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A GENERALIZED MAXIMUM PRINCIPLE AND ESTIMATES
OF max vrai u FOR NONLINEAR PARABOLIC BOUNDARY
VALUE PROBLEMS

Jozer KACUR, Bratislava
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In this paper we investigate estimates of max vraiu(x, ) and min vrai u(x, )
for the weak solution of nonlinear parabolic equations of the form

ou Yoo ou
1 — = —a;(t,x,— | + ao(t, x, u) = f(x,t
0 i~ R () ¢ eden = S0
in the domain Q = Q x (0, T), where Q = EV (N-dimensional Euclidean space)
is a bounded domain with a Lipschitzian boundary 0Q. The initial-boundary con-
ditions are given by a sufficiently smooth function u,(x, t) in Q:

) u(x, 0) = uo(x, 0), ulx, t)lmxw.r) = uo(x, t)|mx(o,r)-

The growth of at, x, &) in E€ EY, i = 1,...,N and ay(t, x, 5) in s is asufficiently
general and is given below by th the relation (3) or (3'). The weak solution of the
problem (1), (2) is an element of a space of the Orlicz-Sobolev type — see [1]. The
estimate for max vrai u(x, t) and min vrai u(x, t) imply, in a special case (f(x, t) = 0,
sgn ay(t, x, s) = sgn s), the maximum principle for the weak solution u(x, ) even in
a stronger form (Theorem 4). The estimates obtained allow us to investigate the order
of convergence u(x, t) - 0 for t - oo in dependence on the order of convergence
uo(x, 1) > 0 and f(x, 1) > 0 for r > oo. In some special cases (see Theorem 8) we
prove that the initial state (given by uy(x, t) = uo(x) in (2) damps in a finite time,
i.e., there exists a t, (f, = 1o(u)) such that u(x, 1) = 0 for t = ¢,.

In § 1 a generalized maximum principle is proved (Theorem 1).In§2 the stabiliza-
tion u(x, t) — 0 for t —» oo is studied. In § 3 we prove some estimates for max vrai .
- u(x, t), min vrai u(x, r) and the maximum principle also for more general equations
of the form (1) with members a(t, x, u, du/ox) for i = 0,1, ..., N.

The estimates obtained for max vrai u(x, t) and min vrai u(x, r) substantially
depend on the behaviour of the member ao(1, x, s). If aq(t, x, s) = 0, then the esti-
mates (in the case f(x, f) = 0) are reduced to the maximum principle.
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The results have been obtained by means of the direct variational methods for
parabolic boundary value problems. When solving parabolic boundary value
problems, the direct variational methods have been used by many authors, e.g.,
by O. A. LADYZENSKAJA [5, 10], K. REKTORYS [6], P. P. MosoLov [4], author [1, 2]
and others. In order that we may use the direct variational methods we must suppose
the elliptic operator in (1) to be potential which is a restrictive assumption, but
it lies in the substance of the method.

Notation and definitions. We suppose that ayt, x, &), i =0,1,...,N, EeEV
(for i = 0, £ e E") are continuous functions in all variables x € Q, 1€ <0, T) and
|é] < oo. The growth of at, x, &) (i = 0,1, ...,N) in & will be described by means
of the functions of a certain class 9; which is substantially larger then the class of
polynomials |u|” — see [11].

9M; is the set of all real functions g(s) satisfying

I sg(s) is even and convex for s > s, and lim (s g(s))’ = 0.
§—=
II There exists a constant ¢ such that
g(2s) < cg(s) foreach s=s.

III There exists [ > 1 such that

\

g(s) < 1g(ls) foreach s=s;,
where s, is a sufficiently big positive number.

We assume that with respect to the equation (1) it is possible to find gy(s) e M,
(i=0,1,...,N) satisfying gi(s) = g,(s) (or gi(s) < g;(s)) for all i,j=1,...,N,
s = s, such that

® ot 9] 5 €(t + 3 min (a6}, o))

fori = 1,...,N.If i = 0, then the right hand side in (3) consists of a single member
go(&o) instead of the sum.

