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1. INTRODUCTION

The intervals of a totally ordered set generate a natural and useful topology,
and much work has been done on the ramifications of transferring the formal defini-
tion of interval to the more general case of partially ordered sets (see, for example,
[9]. [12], and [13], among many others). However, the usual definition for a topology
derived from these intervals does not yield a Hausdorff topology even for the plane
([2]. p. 61).

In [19], we defined “generalized intervals” in an l-group by considering (for
example) the set {(x, y)| —1 £ y < 1} = R x R as an interval rather than the set
{(O, y) ] —1=2y= 1}. We then used these “generalized intervals” to define a group
and lattice topology on an I-group, which was preserved by cardinal products. In
this paper, we define generalized intervals in an arbitrary partially ordered set (P, <)
(§2). Substituting generalized intervals for formal intervals in the definition of the
interval topology defines a topology on P (§ 3) which is preserved by cardinal products
of dually directed sets (§ 4). To ensure that intervals appear as generalized intervals,
we may modify our definitions slightly to produce generalized star-intervals (§ 2).
The topology generated by generalized star-intervals then contains the interval
topology (§ 3) but may not be preserved by cardinal products of totally ordered sets
(§ 5). Our definitions are based on certain kinds of semi-ideals (§ 2), and in §3 we
detail several, previously defined, ideal-like topologies. These topologies are in general
incomparable with our generalized interval and star-interval topologies (§§ 3 and 5).

Notation. For terms left undefined, we refer the reader to [4], [6], and [14]. Our
notation is standard with possibly the following exceptions: If (P, <) is a partially
ordered set and if A < P, then we let

u(A)={pePlpga forall ae A},
b(A) = {peP|p < a forall ae 4} .
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If x,yeP, then u(x, y) = u({x, y}), b(x,y) = b({x, y}), (=0, x] = b({x}), and
[v, ©) = u({y}). Also, if x, ye P, then x A y (x Vv y) denotes the greatest lower
bound (least upper bound) of {x, y} if it exists, and x A y = z (x V y = z) means
that x A y (x v y) exists and equals z.

We write functions on the right, including inverse “‘functions” which denote the
pre-image of a set in the codomain. We denote the empty set by []. We use N, Z,
and R for the natural numbers, the integers, and the real numbers, respectively.
Unless otherwise noted, N, Z, and R have their usual orders.

A function f from a partially ordered set (P, <) to itself is an o-automorphism
if f is bijective and x < y in P if and only if xf < yf. If {P, 1 a € A} is a collection of
partially ordered sets, then the cardinal product of the P,, denoted by |[]| P,. is
their cartesian product with pointwise order: f < g if and only if of < ag for all
e A. If {G, | ae A} is a collection of I-groups, then their cardinal sum, denoted
by IZAI G,, is the [-subgroup of !HAI G, consisting of those functions which are 0
for all but a finite number of a.

2. GENERALIZED INTERVALS

Let (P, <) be a partially ordered set. Sets of the form (—co, p] for some pe P
are called initial segments; sets of the form [p, oo) for some p € P are called final
segments; and sets of the form [r, {] = [r, ) n (— oo, t] for some r, te P with
r < t are called (closed) intervals.

In [19], we used the polars of a lattice-ordered group G to define “generalized
intervals” in G. Such a generalized interval about a point x € G was a set of the form

x+[-g. 9] +gt=[x—g x+g]+g"
for some g € G*, where
gt ={xeG||x| A |g| =0}

was the polar of g in G (see [7], [22]). The intervals of a totally ordered set “‘span”
the set (in the sense that there are no elements perpendicular to the intervals), and the
introduction of polars into the idea of interval was an attempt to incorporate this
spanning ability into non-totally ordered groups. In this section, we suggest two
related generalizations of the notion of polar to arbitrary partially ordered sets.
Using these extended ‘“‘polars”, we define generalized intervals in arbitrary partially
ordered sets analogously to the definition given above for I-groups. Since arbitrary
partially ordered sets lack the symmetry of I-groups, each extended notion of polar
naturally has an upper and a lower component.

Letr, s, t € P be such that r < s < t. The upper polar of t with respect to s (or the
s, t-upper polar) is the set

()" ={xeP|xrnt=s};
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the lower polar of r with respect to s (or the s, r-lower polar) is the set
(s, 7r); ={xeP]x v r=s}.

Clearly, (s, r); 0 (s, )" = {s}.

