se G and suppose that x A (s — x) = 0 for each xe G with 0 < x < s.
Then s is said to be a singular element of G. It is easy to verify that 0 < se G is
singular if and only if the interval [0, s] is a Boolean algebra. The I-group G is called
singular if for each 0 < g € G there exists a singular element se€ G with 0 < s < g¢.
For any I-group G we denote by S = S(G) the set of all singular elements of G.
Then S% is the greatest convex singular l-subgroup of G.

Let G be an archimedean lattice ordered group. We denote by G* the Dedekind
completion of G. Thus G" is a complete /-group, G is an I-subgroup of G" and each
element of G” is a supremum of a subset of G. For each g € G" there exists he G
with g < h.

Let A < G". We denote

AP ={geG" :|g| A |a| =0 foreach ae A}, A" = (4").

If A = {a} is a singleton, we put 4*” = [a]°. Because G* is complete, it is strongly
projectable and hence A”# is a direct factor of G* for each 4 < G*. Thus G" =
= A? x AP® for each A = G". The component of an element fe G* in A? will
be denoted by f(4%). If A* = [a]° we denote f(4*) = f[a]°.

The set A is, in fact, the polar generated by the set 4 with respect to the lattice
ordered group G*. If 0 < 5,6 G" (i=1,2,3), sy A s, =0, 5, Vs, =s;, then
[51]° N [52]° = {0} and [s;]° is the least polar of G* containing both [5,]° and
[s2]° as subsets; since each [5;]° is a direct factor of G*, we obtain

[s3]° = [s1]° x [s2]°-

2. SINGULAR STRONGLY PROJECTABLE /-GROUPS

In this paragraph the proof of Thm. 1 will be given. Its idea is similar to that used
in [9] (in [9] it was assumed that the lattice ordered group G is o-complete and
conditionally orthogonally complete).

Suppose that G is a g-complete, singular and strongly projectable lattice ordered
group. Further suppose that G fulfils the condition (o).

Let0 <geG", he G, h = g. There is h; € G such that 0 < h; < g. Thus there
exists 0 < se S with s < g. Denote

So={seS:s=g}.

644



We have S, < [0, h] and hence according to () there exists s, = sup S, in G. The
set S is a closed sublattice of G, thus s, € S and so sy € S,. We have already verified
that S, =+ {0}. Since G" is complete, it is archimedean. Therefore there exists
a positive integer ny such that

(i) (1 = 1)s0 = g,
(ii) nyso non < g.

Let S be the set of all se S, such that nys < g. Then S| # 0 because 0 e S,
and S| is bounded in G. Hence there exists s; = sup S| in G. We have

/
ngsy = ny Vses.' 5= Vs, M1S= 49,

hence s is the greatest element of the set S;. Put s; = s, — s}. Then, since s, is
singular, s; A s; = 0. Therefore s; v s} = s; + s{ = so. Thus s; is a relative
complement of the element s, in the interval [0, so]. Hence if 0 < s < s, then
nysnon = g.

Denote g; = g[s]°. We have

("1 —1)s; = ("1 - 1) 51[51]0 = 9[51]0 =49y

Assume that (n; — 1) s, < g;. Then there is 0 < se S with s < g; — (ny — 1) ;.
Thus s € [s;]° and clearly s < s,. Therefore

s=sAsg=sA(sgvs)=(sAs)Vv(snasy.
Because [5,]° is a direct factor of G*, we have
1) G* = [s:° x ([s:]°) .
Each direct factor of G” is a convex I-subgroup of G". From s, € [s,]° we infer
that s A s; € [s;]° and hence (s A s1) [s{]° = s A s;. Moreover, since s; A s; =0,
we have s1 € ([5,]°)* and thus s A s} e ([s,]°)".
Therefore (s A s7) [s;]° = 0. Thus according to (1),

s=s[s;]°=(sAs)[5:]°=5A 5.