Other more general conditions (without the assumption g; = g; or g; < g;)
are of the form

N
) Jai(t, x, ) = €t + X946 G412

i<
for i =1,...,N where G{(s) = s gi(s) and G;' is its inverse function for s = 0.
(More exactly see in [6]). If i = 0, then the right hand side in (3) consists of a single

member go(Gg ' Go(|¢o|)) instead of the sum.
To ensure the ellipticity (monotonicity) we shall suppose

N
(4) Y& —n)[at,x, &) — aft,x,n)] 2 0 forall ¢ nekEN.
i=o
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The coerciveness of the elliptic operator in (1) will be guaranteed by
N N
(5) .Zoéi ai(t’ x, &) 2 C1._205i gi(fi) + szo go(éo) - G35,

where C; >0, C3 20 and C, > 0. If ay(t,x,s) =0, then C, = 0 and we put
go(s) = s.
The potentiality of the elliptic operator in (1) will be guaranteed by the symmetry
dat, x, &) _ dat, x, &) for
0¢; o¢;

©) i,j=1,...N
The existence of the weak solution (for the definition see [1]) of the problem
(1), (2) is proved in [1]. The solution is an element of the space W(Q):

W(Q) = {UGLGO(Q) n LZ(Q) P e Lo(0)i=1,. N}

where dv[0x; are derivatives in the sense of distributions and Lg (Q) is the Orlicz’s
space generated by the function G(s) = s g,(s).

The basic means which allows us to use the variational methods is Rothe’s method
(method of lines) which we apply in the following way.

Let {t,}7_, be a partition of the interval <0, T, 4t; = t; — t;_; and uy = u,(x, 0).
Successively forj = 1, ..., m we solve the noninear elliptic equations

’ uj; d 17 ou;
) B 8 e Tl ww) =50

J

with Dirichlet boundary conditions

@) ui(8)]sn = o(t), 5)|on

uj,j = 1,..., m being elements of the space W(Q):

w(Q) = {UGLGD(Q) o) LZ(Q) —eLs(Q), i =1, }
xt
with the norm
ov
loflw =‘ po Bl U PR L
i=1 ||0X| g,

where |- | ¢, is the corresponding Orlicz’s norm in the space Lg,.

We denote W(Q) = CJ(€), where the closure is in the norm of W(Q). (CSO(Q) is
the set of infinitely differentiable functions with support in Q.)
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By means of the functions u;, j = 1, ..., m we construct Rothe’s function u™(x, t)

in Q:

u™(x, 1) = u;_ + ! —Att{._l (uj —uj;—y), for t;  St=t;, j=1,..,m.
j
We suppose
(7) uo(x, 1) € C¥(Q) ,
(8) f(x,t)e L,(Q) and ng < C forae. te(0,T).
Ot || 1,0

The results of the present paper are based on the following result proved in [1].

Theorem A. Let the conditions (4)—(8) be fulfilled. Suppose that a{t, x, &) and
the derivatives da;[0t, 0%a;[0r*, 0%a;[0t O, 0%a;[0é, 05 (i=0,..,N, o, f =
=1,...,N) are continuous functions in all variables and satisfy (3) (or (3')).
Then there exists a unique weak solution u(x, t) of (1), (2) and the estimates

[u™ — ullco,ry, Laory  C - max J(4t)
=1,

m

hold. Moreover, we have u € L,,(<0, T, W(R)) and du[dt € L (<0, T, L,(%)).

If a stationary parabolic boundary value problem (1), (2) is considered, i.., if
aft, x, &) = ayx, &) and ue(x, t) = up(x), then Theorem A holds without the as-
sumption that the derivatives da;[0t, 0%a;[01?, 0%a;[0t 9, and 0%a;[0¢, 0&, satisfy

() (or (3)
1.
In this section we prove a generalized maximum principle for the weak solution

u(x, 1) of (1), (2).

We shall suppose

(9) _Z 6.’ ai(ta X, é) g 0 ’
(10) f(x,1)e L,(Q) and max vraif(x, ), min vraif(x,?)
xeQ xe

are integrable over {0, T) in the sense of Riemann.