We may then define generalized segments and (closed) intervals as follows: If
r,s, 1€ P are such that r < s < ¢, we let

[r,s,0)={xeP|O * b(a, r) = (-0, x] for some ae(s, r)},
(—o0,s,1] = {xePl O # u(c, 1) < [x, ) for some ce (s, 1)},
[r,s,t] =[r,s, ) n(—o0,s, 1].

A generalized final segment of P is a set of the form [r, s, ) for some r
a generalized initial segment of P is a set of the form (— oo, s, f] for some s

and a generalized (closed) interval of P is a set of the form [r, s, t] for some r <
<s=t

=
=

An ideal of a lattice Lis universally defined as a subset I of Lsuch that if x, yeI
and z € Lare such that z < x, then x v yel and z €l. The definition of an ideal
in an arbitrary partially ordered set, however, may vary from author to author
(e-g- [8], [10]). In this paper, we will be concerned with the following kinds of ideal-
like subsets: Let (P, <) be a partially ordered set. LAWSON’s semi-ideal [15] of P
(called a “partie a gauche” by GUILLAUME [11]) is a set S < P such that

S={xeP|x§sf0rsome seS}.

An F-ideal of P (FRINK’s definition of ideal in [10] — see also [17]) is a semi-ideal
J < P such that for any finite set F < J, b(u(F)) = T. An ideal of P is a semi-ideal
I < P such that for any finite set F < I such that u(F) % [, b(u(F)) = I. (This
definition of ideal is meant to approximate closely our definition of generalized
initial segments.) Dual semi-ideals, dual F-ideals, and dual ideals are defined in
the obvious (dual) fashion. Clearly, for any lattice, the notions of F-ideal, ideal as
defined above for partially ordered sets, and ideal in the usual sense, are equivalent.

If Lis the lattice in the illustration, then (—o0,s, {] = L\ {x} is not an ideal.
However, we do have Propositions 2.1 and 2.3 below, whose proofs are straight-
forward.

Proposition 2.1. For any partially ordered set (P, <), the generaiized initial
segments are semi-ideals and the generalized final segments are dual semi-ideals.

Corollary 2.2. Let (P, <) be a partially ordered set. For r,s,t€ P such that
r<s=st,

(i) (moo, 1) € (=00, s, t]; (ii) [r, ©) = [r, s, 0); (iii) [r. 1] = [r. s 1]



Proposition 2.3. For any distributive lattice (L, §) the generalized initial segment
(—oo, s, f]* is the ideal generated by {t} U (s, t)* and the generalized final segment
[r, s, ) is the dual ideal generated by {r} U (s, r),.

We noted above that generalized intervals are meant to extend definitions originally
given for I-groups. The next result says that such an extension does indeed take place.

Proposition 2.4. Let (G, <) be an I-group. Let x€ G, g€ G*. Then x + [—g.g] +
+gt=[x—-g xx+g]

Proof. Let yex + [—g,9] + g*. By Lemma 2.12 of [19], [—g. 9] + g* is
a convex sublattice of G, and hence both (—x + y)* and (—x + y)~ are members
of it, ie., (—x +y)* =a+ b and (—x + y)” =c + d for a,ce[—g,g] and
b, d € g*. By use of Lemma 2.3 of [19], it is not difficult to show that

(mg)rdZecnds —x+y=Zavb=gvhb.

It is also straightforward to see that
(1) x+ (@) =(xx+g)* and x—(99)" =(x,x —g),,

and therefore, y e [x — g, x, x + g]. Conversely, let y e [x — g, x, x + g]. Then
there exist a € (x, x — g); and ce(x, x + g)* such that

(—9)A(—x+a)s —x+y=(9) v (~-x+Db).

Using Lemmas 2.2 and 2.3 of [19] and the relations (1) above, one may easily show
that (—g) A (—x + a)e[—g,9] + g*and (g9) v (—x + b)e[—g.g] + g*. Since
[—g.9] + g*isconvex, yex + [—g,9] + g™

Generalized intervals and segments are also meant to extend the ordinary intervals
and segments of a totally ordered set. The next result shows that in non-degenerate
cases this extension also occurs.