Hence 0 < s < s,. This implies n;s non < g. If nys < g4, then n;s < g, which is
a contradiction. Thus nys non < g;. On the other hand, we have

ns=(ng—1)s+s=(ng—1)s; +s =
S (= sy + (90— (ny = Dsi) = a1,
which is a contradiction. Hence
gy =(ny — s, .
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Thus g; € G. If g = g,, then g € G. Suppose that g + g;. Then g} =g — g; > 0.
We have g1, sy € ([5¢]°)%, g1 € [s,]% hence
sSiAg =0, g,Ag;=0.
Moreover, since s} < s < g = g, V g1, We get
st A gy =(st Agi) Vv (st Agl)=s1A (g0 v gl)=st,
thus s; < g}. If seS, s < g}, then s < s, and se([s,]° hence s A s, =0,

therefore
sAsi=(GAas)vAas)=sAa(syVvs)=sAs =s,

hence s < s7. Thus s] is the greatest element of the set
S; ={seS:s<gi}.
Now by the same method as we constructed ny, sy, 51, g1, g1 corresponding to the
pair (g, so), We can construct n,, s,, 53, g, g> corresponding to the pair (g}, s}).
From s; A s; =0, s; v s; = s, it follows
[50]® = [5:]° x [511°,
hence
) gls0]® = g[s:1° + g[511° -
The component of the element g in the direct factor ([s,]°)" of G" is the greatest

element of the set
P={xe([s]):0<x=g}.

Assume that 0 < x e P. Then x A sy = 0. There exists 0 < h, e G with h, < g
and hence there exists 0 < se S with s < h,. Thus 0 < s < s, A x, which is a con-
tradiction. Consequently, the component of g in ([5,]°) is 0 and hence g € [s,]°.
Thus g = g[s,]°. Hence from (2) we obtain
9 =g +9[s1]°.
Therefore g; = g[s1]°
From ns; < g we obtain
nysy = nsy[s1]° < g[s1]° = g5 .
Hence necessarily ny; < n,.
Analogously as above we have
g: = 9'1[52]0 = (”2 - ])52 eaqg,
9o =91 — 9>, msr1 =g,
and s, is a relative complement of s, in the interval [0, s’l]. Moreover, if 0 < s < s,
n,s < ¢, then s < 3.
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By a straightforward induction we can verify that either

(a) there exist positive integers k, ny, ..., n, and elements sy, ..., s, € S such that
g=(ng —1)sg + ... + (n, — 1) s, (thus g € G); or

(b) there exists a strictly increasing sequence of positive integers {n,} (k = 1,2, ...)
and there exist elements s;, s; € S (k = 1,2, ...) such that

(b;) the system {s;} (k = 1,2, ...) is disjoint,

(bz) I = g[Sk]o = (nk - 1) Sks

(b3) si A sp =0, s v s = 8- for k> 1,

(b4) s, =< g,

(bs) if s€ Sy, ms < g, then s < s;.

Suppose that (b) is valid. Assume that there exists 0 < s < so such thats A 5, = 0
for k =1,2,... Then s < s; and hence by (b,), n,s < g for k =1,2,... As G"
is archimedean, this is a contradiction. Thus foreach 0 < s < s, there exists a positive
integer k with s A s, > 0.

We have g, = g[s5,]° < g < hfor every positive integer k. By (b,), g, € G. Since G
is o-complete, the element

9" =V
exists in G and g’ < g¢.

Assume that g’ < g. Then there is 0 < se S with s < g — g'. Clearly s < s,,
hence 0 < s* = s A s, for a positive integer k. Thus

nkS*z(nk_])S*+S*§(nk_])sk+(g_g,)§gl+(g—g/)=g'

Hence according to (bs), s* < s;. Therefore 0 < s* < s, A s; = 0, which is a contra-
diction. This implies that g’ = g. Hence g € G.

Therefore G* = G and so G is complete. Thus we have proved Thm. 1 that was
formulated above.

Let us remark that for a singular lattice ordered group G the condition (o) is
equivalent with the following condition:

(o) each bounded disjoint set of singular elements of G has a supremum in G.