Let us denote by S(S¥) the set of all continuous functions y(t) (y*(t)) in (z, T
satisfying

y(f) = max uy(x, 1) (y*(t) < min ug(x, 1)) for telr, T).
€0 xed

510



Lemma 1. Let the assumptions of Theorem A and the conditions (9), (10) be
satisfied. Let {u;}7_, be weak solutions of the problem (1), (2') with uy = uo(x, 0).
Then, fori =1,..., m,

(11) max vrai u; < max {y(t;); max vraiu,_; +
xeQ xeQ

+ max vrai f(x, t;) 4; — min a(t;, x, s) 4t;}
xef?

xeQ
szy(ti)
and
(12) min vrai u; = min {y*(#;); min vraiu,_; +
i = i) i—1
xe xefR

+ min vrai f(x, t;) 4t; — max ao(t;, x, 5) 4t;},
xeQ xe
SSy¥(ti)

where y € S, and y* € S§ are arbitrary.

Proof. Let us construct the functional

1 N
o(t,v)=| de | Y ~a—va,-<t, x,r€£ dx
o o i=1 0x; O0x

for v e W(Q) and the functionals

1
Y(t, v, u;-q) = (1, 0) + EA—t, o= uiy|Z, +

1
+ .[ drf v ao(t;, x, v)dx — -[ v f(x, t;) dx
P 2

[}]

forve W(Q),i =1,...,m (f(x, t;) is the trace of f(x, t) for t = t;, which exists due
to the condition (8) — see [8]). From the assumptions of Theorem A it follows that u;
is the unique point of the minimum of ¥(t; v, u;_;) on the set uy(x, t;) + W(Q),
i=1,...,m. First we prove the estimate (11). We denote M; = max vrai u; and

"= {“(x), if u(x) < r xe2

“ r, it u(x)>r.

u;|" € W(Q) for each real r (for proof see [8] or [11] (Lemma 1)). Let us assume
that M;_, < oo. We shall consider the functions ui|’, where r 2 ¥(t;) = max ug(x, ;).
xed2

It is evident that u,-l’ holds in the sense of the traces. We prove that

= ui]
o0 loe
(13) Pt uf uiy) < Yt up u-y)
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holds for r > M;_, + max vrai f(x, t;) At; — min ao(t; x, s) 4t; and hence with
o

xe X€.
sZy(t:)
respect to the uniquenes of the minimum we have ui|’ = u; which implies the estimate

(11). Let us investigate r = y(t;) such that (13) is true. From (9) we deduce ®(1;, u;|") <
< o(t;, u;) for i = 1,..., m. Using the mean value theorem for integrals we obtain

1 1
J’ f u; ao(t;, x, Tu;) dx dv — J f u,-l’ ao(ts x, ruil') dxdr =
0Je 0Je
= f (u; — wi]") ao(ts, x, u] + 9:(x) (u; — u;]")) dx.
o

The function 9,(x) satisfying 0 < 9(x) < 1 can be chosen to be measurable — see
[12] (footnote to Lemma 5,1). The inequality (13) is fulfilled provided

1
(14) J. f uil"aty x, u) dx + 1 fui" = wiz |7, — f w|" f(x, t;) dx <
' 0Jeo 2 4t i o

1
< J J. u; ao(ty, x, u;) dx + L fJu; — ui_ll’iz - J. u; f(x, 1;) dx .
0Jeo 2 41 o
With respect ‘o the above we can write (14) in the form

(15) J. (i — i) i + i — 2wy — 248, f(x, 1,) +

+ 2 4t; ag(tis x, uili + 94x) (u; — u;

))dx 20,

where 4] = {xe Q; u(x) > r}.

If mes A} = 0 for r = y(t;), then the estimate (11) is proved. If mes A7 > 0 for
r = (t;) then we have u; — u,-|’ =0 and u; + u,~|’ = 2r on the set A}. Thus, the
inequality (15) holds for

(16) r > max vrai u;_, + At; maxvraif(x, t;) — min ao(t;, x, s) 4t;
xeA;" xeA ;" xef
sz y(ti)

and hence the estimate (11) is proved under the assumption M;_, < co. In (16)
the evident inequality

inf ag(t;, x, wil” + 94x) (u; — u|")) = min a,(t, x, s)
xeAr Sg:jﬁi)

has been used, since r = y(t,-). From max uo(x, 0) = M, < oo we obtain that the
xe2

estimate (11) holds for i = 1,..., m.
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Analogously we prove the estimate (12). For this purpose we consider the functions
u;|,, where

uil, = {“i(")’ it ufx)zr

r, it ux)<r
and r < y*(1;).