Proposition 2.5. If (T, g) is a totally ordered set, then for all r,s.te T with
r<s<t (—o,st] =(—o0,t], [r,s, ) =[r, o), and [r,s, 1] = [r, 1]

Proof. By Corollary 2.2, (— o0, s, ] 2 (— 0, r]. Conversely, if xe(—o0,s, ],
then there exists a € (s, f)* such that x < a v t. Then a A t = s, and since ¢ + s
and (7, £)is totally ordered, a = 5. Thus,x < s v t = t,i.e,, x € (— o0, t]. Similarly,
[r,s, ) = [r, ), and therefore, [r, s, t] = [r, 1].

For degenerate cases, however, Proposition 2.5 may fail to hold. For example, if
(T, £) is a totally ordered set and if r < ¢ in T, then (—o0,t,t] = T = [r, r, ©)
and hence [r,r, 1] = (—o0,t] and [r, 1, t] = [r, 00). Furthermore, for any lattice
(L, £), [r,r.r] = Lforall re L.

To avoid this pathology, we introduce our second set of definitions by slightly
modifying our previous set as follows: Let (P, <) be a partially ordered set; let r, 5, t €
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€ P be such that r < s < 1. The upper star-polar of t with respect to s is the set
*(s, 1) = (s,1)" if s <t and the set (s, 1)t = {s} if s = 1; similarly, the lower
star-polar of r with respect to s is the set *(s, r), = (s, r); if r <'s and the set

*(s,r); = {s}if r =s. We let

*[r,s,0) = {xeP| O+ b(a,r) € (—o0, x] for some ae*(s,r).},
*(—o0,s, 1] ={xeP| O * u(c, 1) < [x, ) for some ce*(s, 1)*},
*[r, s, 1] = *[r,s, 0) " *(—o0,s,1],

and say that generalized final star-segments are sets of the form *[r, s, oo), gener-
alized initial star-segments are sets of the form *(—oo,s, ], and generalized
(closed) star-intervals are sets of the form *[r, s, 7].

Clearly, in any partially ordered set (P, <), *(— o0, t, 1] = (=0, ], *[r, r, 0) =
= [r, ), and *[r, r, r] = {r} for all r, 1€ P. Thus, we have the following un-
restricted analogue of Proposition 2.4.

Proposition 2.6. If (T, <) is a totally ordered set, then for all r,s, te T with
r<sst*—o,st] =(—o,1],*[r,s o) =[r, w©),and *[r,s, 1] = [r, 1].

Furthermore, the following analogues of Propositions 2.1, 2.3, and 2.4 follow
immediately from the previous result (Proposition 2.9) or from the definitions
(Propositions 2.7 and 2.8).

Proposition 2.7. For any partially ordered set (P, <), the generalized initial
star-segments are semi-ideals and the generalized final star-segments are dual
semi-ideals.

Proposition 2.8. For any distributive lattice (L, g), the generalized initial star-
segment *(— oo, s, 1] is the ideal generated by {t} U *(s, 1)*, and the generalized
final star-segment *[r, s, o) is the dual ideal generated by {r} U *(s, r);.

Proposition 2.9. Let (G, <) be an I-group. Let xe G, ge G*\{0}. Then x +
+[=g.9] +g" =*x—g,x,x+g]

3. GENERALIZED INTERVAL TOPOLOGIES

Let (P, <) be a partially ordered set. The interval topology [9] on P, denoted
by #(P), is the topology which takes the final segments and the initial segments as
a subbase for its closed sets.

Analogously, we define the generalized interval topology (generalized star-
interval topology) on P, denoted by %(P) (4*(P)), to be the topology which takes
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as a subbase for its closed sets all the generalized final segments (generalized final
star-segments) and all the generalized initial segments (generalized initial star-
segments), together with [J.

By Propositions 2.1 and 2.7, both %(P) and %*(P) are topologies that are generated
by certain semi-ideals and dual semi-ideals of P. In this section (and in part of § 5),
we wish to compare %(P) and %*(P) with other topologies whose definitions are
related to intervals or ideal-like segments.

In [3], BIRKHOFF suggests an alternative to .#(P), viz., the new interval topology,
denoted by 4°(P). A set B is closed with respect to A4°(P) if and only if the inter-
section of B with the intersection of finite unions of closed intervals of P is itself an
intersection of finite unions of closed intervals. In [20] and [21], RENNIE uses intervals
in a different way to define his L-topology, denoted by #(P). A set B is a basic open
set of $(P) in case B is convex and the intersection of B with any maximal chain C
of P is open with respect to #(C).

