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If G is a graph, then we denote by V(G) and E(G) the vertex set of G and the edge
set of G, respectively. If G; and G, are graphs, then we denote by G; U G, the graph G
with V(G) = ¥(G,) v V(G,) and E(G) = E(G,) U E(G,). If G is a connected graph,
and u, v € V(G), then we denote by dg(u, v) the distance between u and v in G. For
terms not defined here, see BEHZAD and CHARTRAND [1].

Let G be a connected graph of order p = 3. We denote by %(G) the set of all
cycles C with the property V(C) = V(G). If C € ¢(G), then we denote

¢6(C) = max dg(u, v)

uveE(C)

Ye(C) = Y. dg(u,v).

uveE(C)

and

Moreover, we denote
®g = min <PG(C) . Y = min y4(C)
Ce%(G) Ce%(G)
and

%,(G) = {Ce%(G)| ¢o(C) = vc}. €4(G) = {Ce4(G)|ve(C) = va} -

Let G be a connected graph of order p = 3. It is clear that the following three
statements are equivalent: (i) G is hamiltonian, (ii) ¢; = 1, and (iii) Y = p. The
sets %,(G) and %,(G) represent two distinct generalizations of the set of hamiltonian
cycles of G. M. SEKANINA [5] proved that ¢; < 3 for every connected graph G of
order p = 3. H. FLEISCHNER [2] proved that ¢ < 2 for every 2-connected graph G.
A characterization of the trees T with @, = 2 follows immediately from [4]. In the
present paper we shall study the set ,(T) for trees T of order p > 3.

Let T be a tree. If r, se V(T), then we denote by P(r,s) the r — s path in T.
If u, v, we V(T), then there is precisely one vertex t such that te V(P4(u, v)) 0
A V(P(v, w)) n V(P4(w, u)); see [3], Section 1.1; the vertex ¢ will be denoted by
Ro(u, v, w).
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Lemma 1. Let T be a tree of order p 2 3, u,ve V(T), Ce %(T), and let P be
au — v path in C. Then for every e € E(P1(u, v)) there is a pair of vertices uy and v,
such that ugv, € E(P) and e € E(P1(ug, vo)).

Proof. There are vertices u’ and v’ such that u’v’ = e and that u’ = Ry(u, u’, v').
Denote

P, = {reV(pP) | R(u, r, v) € V(Py(u, u"))}

=

and

P, = {seV(P) ] Ry(u, s, v) € V(P(v', v))} .

Since u € P, and ve P, there are u, € P, and v, € P, such that uyv, € E(P). It is
easy to see that u'v’ € E(Pr(uq, v,)).

Let C be a cycle of length at least four, and let u, v, w e V(C) be such that uv, vw €
€ E(C). We denote by C <1 v the cycle C’ with the property that V(C') = V(C) — {v}
and E(C') = (E(C) — {uv, vw}) U {uw}.

<

Lemma 2. Let T be a tree of order p = 3, u,ve V(T), u + v. Then there is
C e %(T) such that uve E(C) and y(C) = 2(p — 1).

Proof. The case p < 4 is obvious. Let p = n = 5; assume that for p = n — 1,
the statement is proved. The subcase when T has no end-vertex different from u or v
is simple. Assume that there is a vertex s of degree 1 in T and such that u % s + v.
Let r be the vertex adjacent to s in 7. By the assumption, there in C' € 4(T — s)
such that uv € E(C") and y_(C’) = 2(p — 2). Obviously, there is a vertex ¢ adjacent
to r in C’ and different from u and v. Let C € 4(T) be such that rs, st € E(C) and
C < s = C'. Obviously, uve E(C). It is clear that Y(C) = Y_(C') — d(r, 1) +
+ dg(r,s) + dy(s, 1) = Y7-(C’) + 2 = 2(p — 1). Hence the lemma follows.

Theorem 1. Let T be a tree of order p = 3. Then Y = 2(p — 1).

Proof. Let C e %(T). From Lemma 1 it follows that for every e E(T), there
are distinct edges e; = uyv, and e, = ujv, of C such that ee E(P(u;,v;)) n
A E(Py(us, v,)). This implies that y,(C) = 2|E(T)| = 2(p — 1).