For simplicity let us denote
¢(t) = max vrai f(x, 7), @*(r) = minvraif(x, 1),
xef xeQ

a,(t) = min ao(r, x,s) and aj.(t) = max aot, x, s),
xe©? xef2
szy(t) sSy*(r)

where 0 <t T.
The main result is the following generalized maximum principle.

Theorem 1. If the assumptions of Theorem A, (9) and (10) are satisfied, then the
estimates

(17) u(x. 1) < inf max {Org?;(‘(y(é) + j ;q;(‘c) dr — I ;ay(r) dr;
max u(, ) + J (:(p(‘r) dr — J (:ay(r) dr} ,

T t
(18) u(x. 1) = sup min{ min ((&) + f o*(x) dr — j a*(7) de ;
y*eS* 0s¢ést 3

¢

t t
min uy(x, 0) + J- ¢o*(r) dt - J a(z) dr}
xef2

0 0
hold for a.e. x € Q, where u(x, 1) is the weak solution of the problem (1), (2).

Proof. Let us consider y(f) e S, and y*(r) e Sg. The estimates (11) and (12) in
Lemma 1 are recurrent. Using Lemma 1 let us estimate max vraiu;_, in (11).
Then we have

max vrai u; £ max {y(t,); ¥(t;=,) + o(t;) 4t; — a,(t,) 4t; ;

maxvraiu;_, + 3. l(p(t,)At, - Z ‘ay(t,)At,}

I=i—

I=i—
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and successively we obtain

(19)  maxvraiu; < max{ max (y(t,) + Z (p(t,) At _,=,Z+1a7(t1) at);

ma}jx uo(x. 0) +,_21 o(1)) 4t, _z; a,(1)) 41}

where i = 1,..., m.
Similarly, using Lemma 1 in the estimate (12) successively we have

(20)  minvraiu; 2 mm{ mm (y*(t,) + Z cp*(t,)At, — Y ai(t) 4t) ;
1=7+1

m,n uo(x,0) + Z @*(1,) 4t, — Z ay(t) 4t} .

In the estimates (19) and (20) a fixed partition D of the interval <0, T is considered.
Now, let us consider a sequence {D,} of partitions D, of the interval <0, T) such that
W(D,) = 0 with n — o0, where v(D,) is the norm of D,. We suppose that a fixed
point t, € €0, T) is in D, for all n. Let {f}}7=, be the points of the partition D, and
let {u]}7=, be the weak solutions of (1), (2") corresponding to the partition D,. Let
us con31der the sequence {u], },% of the weak solutions u}, of (1'), (2), where ;. = t,
for each n (u is the weak solution of (1), (2') on the section t = 1, with respect
to D,).

Owing to Theorem A we have u;, — u(x, to) in the norm of the space L,(Q),
where u(x, t,) is the trace of u(x, 1) for t = t, (see [1, 8]). Regarding this fact we
deduce
(21) max vrai u(x, t,) < lim sup max vrai u;,

xeQ n— oo xe
In the following we prove (17), (18) by the limiting proces in (19) and (20).
Let us denote by t},, the point in D, (next to 0) satisfying

n

(22) __max (y(t;') + _ri 1(p(t}') At} _,=Z+la"(t7) at}) =

n

= (t},) + Z o(t) Aty — Y a (%) Af.

1=jm+1 I=jm+1

From {},, it is possible to choose a subsequence (we denote it again by {1}, }.2,)
such that 1}, — &, € {0, T) with n - o0. Now, we estimate

R, = \y(m ¥ j :';p(r) dr - j ;ay(r) dr = (4(1},) +

n

v 5 emai- S ayn.