Frink’s ideal topology [10] (cf. [17]), denoted by #(P), takes as a subbase for
its open sets all F-ideals and dual F-ideals which are completely irreducible in the
following sense: A proper (dual) F-ideal is completely irreducible if it is not the inter-
section of a collection of (dual) F-ideals distinct from it. A set B < P is L-closed if,
for all X = B, VX € P implies VX € B and AX € P implies AX € B. Naito’s CP-
ideal topology [18], denoted by «2(P), takes as a subbase for its closed sets all
L-closed, prime ideals and dual ideals, where a (dual) ideal I < P is prime if for all
x,y€P such that [0 # b(x,y) =1 (O * u(x,y) 1), either xel or yel.
Guillaume’s ““topologie gauche” (“topologie droite™) [11], denoted by 7 ¢4(P)
(7 «(P)), takes for its open sets the (dual) semi-ideals of P. A set B < P is Dedekind-
closed if whenever {x;} = B is a net ascending (i.e., « 2 B implies x; < x,) to
Vx, € P, then Vx,e B and whenever {y;} < B is a net descending (i.e., a 2
implies y; = y,) to Ay;€ P, then Ay,e B. Lawson’s semi-ideal topology [15],
denoted by #(P), takes as a subbase for its closed sets all the Dedekind-closed semi-
ideals and dual semi-ideals. Finally, a set B < P is closed with respect to Lawson’s
chain topology [15] (Guillaume calls it the “topologie longitudinal” in [11]),
denoted by 7 %(P), if, whenever (] # T < B is totally ordered, then ATe P
implies ATe B and VT e P implies VT € B.

A topology on (P, <) is intrinsic [4] if every o-automorphism of P is continuous.

Proposition 3.1. For any partially ordered set (P, <), all the topologies defined
above are intrinsic.

Proof. The result follows easily from the definitions and the fact that o-auto-
morphisms preserve arbitrary meets and joins when they exist.

The interrelations noted in the next result will considerably simplify the compa-
risons of %(P) and %*(P) with the other topologies defined above.
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Proposition 3.2. Let (P, <) be a partially ordered set. Then
(1) #(P) = #(P) = TL(P);

(2) #(P) = #(P) = £(P) = 7 %(P);

(3) #(P) = %(P),

(4) «2(P) = £(P).

Proof. (1) Clearly #(P) = A4(P). Suppose that C is closed with respect to A4"(P),
and let T = C be a totally ordered set such that \VTe P. Let t e T, and let a4, ..., a,,
by, ....b,e P such that Cn[1, VT] < Ula;, b;]. Let M = {i|a; <s for some
se€ C n[t,VT]}. Since T is totally ordered, there exists je M such that s < b;
for all se C n [1, VT], and then

a; VT = V(Cn[1,VT]) £ b;,

i.e., VTe U[a;, b;]. Since C is closed with respect to A"(P), we conclude that \V/Te C.
Similarly, if T < C is totally ordered and ATe P, then ATe C, and hence C is
closed with respect to 7 Z(P). For (2), it is clear that #(P) = &(P). Suppose that S
is a Dedekind-closed dual semi-ideal of P, and let C be a maximal chain of P. Sup-
pose that ee C n (P\S). If there exists 1€ C n (P\S) such that e < t, then ee
e C\[t, ) e #(C) and C\[t, ) = P\ S. Suppose that such a ¢ does not exist.
If e = A(C 1 S), then e € S since S is Dedekind-closed. This contradicts our choice
of e, and hence there exists re C NS such that Cn[e,r] = {e,r}. Then ee
e C\[r, ®©)e J(C)and C\[r, ) = P\ S, and therefore, P\ S € Z(P). Similarly,
complements of Dedekind-closed semi-ideals are elements of #(P), and thus #(P) <
< Z(P). A similar type of argument shows that #(P) = 7 %(P), and hence (2)
holds. Finally, (3) is proven in Theorem 4 of [23], and (4) is clear.

Proposition 3.3. If (T, <) is a totally ordered set, then
H(T) = #(T) = #(T) = L(T) = TL(T) = YT) = AT).

Proposition 3.4. For any partially ordered set (P, <), #(P) = 4*(P), and thus
4*(P) is T,. Furthermore, for any totally ordered set (T, <), #(T) = 9*(T).

Proof. That #(P) = *(P) follows from the definitions; that J(T) = 9*(T)
follows from Proposition 2.5.