The statement of the theorem follows from Lemma 2.

Corollary 1. Let G be a connected graph of order p = 3 which contains a cycle
of length k = 3. Then yrg < 2p — k.

Proof. It is clear that G contains a spanning unicyclic subgraph G, witha cycle C

of length k. There are trees Ty, ..., T, with disjoint vertex sets such that
k
V(G) = _U V(T
and
V(T;) A V(C)] =1 foreach j=1,... k.
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If T'is a tree of order p = 1 or 2, we put Y1 = 2(p — 1). Clearly,

Vo S X (b, +1) =20~ k.

Corollary 2. Let T be a tree of order p = 3, u,ve V(T), u =+ v. Then there is
C € %,(T) such that uv e E(C).

Proof follows immediately from Theorem 1 and Lemma 2.

Corollary 3. Let T be a tree of order p = 3. Then 6,(T) = %,(T) if and only if T
is a star. Otherwise, €,(T) — €,(T) + 0.

Proof. If Tis a star, then it is clear that %,(T) = &,(T). If the diameter of T'is at
least four, then it follows from Corollary 2 that %,(T) — %,(T) + 0. Assume that
the diameter of T is three. It is not difficult to see that ¢, = 2. Hence %,(T) —
- (gw(T) * 0.

Theorem 2. Let T be a tree of order p = 3 such that ¢ = 2. Then 6,(T) < €,(T).

Proof. The case p = 3 is obvious. Let p = n > 3; assume that for p = n — 1,
the statement is proved. Let C € ,(T). Consider a vertex v of degree 1 in T. Let u
and w be distinct vertices adjacent to v in C. Since (p,(C) = 2, we shall assume
without loss of generality that d(u, v) = 2. It is easily seen that d;(u, w) < 2 and
that d.(u, w) = 1 if and only if d;(v, w) = 1. Clearly, ¢;_,(C < v) = 2. By the
assumption, C <1 ve %,(T — v) and thus Y;_(C< v) =2(p — 2). This means
that (C) = 2(p — 2) + 2 = 2(p — 1). Hence the theorem follows.

Remark. For the tree Tin Fig. 1, ¢; = 3. The cycle with the edges 12, 23, ..., 67,
71 belongs to %,(T) but does not belong to €,(T).

o1

2| 7 5

P
TN

Fig. 1.

A graph which can be embedded into the plane so that all vertices lie on the
boundary of the exterior region is referred to as an outerplanar graph. For outer-
planar graphs, see [1], pp. 100—102. In the present paper the concept of an outer-
planar graph will be used for a characterization of &,(T).

598



Proposition. A graph G with a hamiltonian cycle C is outerplanar if and only
if it holds that

if r, s, t,ueV(G) such that rs, tu € E(G) — E(C) and {r, s} n {t,u} = 0, then the

vertices r and s belong to the same component of the graph C — t — u.

Proof follows from the definition of outerplanar graphs.

Lemma 3. Let T be a tree, and C a cycle such that V(T) < V(C). Then the fol-
lowing two statements are equivalent:

(1) Ty C is outerplanar;

(2) if r,s,t,ue V(T) are such that r and s belong to distinct components of the
graph C — t — u, then P(r, s) and P(t, u) have at least one vertex in common.

Proof. (I) Let (1) hold. Assume that there are r, s, t, u e V(T) such that
V(P4(r,s) n V(P(t,u)) = @ and that the vertices r and s belong to distinct com-
ponents of C — ¢ — u. Then there is an edge touo € E(P1(r, s)) such that the vertices t,
and u, belong to distinct componets of C — t — u. This implies that ¢t and u belong
to distinct components of the graph C — t, — u,. Similarly, there is an edge rysy €
€ E(P4(t, u)) such that r, and s, belong to distinct components of C — t, — u,.
As follows from Proposition, T U C is not outerplanar, which is a contradiction. Thus
(2) holds.

(11) Let (2) hold. It follows from Proposition that (1) holds.

The following theorem gives a characterization of ,(T):

Theorem 3. Let T be a tree of order p = 3, and let Ce 4(T). Then Ce %,(T)
if and only if the graph T L C is outerplanar.