Clearly (o) = (o). Assume that (o) is valid and let {s;} (i 1) be a set of singular
elements of G, g € G, s; < g for each i e I. The Axiom of Choice implies that in the
interval [0, g] there exists a set {f;} (j e J) of singular elements of G such that (i)
f; A fi = 0 whenever j and k are distinct elements of J, and (i) for each singular
element 0 < se [0, g] there is jeJ with s A f; > 0. Then according Yo («') the
supremum V., f; = fo exists in G, and because S(G)is a closed sublattice of G, f, is
singular. If fo = 0, then s; = 0 for each iel, hence As; = 0. Let 0 < f,. Then
[0, fo] is a Boolean algebra and by («), each bounded disjoint subset of [0, f,] has
a supremum in [0, fo]. Hence the Boolean algebra [0, f] is complete (cf. SIKORSKI
[12], 20.1).
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Let iel, 0 < s, There exists ke J such that f, A s; > 0, hence
fo A s; = e; > 0. Suppose that e; < s; and denote f' =35, — e, Then f' is
singular and 0 < f’ < g. Moreover, f, A f' = 0, hence f; A f' = 0 for each j e J.
In view of (ii), this is a contradiction. Hence s; € [0, fo] for ach i e 1. Since [0, fo]
is complete, there exists the supremum s, of the set {s;};; in [0, fo]. Clearly s, =
= sup {s;},; in G. Therefore (a) is valid.

3. EXAMPLES

A complete lattice ordered group is a vector lattice if and only if S(G) = {0}
(cf. CONRAD-MCALLISTER [5]). The following example shows that a ¢-complete
strongly projectable lattice ordered group G fulfilling the condition S(G) = {0}
need not be complete.

Example 1. Let G, be the set of all real functions defined on the interval [0, ]].
For f,g e G we put f < g if f(x) < g(x) is valid for each x € [0, 1]. Then G, is an
additive lattice ordered group. Let N be the set of all integers. Let G be the set of all
elements g € G, such that

card {xe[0,1] : g(x) ¢ N} < N,.

Then G is an I-subgroup of G,. It is easy to verify that G, is complete and G is o-
complete. For each 0 < s € G there exists 0 < x < s with 2x < s, hence 0 < x A
A (s = x). Thus S(G) = {0}.
Let A < G. Put
s(4) = {x€[0,1] : f(x) % O for some fe A} .
Then A° is the set of all h € G such that h(x) = 0 for each x € s(4). Let 0 < g € G.

There is g; € G, such that g,(x) = 0 for each x e s(4) and g,(x) = g(x) for each
x € [0, 1]\ 5(4). Clearly g, € G and

g =sup{feA’:0=f<g}.

Hence the [-group G is strongly projectable. Let r be a real, r ¢ N. For each x € [0, 1]
define f, € G by f,(x) = r, f(j) = 0 for j€[0, 1], j * x. The set {f, : xe[0, 1]} is
disjoint and bounded, sup {f, : x € [0, 1]} does not exist in G. Thus G fails to be
conditionally orthogonally complete. Therefore G is not complete.

Let G be a singular lattice ordered group that is strongly projectable and o-
complete. Then G need not be complete.

Example 2. Let G, be as in Example 1. Let G be the set of all g € G, such that
(i) g(x) e N for each x € [0, 1], and (ii) the set

o(g) = {x€[0, 1] : g(x) is odd}

has a cardinality less or equal to ¥,,.
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Then G is singular (S(G) consists of all elements g € G such that, for each x € [0, 1],
either g(x) = 0 or g(x) = 1); moreover, G is strongly projectable and s-complete.
But G is not conditionally orthogonally complete and hence G is not complete.

Let G be a singular [-group that is strongly projectable and fulfils the condition (o).
Then G need not be complete.

Example 3. Let G, be the set of all real functions defined on the set N such
that f(x) e N for each x € N. Let f! € G, with f'(x) = x for each x € N. We denote
by F, the set of all f € G, such that f(x) € {0, 1} for each x € N. Let G be the I-sub-
group of G, generated by the set {f‘} U F,. Then G is singular, strongly projectable
and fulfils («). Let N be the set of all positive even integers. For each ne N, let
fu€ G, such that f,(n) = in and f,(x) = 0 otherwise. Then f, € G, the set {f,},cy,
is disjoint and bounded in G and it has no least upper bound in G. Hence G is not
conditionally orthogonally complete; thus G fails to be complete.