A partially ordered set (P, <) has trivial polars if for all p € P, there exists r, t € P
such that r < p < t, (r, p)* = {r}, and (¢, p), = {t}. If, for all pe P, there exist
r,t€ P such that r < p < t, then P is unbounded. Not every unbounded set has
trivial polars, e.g., [Yn| R.

Proposition 3.5. If (P, <) has trivial polars, then #(P) < %(P) and hence %(P)
is Ty. Furthermore, if (T, £) is totally ordered and unbounded, then #(T) = %(T).
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Proof. Since (P, <) has trivial polars, then for all p € P there exist r, t € P such
that r < p <t, (—oo,r, p] = (-0, p], and [p, 1, ©) = [p, ). Thus F(P) <
< %(P). Since (T, £) is unbounded as well as totally ordered, it has trivial polars
and hence #(T) = %(T). That #(T) = %(T) follows from Proposition 2.4.

If o/ and # are topologies on a set X, then (s, %) denotes the topology on X
generated by & U 4.

Proposition 3.6. If (P, <) is dually directed, then %*(P) = «(%(P), #(P)), and
if (P, £) also has trivial polars, then %(P) = 4*(P).

Proof. The first part of the Proposition is straightforward; the second part then
follows from Proposition 3.5.

It is easy to see that in R, (—o0,2]e T 4(R)N%R) and R\(—0,2]€
€ 9(R)\ 7 4(R). Thus %(R) & 7 4(R) and %(R) £ 7 4(R). By Proposition 3.6,
%(R) = %*(R), and hence %*(R) is also not comparable to 7 4(R). Dually, neither
%(R) nor 9*(R) is comparable to 7 «(R).

Example 3.7. We construct a partially ordered set (P, <) such that 4(P) & 4*(P).

Let D = R x R be partially ordered by: (r, s) < (x, y) if and only if r = x and
s=yorr<xands < y. (This is a “tight Riesz order” in the sense of Loy and
MiLLER [16].) Clearly d = an bin Difand onlyifd = a ord = b. Thus, if d < b
in D, then *(d, b)* = {d}, and hence *(—oo,d, b] = (—oo, b]. Similarly
*[a, d, ) = [a, o) for all a < d, and therefore, if {*X,-l I <i < n}is a (finite)
set of generalized star-segments, then D & U(*X)).

Let P = D x {1,2} be partially ordered by: (d, «) < (b, B) if and only if d < b
and o = B. By the argument above, D x {1} is not contained in a finite union of
generalized star-segments of P, and hence D x {1} is not closed with respect to ¥*(P).
However, D x {1} = (—oo, (1, 1,1),(1, 1, 1)] is closed with respect to %(P). and
therefore, 9(P) & %*(P).

Example 3.8. We construct a distributive lattice (L, §) such that neither ?(L) nor
%*(L) is contained in any of #(L), #°(L), #(L), £(L), ¢#(L), 7 Z(L), and %(L).

Let L= ([0,2] x ]0,2[) u {(0,0),(2,2)} be partially ordered as a subsct of
R |><| R. Clearly, (L, £) is a distributive lattice. Furthermore, [(0, 1), (1, 1), 20) =
= L\{(0,0)}, and hence {(0,0)} €%(L). However, T = {(1/n,1/n)|neN} is
a totally ordered subset of L\ {(0,0)} such that AT = (0, 0), and hence {(0, 0)} ¢
¢ 7 Z(L). Thus, 9(L) £ 7 Z(L), and hence by Proposition 3.2, %(L) is contained
in none of J(L), (L), #(L), Z(L), or ¢#(L). (In fact, as noted in Example 1,
p. 239,.0f [18], «2(L) is indiscrete.) Since Lis a lattice, Proposition 3.6 then implies
that ¥*(L) is also not contained in any of these topologies.

It remains to show that (L) ¢ #(L). If {(0,0)} = J, a completely irreducible
dual F-ideal of L, then J = L. Thus, it suffices to show that {(0, 0)} is not the inter-
section of a finite number of completely irreducible F-ideals of L. By Corollary 1
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on p. 305 of [5], any such F-ideal is maximal with respect to not containing some
element of L. Thus, if {I,,...,1,} is a collection of completely irreducible F-ideals
of L, each of which contains {(0, 0)}, then there exist ay, ..., a,€ [0, 2] and by, ...
..., b, € [0, 2] such that I; is maximal without (a;, b;). If 0 < s < Ab;, then clearly
(0, sye N, and hence {(0,0)} # I,. Thus {(0,0)} ¢ #(L), and hence neither %(L)
nor ¢*(L) is contained in #(L).