Proof. (I) Let C e %,(T). Assume that T U C is not outerplanar. Since C is
a hamiltonian cycle of T u C, it follows from Proposition that there are r, s, t,u €
€ V(T) such that rs, tue E(T), {r,s} n {t,u} =0, and that the vertices r and s
belong to distinct components of C — t — u. Without loss of generality we assume
that s, r € V(P;(r, u)). It is clear that there is an edge a of T such that

a € E(Py(r, u)) 0 E(P(r, 1)) 0 E(Py(s, 1)) 0 E(P1(s, u)).

Lemma 1 implies that there are vertices ry, 1y, So. Sy, fo, 11, Ug, and u; such that
Ughy, r'oty, 1S, and squ, are distinct edges of C, and

a € E(Py(uq, ry)) 0 E(P1(ro, 1,)) n E(P1(to, 51)) 0 E(P1(so, uy)) - \

Since T has p — 1 edges, ¥7(C) = 2(p — 1) + 2, which is a contradiction. Hence
T v C is outerplanar.

(IT) Let Tu C be outerplanar. We shall prove that C € %,(T). The case p = 3
is obvious. Let p = n > 3; assume that for p = n — 1, the statement is proved.
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We denote by e the minimum integer f such that there are u, v e V(T) with the
properties that degru = 1, uve E(T), and dc(u, v) = f. Clearly, e = 1. Consider
vertices r, t € V(T) such that deg; r = 1, rt€ E(T), and d(r, ) = e. Assume that
e > 1. Let P, be an r — ¢ path of length e in C. Since e > 1, there is se V(T) —
— {r, t} such that s lies on P,. Since T'is a tree, there is a vertex w of degree 1 in T
such that Ry(w, s, t) = s. Hence r + w + t. Lemma 3 imlies that V(P4(w, 1)) <
S V(P,). We denote by w’ the vertex adjacent to w in T. Since w’e V(P,), it is
dc(w, w') < e, which is a contradiction.

We have proved that there are u, v e V(T) such that deg; u = 1 and uv e E(T) n
N E(C). Let v be a vertex different from v such that uv’ € E(C). It is clear that the
graph (T — u) U (C < u) is outerplanar. By the assumption, C <1 u € %,(T — u).
We have ¥/1(C) = yr_(C< u) — dr(v, V') + dr(v, u) + dr(u, v') = Yr_(C< u) +
+ 2. Since Y4(C) = 2(p — 2) + 2, C € %,(T). Hence the theorem follows.

The following theorem gives one more characterization of %,(T):

Theorem 4. Let T be a tree of order p = 3, and let C € 4(T). Then C € €,(T) if
and only if

(3) for every pair of vertices u and v adjacent in C, the graph Py(u,v)u C is
outerplanar.

Proof. (I) Let Ce%,(T). By Theorem 3, Tu C is outerplanar. Since every
subgraph of an outerplanar graph is outerplanar, the statement (3) holds.

(IT) We shall prove that (3) implies C € €,(T). The case p = 3 is obvious. Let
p = n = 4; assume that for p = n — 1, the statement is proved. Let (3) hold. We
denote by h the minimum integer i such that there are vertices u’, v’ € V(T) with the
property that u'v’ € E(T) and d(u’, v') = i. Consider r, s € V(T) such that rs e E(T)
and dc(r, s) = h. Let P be an r — s path of length h in C. By Lemma 1, there are
ug, g € V(P) such that ugv, € E(P) and rse E(Pr(ug, vy)). Since Pr(ug, vy) U C
is outerplanar, Lemma 3 implies that V(P(uo, vy)) = V(P). Assume that h > 1.
Then there are u, v € V(Py(ug, vo)) such that r & u % s and that uv € E(P1(u, 0o)).
Hence d¢(u, v) < h, which is a contradiction. Thus h = 1. We have rs € E(T) n E(C).