Let C(L), C(P) and C(SP) be the class of all lattice ordered groups that are respec-
tively orthogonally complete, projectable and strongly projectable. Further, let
C(0) = C(L) n C(P). Let G be a lattice ordered group that is an I-subgroup of
a cardinal product of linearly ordered groups. Let X € {L, SP, 0}, G, € C(X) and
let G* be the intersection of all H € C(X), H = G, such that G is an [-subgroup of H
and S n G # {0} for each convex [-subgroup S of H. Then G* belongs to C(X) and
it is called an X-hull of G (cf. CONRAD [4]).

CONRAD [4] proposed the problem whether the assertion

(l) (GL)SP c GO
is valid for each archimedean lattice ordered group G. It was remarked above that
the validity of the implication

(ii) G is conditionally orthogonally complete =>G is strongly projectable

for each archimedean lattice ordered group G is an open question.

If (i) holds for each archimedean lattice ordered group, then also (i) is true for
each archimedean lattice ordered group. In fact, assume that (ii) is valid for each
archimedean lattice ordered group and let G be archimedean. Then (cf. [4]. Thm.
2.6) H = G" is archimedean and clearly H is conditionally orthogonally complete.
By (ii), H is strongly projectable and thus H*" = H. Hence H = (G*)** € C(L) n
N C(P); therefore G° = H = G*. Clearly G" = G° and thus (G")** = G" = G°.
Hence (i) is valid.

4. ro-COMPLETE LATTICE ORDERED GROUPS

Lemma 1. Let G be a lattice ordered group that is archimedean, projectable and
conditionally orthogonally complete. Let 0 < g, € G", 0 < e, €G, e; < g, and
suppose that e, is a weak unit of the l-group [g;]°. Then there is 0 < u; € G such
that u; < gy < u; + e;.
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Proof. The assertions and the proofs of Lemmas 7—11 and those of Theorem 2
in [9] remain valid if the assumption of the o-completeness of G is replaced by the
weaker assumption that G is projectable; hence the assertion of Lemma 1 holds.

Lemma 2. ([9], Lemma 7.) Let G be a conditionally orthogonally complete
archimedean lattice ordered group, 0 < gy € G". Then there is e; € G such that e,
is a weak unit of the I-group [g,]° and e; < g;.

Lemma 3. ([9], Lemma 12.) Let G be a conditionally orthogonally complete
archimedean lattice ordered group and let S(G) = {0}, 0 < e; € G. Then there is
e, € G such that e, is a weak unit of [e,]° and 2e, < e,.

Let us remark that if e, is a weak unit of [g,]°, then clearly [g{]° = [¢,]°.

Theorem 2. Let G be a lattice ordered group that is projectable, conditionally
orthogonally complete and archimedean. Let S(G) = {O}, 0 < g; € G. Then there
are elements z,, e,€ G (n = 1,2,...) such that for any positive integer n,

(i)0§2n§g1§2n+en’
(11) 0 é 2en+1 é €y Iy § Zn+1s Zpy €, € {gl]();
0

(ili) V z; = g, holdsin G".
i=1
Proof. According to Lemma 2 there is 0 < ey € G such that e, is a weak unit of
the I-group [g,]°. Let u, have the same meaning as in Lemma 1. Put z; = u,. We
proceed by induction on n. Assume that we have defined, for a positive integer n,

elements u,, ..., u,, €, ..., ¢,€ G N [g,]° such that
0su, 0=2e¢, ur+...+u, =g, su; +...+u,+e,
fork =1,...,n,and if n > 1, then
2e, = €y

for k = 2,...,n. Denote z, = uy + ... u,. Then z,€ G n [¢,]° In the case g; = z,
we put u, = ¢, = 0 for each k > n. Let z, < g,. By Lemma 2, there is 0 < ¢’ € G
such that ¢’ is a weak unitin [g; — z,]° and ¢’ < g; — z,. Clearly