4. DUALLY DIRECTED CARDINAL PRODUCTS

In this section, we will show that the generalized interval topologies on certain
dually directed subsets of a cardinal product are the topologies that the subsets
inherit from the product of the generalized interval topologies on the factors.

Let {P;| 64} be a collection of partially ordered sets. Let P = |[],| P;, and
denote the oth projection function by p;. If se Py and y € P, then s* € P is defined by

s = JS if o6=¢8
oy if % p.

If x,y,ze P and by e P, for each B e 4 such that fix # fiz, then (bp, X, z)ye Pis
defined by
5(511, X, Z)y = {ba l.f ox = 0z
oy if ox = dz.

A subset Y = P has single complements if, whenever p € P; for some J € 4, then
p'e Yforall yeY; Y has supported complements if, whenever x, ze Y with x < z
and we have a by e P, for each f € 4 such that fx + fz, then (b,,, X, z)y e Y for all
yevY.

Let 2(2*) be the product of the %(P;) (9*(P;)). Then the sets of the form (C) p; ',
where C = P; is a generalized segment (star-segment) of P;, comprise a subbase
for the closed sets of 2(2*). We denote the topology that a subset Y < P inherits
from 2(2*) by 2,(#}). Similarly, the segments, the generalized segments and star-
segments, the upper and lower polars and star-polars, and the sets of upper and lower
bounds are given a subscript Y when they refer to the subset Y = P and left with
no subscript when they refer to P.

Theorem 4.1. Let Y < P be dually directed and have single complements. Then
%(Y) 2 Py. If each P, also has trivial polars, then 4*(Y) = 25.

Proof. To prove the first part of the theorem, it clearly suffices to show that for
alld e 4, for all s, t € P; with s < t, and forall ye Y,

(i) (=00, 5,t]ps )" Y= (—00,5, 1]y,
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and dually. We will prove (i); the dual case follows from the dual argument. Since Y
is dually directed, uy(a, ¢) + O foralla,ce Y. Let xe ((— 0, s, ] p; ') 0 Y. There
exists b e (s, £)* such that 0 # u(b, t) < [dx, o). Since Y has single complements,
b, s, € Y, and if z € uy(b*, y), then b € Y. Suppose that w e uy(b*, ©). If p + 5,
then Bw = Bb* = Bz = Bb™ = Px; since dw = 6b° = b and ow = 6 = ¢, then
dwe u(b, t) < [x, o). Thus we [x, o0), and hence uy(b?, ©*) < [x, ©)y. Further-
more, s = (6b%) A (6¢*), and for B =+ 5, By = (Bb*) A (B). Thus, b*e (s, P)y,
and hence xe(—oo,s”, ]y. Conversely, suppose that ze(—oo,s”, #]y. Then
O # uy(?, a) < [z, ©)y for some ae(s’, P)y. Clearly, O * u(t, éa) < [dz, ),
and da € (s, t)*. Therefore, z € ((— o0, s, ] p; ') N Y, and this proves (i).

The second part of the Theorem will follow if we show that for all 6 € 4, for all
s, t € P; with s < 1, there exists w € P, such that for all y € Y,

(ii) (*(=o0,5, 1] p5s ') N Y = *(—0, w”, ]y,

and dually. As above, it suffices to prove (ii). If s < ¢ in (ii), then (ii) follows from
(i) with w = 5. If s = ¢, let we P; be such that w < t and (w, t)* = {w}. Then
*(— o0, s, t] = (— o0, w, t]. Since clearly (— o, w’, P]y = *(— o0, w’, ]y, (ii) again
follows from (i).

We note that we cannot use Proposition 3.6 to prove the second part of Theorem
4.1 since each P, can have trivial polars without Y having trivial polars. For example,
Z has trivial polars, but |ZN| Z is dually directed, has single complements, and does
not have trivial polars.

Theorem 4.2. (a) 9(P) = 2 and $*(P) = #*.(b)If Y < P is dually directed and
has supported complements, then 4(Y) = Py and $*(Y) = 25.