We denote by r’ and s’ vertices such that ' = s, s" & r, and that r'r, ss’ € E(C).
Consider the graph C U P(r',s). If s = Ry(r', s, r), then P(r',s) is a subgraph
of Py(r,s); thus Py(r’,s) u C is outerplanar. Let s #+ Ry(r’,s, r). Then r =
= Ry(r', s, r). Since P(r',r)u C is outerplanar and rse E(C), it is easily seen
from Lemma 3 that P(r’,s) U C is outerplanar. Similarly, P(r,s") u C is outer-
planar.

We denote by T’ and C’ the graph obtained from T and C, respectively, by
identifying the vertices r and s. Let ¢ be the new vertex in C’ and T'. Since
P (r',t)u C’" and P (t,s’) U C are outerplanar, (3) holds for T" and C’. By the
assumption, C' € €,(T’). As follows from Theorem 3, the graph T’ U C’ is outer-
planar. Assume that T U C is not outerplanar. It is not difficult to see from Lemma 3
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that there are ry,s; € V(T) such that (i) V(Py(r, ry)) 0 V(P(s, s,)) = 0, (i) the
vertices r and r; belong to distinct components of C — s — sy, and (iii) r;s; € E(C).
Since rs € E(T), by Lemma 3 P(ry, s;) U C is not outerplanar, which is a contradic-
tion. Hence the theorem follows.

The following theorem concerns the relationship between the structure of T
and that of €,(T).

Theorem 5. Let T be a tree of order p = 4, and let uy, u,, vy and v, be distinct
vertices of T. Then the following statements are equivalent:

(4) there is C E?W(T) such that the vertices u, and u, belong to distinct compo-
nents of the graph C — vy — v,;

(5) V(P(ug, u)) 0 V(Pr(vy, 0,)) + 0.

Proof. (I) Assume that (4) holds and (5) does not hold. Consider an arbitrary
cycle C e %(T) with the property that the vertices u; and u, belong to distinct
components of C — v, — v,. Since Pr(uy, u,) and Py(v;, v,) have no vertex in
common, it follows from Lemma 3 that T U C is not outerplanar. By Theorem 3,
C ¢ %,(T), which is a contradiction.

(11) Let (5) hold. Consider we V(P(uy, u;)) 0 V(Pr(vy, v,)). Without loss of
generality we assume that w ¢ {uy, u,, v,}, and that there are trees T; and T, such
that V(T,) v V(T,) = V(T), V(Ty) n V(T,) = {w}, E(Ty) v E(T,) = E(T), E(T;) n
N E(T,) = 0, and that uy, v, € V(T}), uy, v, € V(Ty).

Let ie{1,2}. Obviously, IV(Ti)| =2 If IV(T,)| > 3, then we consider a cycle
Cie%,(T). If |V(T,)| = 2, then we denote by C; the tree T, We denote by P; the
w — u, path in C} with the property that if v, lies on Py, then v; = w. We denote
by P, the w — v, path in C; not containing u,. Moreover, we denote by w; or w,
the vertex belonging to P, or to P,, respectively, which is adjacent to w.

We denote by C’ the graph with V(C') = V(T) and E(C") = E(C}) U E(C}) LU
U {w;w,}. Obviously, C’ contains precisely one hamiltonian cycle, say C. It is easily
seen that T'u C is outerplanar. By Theorem 3, C € ,(T). Clearly, the vertices u,
and u, belong to distinct components of C — v; — v,. Hence the theorem follows.

Let T and T’ be trees such that V(T) = V(T’). We say that the tree T’ is an
elementary S-modification of the tree T if there are u, ve V(T) such that uv € E(T),
and ¢

E(T') = (E(T) = {ur |ure E(T), re V(T), r + v}) U
U {us ] use E(T), se V(T), s * v}

(hence uv e E(T’)). We say that T’ is an S-modification of T if either E(T") = E(T)
or there is a tree T, which is an S-modification of T, and T'is an elementary S-
modification of Tj,.
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Theorem 6. Let Ty and T, be trees with the same vertex set V such that |V| = 3.
Then ¢,(T,) < %,(T,) if and only if T, is an S-modification of T;.