I=jm+1 I=jm+1
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The function ¢(r) is bounded and measurable in <0, T). y(t) is uniformly continuous
in €0, T. From (5) and with respect to the definition of the class 9, (the condition I),
we find easily that ay(t, x, s) > oo for s - oo and a(t, x,s)—> — o for s> — o0
and hence the function a,(7) is bounded and continuous in <0, T'). Hence we conclude
R, — 0 with n —» oo which implies

n

(23) limsup max { max (y(tj) + Y o(t]) 4t; — Y at}) 41)) ;
n->ow J=1 e 1=j+1 1=j+1

n

max uo(x, 0) + 21 o(t]) 4t} — Y a (1)) 417} <
xeQ 1=

1=1

< max {Org?;(m " j ;«)(r) dr - j ;a,(r) dr

max ug(x.0) + Ltfp(r) de — f (:ay(r)dr}.

Thus, (21) and (23) imply (17). Analogously, using (20) we prove (18) and the proof

is complete.
In the following theorem we prove that the assumption (9) is not substantial

in Theorem 1.

Theorem 2. Let the assumptions of Theorem A, (8) and (10) be fulfilled. Then
the estimates (17), (18) hold with
N
¢(1) = max vrai (f(x, DD M) ,
xeQ i

=1 0x;

a,(t) = min (ao(t, x, s) — ao(t, x, 0)),
xe
s27(1)

N
®*(t) = min vrai (f(x, -y M) ’
xe i aX,-

ay(r) = max (ao(t, x, 5) — ao(t, x, 0).
-vgxf?(r)
Proof. The assumptions of Theorem A imply dat, x, 0)/0x;€ L(Q) for i =
=1,...,N. Let us consider the problem (1), (2) with af(s, x, &) = ai(t, x, &) —
N .
— ai(t,x,0) for i = 1,...,N and f*(x, 1) = f(x, t) — Y. (da(t, x, 0)/ox,).

i=1
af(t,x, &), i =0,1,...,N and f*(x, t) satisfy all the conditions of Theorem 1.
Indeed, (4) for aj(t, x, &) yields (9) for aj(t, x, £). Further, from (5) we deduce

(24) 'ﬁoa?(t, X, f) &z CxizzNofigi(fi) - Cz(g)iioﬁigi(éi) - Cs(e)



where C,(g) = 0 with ¢ — 0. Indeed, using Young’s inequality (see [7], proof of
Theorem 7) we obtain

where Gi(s) = s g{s) (for sufficiently big s) and G{s) < sg{s) + C for all
s€ E' with C independent of s. Ps) is the conjugate function to Gs) (P{s) =
= max Irs - G(r)|) Convexity of G(s) implies G(es) < e Gi(s) for 0 <& <1 and
hence from (24) and (3) (or (3')) we obtain the condition (5) for aj(t, x, &), i =
=0, ..., N. The other conditions of Theorem 1 are evidently fulfilled. By virtue
of Green’s theorem we find easily that the weak solution u(x, f) of (1), (2) with
ai(t, x, £) and f*(x, t) is at the same time the weak solution of (1), (2) with a(t, x, &)
and f(x, 7) and hence Theorem 2 is a consequence of Theorem 1.

Remark 1. Theorem 1 can be formulated in a more general form.

Theorem 1'. Let the assumptions of Theorem A, (9) and (10) be satisfied. Then, for
t = t; we hawe

(7)  ule) s infmax{ max (50) + [0t — [[a o) ac);

75S!1» g 3

max vrai u(x, ;) + f "o(r) dr — J "0 () df}

xe2 t t

and

(18)  u(x,1) = sup min {'n:igt@(f) N J "o (e) de j’am) dr>;

v¥eSy* g H

1=6=

t t
min vrai u(x, t,) + J. @*(t) dt — f aj(r) dr} .

xe t t

2.

In this section we present some consequences of Theorem 1 (or Theorem 1).
Let us denote Q, = 2 x <0,t) and I', = 9Q x 0, ) U Q x {0}.
For the weak solution of (1), (2), the following maximum principle holds.

Theorem 3. Let the assumptions of Theorem A be satisfied and suppose f(x, t) =
= 0, sgns = sgn ay(t, x, s). If 0 < max vrai u(x, t) (min vrai u(x, t) < 0), then

or T
max vrai u(x, 1) £ max vrai u(x, t) (min vrai u(x, t) = min vrai u(x, t)).
I'r Q r :

or T

Proof. Consider the functions y(s) = max {0, max ug(x, s)} and y*(s) =
xedQ

= min {0, min ug(x, s)} for se<0, T). It is clear that ye S, and y* € S§. Owing
xeff2 .,
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to the assumptions we have a,(r) 2 0 and aj(t) < 0. Hence due to the estimates
(17) and (18) of Theorem 1 we conclude

(25) min {0; min uy(x, £)} < u(x, 1) £ max {0; max uy(x, t)}
r. Ie

a.e. in Q,. With regard to the fact that u(x, r) = u,(x, t) on I', (in the sense of traces —
see [8]) the proof of Theorem 3 is complete.