Proof. (a) It clearly suffices to show that for all s, 7€ P with s < 1,

(iii) (=oo,s,1] = Nu((—c0, 65, 6] p5 ") ,
(iv) (=0, ] = NA(~, 1] p; 1),

and dually. As above, it suffices to prove (iii) and (iv); (iv) is clear. To see that (iii)
holds, let x € (— 0o, s, t]. Then [J # u(b, 1) < [x, o) for some b € (s, 1)*, and hence,
for all e 4, OO # u(db, 61) < [6x, ) and &b € (s, 61)*, ie., dx e (— oo, Js, ot].
Conversely, if x € N4((— o0, &s, 6] p; '), then for all § € 4 there exists b, € (Js,5t)*
such that [J # u(t, b;) < [6x, o). Let b e P be such that b = b, for all d € 4.
Then clearly b e (s, t)* and [J # u(t, b) = [x, ), i.e.,, xe(—o0, s, 1].

(b) For a,beP, let S(a,b) = {6e4 | da + 6b}. It suffices to show that for
r,te Pwithr < t,

(v) (=0, 7, 1]y = Nse.o(— 0, 0r, 6] p; ' N Y),
(vi) (—oo,'t],, = Ns(—0,5t] p; ' 0 Y),
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and dually. As above, it suffices to prove (v) and (vi); and (vi) is clear. By (iii),
(=00, 7, 1]y  Nsero((= o0, 0r, 5t] p; ' N Y). Conversely, let x e (— oo, or, 5t] .
.p; ' n Y for all 5€S(r,1). If & S(r, t), then there exists by e (5r, 51)* such that
O = u(b,, 1) = [0x, o). Let z € uy(x, 1), and let z* = (b,, r, t)°. Since Y has sup-
ported complements, z* € Y. If € S(r, 1), then 6r = (6z*) A (dt), and if 6 ¢ S(r, 1),
then or = &t = (6z*) A (81). Thus, z* € (r, t)y. Furthermore, if w € uy(z*, 1), then
for 6eS(r, t), Sweu(b; t) = [6x, ) and for & ¢ S(r, 1), ow = 6z = dx. Thus,
w € [x, )y, and hence [ # uy(z*, 1) = [x, ©)y. Therefore, x € (— o0, r, ]y and
(v) follows.

Corollary 4.3. If P is the cardinal product of the dually directed sets {Pa | ae A},
then %(P) is the product of the 4(P,). If, in addition each P, has trivial polars,
then 9*(P) is the product of the 9*(P,) and 4*(P) = %(P).

Thus, in ensuring that the generalized star-interval topology is cardinally produc-
tive we have assumed enough to force the generalized star-interval topologies on the
factors and on the product to be precisely the corresponding generalized interval
topologies.

Corollary 4.4. Let {G,l | oceA} be a collection of lattice-ordered groups. Then
{4(|ZA | G,) is the topology that |zAl G, inherits from the product of the %(G,).
If each G, has trivial polars, then (4*(|2A| G,) = g(IZA] G,)

We note that since clearly |Z~| Z does not have trivial polars but by Corollary 4.4
9*(|¥n| Z) = 9([Xn| Z), then the converse of the second part of Proposition 3.6
fails to hold.

5. EXAMPLES AND TRIVIALLY ORDERED SETS

We will show in this section that without the hypothesis of Corollary 3.3 that the
factors be dually directed the product of the generalized interval topologies may not
be the generalized interval topology on the cardinal product. Constructing this
example will involve characterizing the generalized interval (and star-interval)
topology on a trivially ordered set as the cofinite topology.

We will first finish the comparisons begun in § 3 and show that even for distributive
lattices the generalized star-interval topology may not be cardinally productive.

Example 5.1. It is straightforward to show that the closure of {1} with respect
to ¥(N) is {1, 2}. It is also clear that #(N), and hence (by Propositions 3.3 and 3.4)
&(N), Z(N), #(N), 7 Z(N), %(N), c?(N), and ¥*(N), are all equivalent to the
discrete topology on N. Thus, %(N) contains none of these topologies.
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Example 5.2. Let P = |[]y| N. We will show that $*(P) is strictly contained in 2%,
the product of the 4*(N). Thus, ¥*(P) contains none of #%(P), c2(P), #(P), Z(P),
or 7 Z(P).

Let h € P be defined by

2 if n=1
nh =
1 if n¥1.