[91 = z]° = [e]®,

hence ¢’ A e, isa weak unitof [g; — z,]°. According to Lemma 3 thereis0 < e, €
€ G with 2¢), | < e, such that e, is a weak unit in [e,]°. Denote

st = €uy1 A (91 - Zn)-

Then e,+ 1 is a weak unit of [g, — 2,]° Moreover, ¢,+1 € G N [g,]° and 2en,, < e,.
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According to Lemma 1 there is 0 £ u,+ € G such that
Up+1. = g1 — Zn < Uypq + €u4q .
Denote z,4+; = z, + U,;. Then z,.1 € G N [g,]° and

0=<z,01 2915 Zyp + €y -

The set {z,,} is bounded in G", hence Z = Yz, exists in G" and Z < g,. Suppose
that 0 < y = g, — Z. According to (i) we have y < e, and hence by (ii), 2"y < e,
is valid for every positive integer n. This is a contradiction, since G" is archimedean.
Thus Vz, = g4 holds in G".

Theorem 2'. Let G be a lattice ordered group that is projectable, conditionally
orthogonally complete and archimedean. Let 0 < g, € G*. Then there are ele-
ments z,, e,€ G (n = 1,2, ...) such that the conditions (i), (ii) and (iii) of Thm. 2
are fulfilled.

Proof. Put 4 = (S(G))*, B = (S(G))’. According to Thm. I of [9] we have
G=AxB

and both A and B are projectable, conditionally orthogonally complete and archi-
medean. Moreover, A is singular and hence by [8], 4 is complete. Clearly S(B) = {0}.
Denote g, = g,(A), g5 = g,(B). In the case g5 = 0 we put z, = g,, e, = 0 for every
positive integer n. Let g3 > 0. According to Thm. 2 there are elements z,, e, such that
(i), (ii) and (iii) are valid if we replace g,, z,, e,, G by g3, z,, e,, B. Put

’ ’
Zn=gZ+Zn’ €y = €y .-

Then the conditions (i), (ii) and (iii) are valid.

Theerem 3. Let H be an I-group that is projectable, conditionally orthogonally
complete and archimedean. Assume that each fundamental ry-sequence {h;} of H
with 0 < h; < hiyy (i = 1,2,...) is o-convergent in H. Then H is complete.

Proof. Put G = (S(H))’ (the symbol & is considered with respect to the I-group H).
According to Theorem 1 of [9], G is a direct factor of H, hence G is archimedean,
projectable and conditionally orthogonally complete. Clearly S(G) = {0}. If {h;}
is a fundamental ry-sequence in H, Ih,~} < G, then {h,-} is a fundamental ry-sequence
in G. ’

Let g4, z;, e; have the same meaning as in Thm. 2. Let i, k, m be positive integers,
i < k < m. Then
KSIwSg1 =i te.

Hence

“m

EN Se;, 2i7'e; e
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holds. This implies that {z;} (i = 2,3,4,...) is a fundamental ry-sequence in G.
thus it is a fundamenal r,-sequence in H and hence, according to the assumption,

the sequence {z;} o-converges to an element z of H. Obviously z € G. Since z, < z,,,

fori=1,2,..., we have z = Vz;. Now by Thm. 2 we obtain that z = 4,. Thus G
is complete.

We have H = (S(H))*® x G. The I-group A = (S(H))* is singular, archimedean
and conditionally orthogonally complete. Therefore by [8], A is complete. Hence
the I-group H is complete as well.
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Added in proof. Bernau (J. London Math. Soc. (2) 72 (1976), 320—322) proved that
each archimedean orthogonally complete lattice ordered group is projectable, and RoTkovi¢
(Czech. Math. J., to appear) shoved that each archimedean conditionally orthogonally complete
lattice ordered group is projectable. Hence in Thms. 2, 2" and 3 the assumption of the projec-
tability can be omitted.
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