Formulation of Theorem 3 is analogous to the maximum principle for the smooth
solution of linear equations (see [9]): The nonnegative maximum (nonpositive
minimum) of u(x, t) is attained on the boundary I'z. A stronger formulation is:
The solution u(x, f) cannot attain its nonnegative maximum (nonpositive minimum)
in the interior of the domain Q. Now, we present a strengthened form of Theorem 3.

Theorem 4. Let the assumptions of Theorem 3 be fulfilled. If 0 < max uo(x, ty) <
xedf2

< max ue(x, 1) (0 > mm uo(x to) > min ug(x, t)), then max vra1 u(x, to) <
to Ity

< max vrai u(x, 1) (mm vrai u(x, 1,) > min vrai u(x, t)), where u(x, to) is the trace

of u(x, t)fort— toe<0 T>.

Proof. Let us consider y € S, and y* € S; defined in Theorem 3. It follows from
(4) and sgnay(t, x, s) = sgns that ay(t,x,s) >0 for s >0 and also a,(r) >0
for y(t) > 0. Hence the continuity of a,(7) in 7 implies

to

to
J‘ a(t)dt >0 forallé, 0=<¢E<t,.
g

If y(to) = max y(¢), then

0<gs10

max (Y(c) - J :ay(r) dr) — 3(t0)

0s&=to

and due to the assumption there exists ¢ > 0 such that

t

max {y(to); max u,(x, 0) — J a,(t) dt < max ug(x, 1) — &

0 Iy

which implies the assertion. .
If 9(tp) < max (&), then there exists § > 0 such that

0Zé=to

P¢) < max p(&) —¢& for tp — 6 <& t,
0sEsto

where 0 < & < J( max (&) — y(to)).

0=¢=<1o
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Let us denote [;2_;a,(t) dt = §; > 0. Then we have
to . :
max (y(f) — J a,(7) dr) < max y(¢) — min (e, §,) < max uy(x, t) — min (g, 5;).
0sesto : 0sesto to

Further, we obtain
to
max uo(x, 0) — J a,(t) dt £ max uy(x, t) — min (e, 6,) .
0 rtu
Hence with regard to the previous inequality, Theorem | implies Theorem 4.
In the following, using Theorem 1 (or Theorem 1") we shall estimate max vrai u(x, 1)

xeR
and min vrai u(x, t) for t > 0. If we are interested in the estimate of u(x, ) in a neigh-
xeQ
bourhood of the point ¢ = oo, then we assume that uy(x, 1), f(x, t) and a1, x, &)
i=0,1,...,N are defined for te 0, oo) and the assumptions of Theorem 1 are
satisfied on every interval <0, T) (T < o).
For simplicity we suppose that there exist continuous functions at, y) i = 1,2

(in the variables 7, y) defined for € <0, T) and |y| < oo such that
(26) ao(t, x,s) = ay(t,s) forall xeQ and 120,
(26) ao(t, x,5) < ay(t,s) forall xeQ, 1=0.

Further we assume

(27) max vrai f(x, 1) < f,(1)
@7) min vrai (x, 1) = £5(1)
xe2

where f,, f, are continuous functions for t € <0, T).
Remark 2. From 4 we deduce that a,(1, x, s) is nondecreasing in s and hence

a,(t) = min ao(t, x, s) = min ao(t, x, (1)) = a,(t, (1)) -
xef xef

sz ()
Similarly we obtain a}.(t) < a,(t, y*(1)).
Theorem 5. Let u(x, t) be a solution of (1),(2) and let the assumptions of Theorem
A, (9) and (10) be fulfilled. ‘
i) If (26), (27) hold and if y € S,, is an arbitrary absolutely continuous function
in {t;, T) (t; < T < ) satisfying the differential inequality

