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1. SUMMARY

The aim of the present paper is two-fold. First, we show that Cantor’s series
representation of real numbers induces a measure on the set of sequences uniformly
distributed mod 1, which measure leads to the commonly used infinite dimensional
Lebesgue measure with independent components. This part therefore reverses the
usual procedure of using the above measure by assumption. In other words, we
“prove” that the above Lebesgue measure is the natural one to choose from among
all possibilities. Secondly, we show that a set of sequences, associated with the
Cantor series, and which sequences are uniformly distributed mod 1, is an “excep-
tional set” in the set of all sequences uniformly distributed mod 1. This therefore
points to the fact that the general metric theory of uniformly distributed sequences
mod 1 cannot in general be applied in connection with series representations of real
numbers (for an account of such representations, see [1] and its references).

The present work is strongly related to the result of SALAT [3]- However, our
set-up is more general than that of Saldt and our methods of proof are completely
different from his.

2. THE CANTOR SERIES

Let Q = {q,} be a sequence of integers with g, = 2 for each k = 1. Any real
number 0 < x < 1 leads to the Cantor series

+ o

(1) X = Zsk(x)/‘I1‘12~-~41k,
k=1

*) This research was done while the author was on Research and Study Leave from Temple

University and, as a Fellow of the Humboldt Foundatin, he was at the Mathematisches Seminar

der Goethe-Universitit, Frankfurt am Main.
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where the integer coefficients ¢(x) are obtained by the following algorithm

) x=x1, &x)=[xq] and x.; =xg —&(x), k=1.
Here, and in what follows, [y] signifies the integer part of y. By the algorithm (2)
(3) 0 < glx) < g

It is easily seen that any series of the form (1), satisfying (3), is the Cantor series of
its sum.

Let ay, a,, ..., a, be given integers satisfying 0 < g, < g, — 1 for 1 £k < n.
Then (2) immediately yields that the set

I, =1,(Q;ay,a,, ....a,) = {x:¢g(x) =a; 1 £j<n}

is an interval of length 1/(¢4, ... q,) and the I, are disjoint for different sets of the a’s.
Therefore, denoting by A(A) the Lebesgue measure of the set 4,

(4) )"(In(Qs Ay, dys .- an)) = I/qqu <oy
and
Q) M{x:efx) =a})=1lq;, 0La;<q;, 1<j<n.

We summarize the meaning of (4) and (5) as

Lemma 1. The coefficients &(x), defined by (1) and (2), are stochastically in-
dependent with respect to Lebesque measure and, for each k = 1,2, ..., g(x) is
uniformly distributed on the integers 0,1,2, ..., q, — 1.

3. THE RESULTS
We first introduce a definition and two notations.

Definition. A sequence zy, z,, ... of real numbers is said to be uniformly dis-
tributed mod 1 if the sequence 9, = z, — [z,] satisfies the limit relation below. For
any given o, 0 < o0 < 1, let N,,(oc) be the number of those k < n, for which 3, < a.
Then, as n - + o0,

(6) lim N,(«)/n = a. .

Since, in the above definition, an arbitrary sequence {zk} is transformed into
a sequence {Sk} with 0 < 3, < 1 for each k, in the sequel we restrict ourselves to
sequences with components from the interval [0, 1]. We shall denote by % the set
of all sequences 9, k = 1,2,..., with 0 < 9§, < 1 and for which (6) holds. In
addition, in all statements in the sequel, Q stands for a sequence {qk} of integers
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with ¢, = 2for k = 1, 2, ... and we put

(7) -1y

3{'—‘

L
1 gy
Before we formulate our results, we quote a theorem of Saldt [3] as

Lemma 2. For a given Q, let T, a map of % into the interval [0, 1], be defined by

+ o0
(8) To{gk} =RZI[9k‘Ik]/‘h‘I2 cee g
Then, if S, > 0asn — 400,
NT%) =
We now state our results.
Theorem 1. Let X, k = 1,2, ..., be a sequence of independent random variables
and let X, be uniformly distributed on the integers 0,1,2,..., q, — 1, where

qx = 2 for each k. Then the sequence 9, = Xk/qk, k=1,2,..., belongs to % almost
surely if, and only if, as n > + oo,

9) limS, =0.
Theorem 2. For a given Q, we introduce the measure

}i'Q(A) = AToA)

on subsets Aof U for which ToA is Borel measurable (see (8)). Then the only measure
on subsets of % which is consistent with each Ay is the inflnitive dimensional Lebesgue
measure 2., with independent components.

Theorem 3. Let Q be such that nS, — + oo with n. Let (x), k = 1, 2. ..., be defined
by (2) and put 3, = 9,(x) = &(x)/qr. Then, for almost all x in [0, 1), the discrepancy

No(z)

n

D, = sup

0=<as1

- g%‘su’

for sufficiently large n.