Suppose that the finite sets I, J = N and {(a;, b;) I iel}. {(rys;) |je J} <P xP,
are such that

@ (= 1D pit = ({1}) P = (Uilas bis ) v (U5(=c0, 15 57]) -

Suppose further that h ¢ UJ[a;, b;, ) and h ¢ UJ(— o, r;, s;]. Then for each i €1,
there exists k; € N such that 1 < k;a; and either na; = nb; for all ne N or k;a; <
< k;b;; furthermore, for each je J, nr; = ns; for all ne N and 1r; = 1. Let g€
e N\ ({k;|iel} u {1}). Define fe P by

nf = (Vynr;) + 1 %f n=q
1 if n+gq.

Since g * 1, fe(*(—oo0, 1,1]) py '; since k;f = 1 for all iel, f¢Uj[a; b;, ©);
since gs; < qf for all je J, f¢UJ(— 0, r;, s;]. This contradicts (2), and thus he
e (UFlai biy, ) U (Uj (=00, 1}, s;]). Therefore, by definition of ¢*(P),

(*(= o0, 1, 1]) p7 " is not closed with respect to $*(P), i.e., ¥*(P) does not equal 2*,
and thus, by Theorem 4.2, ¥*(P) is strictly contained in 2*. By Proposition 3.3,
%*(N) = #(N) = #(N) = ¢2(N). Thus, since N is a lattice, by Corollary I on p.
246 of [18], «2(P) = 2*, and, as remarked on p. 1007 of [1], #(P) 2 2* We
conclude that 9*(P) 2 #(P) and 9*(P) 2 <2(P). Then by Proposition 3.2, ¥*(P)
contains none of ¥(P), £(P), or 7 Z(P).

Example 5.3. Let P = |[z| R. Let 2* be the product of the ¥*(R) = J(R) =
= A'(R). By Corollary 4.3, ¥*(P) = #*. By Theorem 8 of [1], #(P) 2 2#*, but
as noted on p. 1013 of [1], Exercise J on p. 240 of [14] and Theorem 3 of [3] imply
that A°(P) #+ 2*. Therefore, A" (P) & ¥*(P).

Let (P, <) be a partially ordered set. We say that x, y e P are incomparable
if x £ yand x £ y. Then (P, <)is trivially ordered if every pair of disjoint elements
is incomparable. For a set X, the cofinite topology on X, denoted by %(X), has for
open sets precisely the subsets of X with finite complements. Clearly, %(X) is the
minimal T, topology on X.

Proposition 5.4. If (P, <) is trivially ordered, then
%(P) = #(P) = 9*(P) = 94(P) = ¥(P) = 2(P),
and T %(P), 2(P), A (P), #(P), 7 4(P), and T 4(P) are all discrete.
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Proof. It is easy to see that the L-closed prime ideals and dual ideals, the final
and initial segments, and the generalized final and initial segments and star-segments
are precisely the singletons. Furthermore, since u([J) = b([J) = P, it is also clear
that the singletons are the only (proper) F-ideals and dual F-ideals and, as such, are
completely irreducible. For the second part of the Proposition, it is straightforward
to check that any subset of P is closed with respect to 7 %(P), #(P), and &(P) or
open with respect to Z(P), 7 #(P), and 7 4(P).

Corollary 5.5. If (P, £) is an infinite trivially ordered set, then S(P), 9*(P),
%(P), %(P), and <2(P) are all Ty but not Hausdorff.

Example 5.6. Let Z be trivially ordered by <. Let (P, <) = (Z, X) [ X | (Z, %),
and let 2 be the product of %(Z) with itself. We will show that 4(P) + 2. Clearly
(P, <) is trivially ordered, and thus by Proposition 5.4, %(P) = %(P). To see that
%(P) % & consider

{(m,n)eP|n+0} =(Z~{0})p;'e2.

Clearly {(m,0)| me Z} is infinitt and equals P\{(m, n)|n + 0}. Thus,
{(m,n) | n + 0} ¢ 6(P) = 9(P), and hence ¥(P) + 2.

Furthermore, we note that since %(P) is minimal, #(P) = «#(P) = 4(P) < 2,
but by the argument above, #(P) + 2 + #(P). Thus neither the remark on p.
1007 of [1] that the ideal topology of a cardinal product of lattices contains the
product of the ideal topologies, nor Corollary I on p. 246 of [ 18] which says that the
CP-ideal topology is preserved by cardinal products of lattices, holds for arbitrary
partially ordered sets.

Fig. 1.
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