(28) ¥'(t) = f1(1) — ay(t,%(t)) for 1, £t < T with (t;) = max vraiu(x, t,)

xeQ

then u(x, t) < y(t) for a.e. xe Qand t; <t < T.
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it) I (26"), (27') hold and if y* € S} is an arbitrary absolutely continuous function

in {t, T)(t; < T < ) satisfying the differential inequality

(29) (1) £ f2(t) — ax(t, v*(1)) for t, St < T with
y*(t;) < min vrai u(x, t,),
xz0Q

then y*(1) < u(x, t) for a.e. xe Q, t; £t < T.
Proof. i) From (26), (27) we obtain

2E) + J ;q,(f) dr — J ;ay(f) de < 9(¢) + j fi(e) dr — J'al(f, (1)) de

4

S

where t; < ¢ <t < T. The inequality (28) implies

max (00) + [ 7@ ar — [a(e o) ) = 10

ty €=

and

max vrai u(x, t;) + Jt fi(r) dr — any(‘t) dt £

xe t t

t
< max vrai u(x, t;) + J. Y (7) dr < y(1) .

xeQ t

Hence due to Theorem 1’ we obtain u(x, 1) < y(t) for te(t,;, T) and a. e. xe Q.

Assertion ii) can be proved analogously as Assertion i).

Theorem 6. Let the assumptions of Theorem A, (9) and (10) be fulfilled.

i) If (26'), (27") are satisfied and if y € S,, is an arbitrary absolutely continuous

Sunction in {ty, T) (t; < T £ o) satisfying the differential inequality

(30) ¥(1) £ 1) = ax(t,9() for t, St<T with
(t;) = max !\:rai u(x, ty)

then

u(x, 1) < 2(t)) — J "a(s)ds + J o(s) ds

ty ty

forae xeQ and t; St <T.



ii) If (26), (27) are satisfied and if y* € S}, is an arbitrary absolutely continuous
function in (t;, T) (ty < T £ ) satisfying the differentail inequality
(31) y¥ (1) 2 f1(1) — ay(t, y*(1)) for t, St < T with
y*(t;) < min vrai u(x, t,)
xeQ
then

u(x, 1) = 74(t1) — J "at(s) ds + j " 9*(5) ds

[ 31 ty

forae xeQandt, £t <T.

Proof. i) From (30) we deduce

max (30) + j ;fz(r) de — j ( (1) dr) -

t

= (1) - j ( (D) d + f :lfz(r) de < 5(ty) — j "lay(f) g + j t'lq,(r) g

Hence Assertion i) is a consequence of Theorem 1'. Assertion ii) can be proved analo-
gously as Assertion i).

Remark 3. In general we combine Theorém 5 and Theorem 6 applying then to
certain parts of the half line ¢ = 0. The possibility of such a combination follows
from Theorem 1'.

Remark 4. Let the assumptions of Theorem 1 be fulfilled. If uy(x, 1) = uo(t),
f(x, 1) = f(t) and ay(t, x, s) = ao(t, s) and if u,(t) is a solution of the differential
equation

Y'(2) + ao(t, (1)) = £(1),  ¥(0) = uo(0)

then the estimates (17) and (18) imply u(x, t) = u,(t), where u(x, ) is a solution of

1), (2).
Theorem 7. Let the assumptions of Theorem A, (9), (10) and sgn a(t, x, s) = sgn s
be fulfilled. If
luo(x, )| + |f(x,1)] £ &(t) for t=1, 20,

where (1) is a continuous non-increasing function satisfying ®(t) — 0 with t — oo,
then

max vrai Iu(x, t)| -0 with t— o0,
xeQ

where u(x, t) is the solution of (1), (2).
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Proof. From the definition of the class 9, (the condition I) and from 5 we deduce
¢4
s ag(t, x, s) = ?sgo(s) for s=s5,>0.

Let us define the function

gy(s) = inf ao(t,x,s) for 0 <s<s,.
xe2,t20

From (4) it follows (see Remark 4) that g3(s) is an increasing function. Further, the
assumption on ay(t, x, s) implies that gg(s) is continuous for 0 < s < s,. Now, we
continuously extend the function gﬁ(s) for s = s; such that

93(5) = % go(s) for s; =s5s=<s,,

gs(s) = %go(s) for s=>s, and g3(s)

is increasing for s = 0. Let us put
go(s) = —go(—s) for s<0.
It is obvious that
sao(t,x,s) = sgo(s) for seE'.
Now, let us consider the differential inequality

(32) Y(€) + ge((¢) = @(¢) for &1, .