Proof. (I) Let 4,(T,) < %,(T,). We shall say that a tree T with V(T) = V has
the property P if for an arbittary path

Ug, Uy, ..y Uy

in T such that n 2 2 and ugu, € E(T) it holds that (1) if 0 < i < n, then u; has degree
one in T, and (2) there exists m, 1 < m < n. such that (a) if 1 < j < m, then ugu; e
€ E(T), and (b) if m < k < n, then ugu, € E(T).

We distinguish two cases:

(A) Assume that T; has not the property P. Then it is not difficult to see that there
exist distinct vertices ry, r,, sy, s, € V such that V(Pr (ry, r,)) 0 V(Pr(sg,s,)) + 0
and V(Pr,(ry, r2)) 0 V(Pr(sy,5,)) = 0. From Theorem 5 it follows that there
exists C e fgl,,(Tx) — %,(T,), which is a contradiction.

(B) Assume that T, has the property P. If T'is a tree with V(T) = V, then we shall

denote
IT] = ¥ (dr,(u,0) = 1).
wve E(T)

If |T,|| = 0, then T, is identical with T, and thus T, is an S-modification of T;.
Let |T;| = 1. Assume that for each tree T' with the properties that V(T') = V,
[T'|| < |T,| and with the property P it holds that T’ is an S-modification of T;.

Since ||T,|| > 0 and T, has the property P, we have that there are distinct vertices
u, v, we V such that v belongs to the u — w path in Ty, uw e E(T,) vw e E(T}) n
N E(T,), and v has degree one in T,. We denote by ¥, the set of all vertices vy + v
adjacent to w in T, with the property that v belongs to the v, — w path in T;. We
denote by T, the tree with V(T,) = V and

E(T,) = (E(T,) — {sw|seVo})u{tw|teVy}.

It is obvious that || Ty|| < | Ty|. Clearly, T, is an elementary S-modification of T,
It is easy to see that T, has the property P. This implies that T, is an S-modification
of Ty. Therefore, T, is an S-modification of Tj.

(IT) Let T, be an S-modification of T;. The case E(T,) = E(T)) is obvious. Assume
that there exists a tree T, which is an S-modification of T; and such that T, is an
elementary S-modification of T, and %,(Ty) < 6,(T;). Let t,u, v, we V. It is easy
to see that if V(Pr (1, v)) n V(Pr,(u, w)) * 0, then V(Pr(t, v)) 0 V(Pr,(u, w)) * 0.
Thus we have %,(T,) < %,(T,), which completes the proof.

Corollary 4. Let T; and T, be trees with the same vertex set V such that |V| = 3.
Then %,(T,) = 6,(T,) if and only if there exists an isomorphism f:T; —» T,
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such that for every ve Vit holds that

(6) if f(v) * v, then v and f(v) are adjacent in T,, and one of the vertices v and
f(v) has degree one in T,.

Proof. (I) It is clear that if %,(T,) = €,(T5), then there exists an isomorphism
f: T, - T, fulfilling (6) for each v e V.

(1) Assume that there exists an isomorphism f: T, — T, which fulfils (6) for
each ve V.

Let re V. Denote s = f(r). If s = r, then f(f(r)) = r. Assume that s & r. Denote
t = f(s). Since s & r, we have that t + s. If 1 = r, then f(f(r)) = r. Let 1 + r.
Then both r and  have degree one in Ty. If f(1) = ¢, then f(s) = s, which is a contra-
diction. Thus f() # 1. From (6) it follows that f(r) = s. Since /(1) = f(r), itist = r,
which is a contradiction.

We have proved that f(f(v)) = v for each v e V. It is not difficult to see that T,
is an S-modification of T; and that simultaneously T, is an S-modification of Z,.
From Theorem 6 it follows that €,(T,) = €,(T5).

Remark. This paper originated in the author’s studies of applying the graphb
theory to linguistics.

Added on 5th December 1975: (I) For connected graphs G of order at least three,
there exists a relationship between cycles C € ,(G) and closed walks of minimum
length. Such walks were studied in S. E. GoobpMAN and S. T. HEDETNIEMI: On
Hamiltonian walks in graphs. STAM J. Comput. 3 (1974), 214—221.

(1) The author thanks to Professor M. Sekanina for his critical remark to the
original version of the first part of the proof of Theorem 6.
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