Some comments are in order. First of all, we should add that, in view of Lemma 1,
Theorem 1 is essentially duc to Saldt [3]. However, since his proof is very dependent
on the algorithm (2), it is not clear from his argument that the conclusion remains
to hold in the generality of Theorem 1. Naturally, our proof is completely different
from his. Secondly, we wish to emphasize that Theorems 2 and 3 indeed contain our
claim expressed in the Summary. As a matter of fact, Theorem 2 implies that a depar-
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ture from A, on subsets of % means a departure from Lebesgue measure on [0, 1]
for expansions. While this is, of course, permitted in principle, any measure, different
from that of Lebesgue, puts emphasis on certain subintervals of [0, 1] rather than
giving general information on [0, 1]. On the other hand, Theorem 3 shows that
those elements of % which are “produced” by the Cantor algorithm (2), are excep-
tional ones for many choices of Q by violating the rule valid for 4, -almost all
elements of %. Namely, by the iterated logarithm theorem,

(10) ({9} + lim sup (/n)D,(nloglogn)'’* < ¢) =1,
while, by Theorem 3, for the sequence 3, = &,(x)/qy.
(11) lim sup (D,[S,) = % .
Obviously, (10) and (11) can coincide only in exceptional cases. As an Example, take
g = max (2, [loglog k]). Then (11) yields D, loglogn = % for large n.
4. PROOFS

Proof of Theorem 1. Put

L if Y <«
Y"'(d) - {0 otherwise .

Then, by assumption, the variables Y,(a), k 2 1, are independent and
P(Y (o) = 1) = « + O(1]q,),

where the constant in the error term O(-) is uniformly bounded in k. Therefore, by
the strong law of large numbers and by (9) asn — + o0,

Nf(o) _ 1 Y Y(2) > a
n n k=1

almost surely. Conversely, assume that, as n —» + oo,

limsup S, =s>0.
Then there is a subsequence n(r), t =1,2,..., of integers such that, as\t - +w
(12) lim S,y = 5.

Let Z, be the indicator of the event {X, = 0}. Thatis, Z, = 1if X, =0and Z, =0
otherwise. Then evidently Z, < Y,(«) for each k and for any 0 < & < 1. Therefore,
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for any0 < a < 1,

(13) N_"(E) > 1 sz‘
n nk=1

Since P(Z, = 1) = 1/q;, another appeal to the strong law of large numbers yields,
in view of (12) and (13), that almost surely, as n — + oo,

(14) limsupN,(0)fn2s>0, O0<a<l
(14), however, contradicts (6) for all0 < o < s, that is, almost surely, the sequence 9;’
k = 1, is not an element of %. Theorem 1 is thus established.

Proof of Theorem 2. Let ¢ be a measure on subsets of % and let us evaluate
the distribution F,(z) = u(9; < z) of 9, for a fixed k under our assumption (we can
restrict ourselves to 0 < z < 1). Let first z be rational. Writing z = t/q, where t and ¢
are positive integers with ¢ < g and g = 2, we choose a sequence Q, the k-th com-
ponent g, of which is g and for which S, - 0 as n > +c0. Then by Lemma 2 and
by the definition of 1o, in evaluating Ag(9; < z) we can replace [9,4,] by &(x) of
(1) and (2). Thus

Io(% < z2) =A% < 1) = Ao([Sa] £ 1 — 1) =
=Me(x)St—1)=t]g==z.
Since p is consistent with each Ao, we have got that, for any rational z,
(15) Fk(z) = y(Sk <z)=7z.

Let now z be irrational. Then there is an infinite sequence of rational numbers t/q
such that ¢ - + oo and

that is, |[Fy(z) — z| < 1/q for infinitely many ¢’s with g — +oc0. Therefore (15)
holds for all 0 < z < 1. In evaluating the multivariate distribution of (9, 9, ...
vy Skm), we can progress as in the one dimensional case above. As above, for
rational z; = t;[r;, 1 < j < m, the distribution

Iy < 21 8, < 2y oo Ky, < Z) =
= Mo (x) < zq, 8,(X) < 230 ooes 8, (X) < 2,)
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where Q is again a sequence {q,} with S, - 0 as n - + o0 and for which g, = r;,
1 £j = m. Thus by Lemma 1 and by the consistency assumption, for any | <
<k, <k, <...<k,and for rational z’s,

(16) WS, <z %, < Zgpeees S, < Zp) = Z1Z5...2

m *

We can now show componentwise as in the one dimensional case that (16) remains
to hold for abitrary 0 < z; < 1,1 £ j £ m. The proof of Theorem 2 is thus complete.

Proof of Theorem 3. For the proof we need the following formula of
NIEDERREITER [2]:
2i — 1
o

(17) D, = 1 + max

n 1gign

9* —

)

where 97, 1 < i < n, is the 3;, 1 £i < n, rearranged in non-decreasing order.
For proving Theorem 3, we simply show that “many” g(x), and thus 3,(x), vanish
and we then apply (]7). For showing this, let us put

B _jrif 8k(x) =0
Z, = Zk(x) - {0 otherwise .

Then A(Z(x) = 1) = 1/g, and the strong law of large numbers yields that, for almost
all xin [0,1],as n > 4+
(18) T, =Y Z, ~nS,.

k=1

On the other hand, (17) implies that

and (18) therefore terminates the proof.
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