Owing to the properties of ®(¢) and g5(s) we conclude that for each K > 0 there
exists a non-increasing function 0 < yx(¢) e S,, (absolutely continuous, e.g. broken
half line) such that yg(t;) = K, 7x(¢) » 0 with ¢ > oo and (32) is satisfied. Now,
let us put a,(t, y) = gg(v) for y 2 0, t > 0. (In this case it suffices to consider
a,(t, y) for y = 0.) In virtue of Theorem 1 we deduce that max vrai |u(x, t;)| < co.
Thus, Theorem 5 yields

(33) max vrai u(x, t) < yx,(1) for 1=t and ae. xeQ,

where K, = max vrai u(x, t,).

Now, let us consider the differential inequality
(34) () + g6(r*(9) £ —d(¢) for ¢

with y%(1;) £ —K, K > 0.

v
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Let us put a,(t, ) = g5(y) for y < 0. Similarly as in the preceding, we conclude
from the properties of g5(s) and @(s) that for each K > 0 there exists 0 > y¥(¢) € S*
such that (33) is satisfied (yi(¢) = —yk(£), where 74(¢) is from (32). Let us put

K, = max {0, max vrai — u(x, t;)}. Due to Theorem 5 we obtain
xeQ

(35) min vrai u(X, t) g '_YKl(t) *
xe

The proof now follows from (33) and (35).

In order to estimate the rate of the stabilization u(x, t) — 0 for t - oo, Theorem 5
will be applied.

Theorem 8. Let u(x, t) be a weak solution of (1), (2) and let the assumptions of
Theorem A, (9) and (10) be satisfied. Suppose sgn ao(t, x, s) = sgn s and
(36)  sag(t,x,s) = Clsl’ (e>1) forall tz0, |sl <o and xeQ.

i) Let o < 2. a)If f(x, 1) = uo(x, 1) = 0 for t = t; > 0, then there exists t, = t,
such that u(x, t) = 0 for t = t,, where t, depends on C, a, t, uy and f.

b) If max vrai (luo(x, 1)] + |f(x, 1)]) = O(t™%) (B > 1) then max vrai |u(x, 1)| =
xef xef2

= O(t™F*).

ii) Let o =2. a) If maxvrai(|lug(x, 1)) + |f(x, 1)]) = O(t™%) (B > 1) then
max vrai |u(x, 1)| = O(t“”").xEQ

;;QIf ma):e!\;rai(luo(x, 0 + |f(x. 1)) = 0(e™*) (A > 0) then mai;rai |u(x, 0)| =
= 0(e™*") where 0 < & < min (4, C) and C is from (36).

iii) Let o > 2. If maxvrai(|ug(x, )| + |f(x,1)]) = O(t™") (B > 1) then
max!;/rai |u(x, 7)] = o(t"‘f!ivhere 0 < < min (1/(a — 2), Bl(x — 1)).

Proof. i) From (36) we deduce a,(t,s) = Cs*~' for t 2 0, s = 0 and a,(t, 5) =

= —C|s|*"! fort = 0, s < 0, where a,(t, 5), a,(t, s) are from (26), Let 3(t) be a solu-
tion of the equation

(37) Y({)= —Cy (1) for t=1t,, yt;)= max;/rai |u(x, 1,)] -
XE.

Since y(t)e S,, and —y(t)e S}, (for t = t,), we obtain from Theorem 5 that
max vrai [u(x, )] £ 9(1). Buty(r) = 0fort = t, = y(t,)*~*/C(2 — ) (C is from (37))
xeQ

and hence Assertion i), a) is proved.
b) Let us denote by ¢(t) a continuous function satisfying

o(t) = ma));!\;rai (|Juolx, )| + |£(x, D)) -
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By virtue of the differential inequality

(38) Y0z —Cy (1) + () for 121,
where y(t,) = B; = max vrai u(x, t,), we can deduce by an elementary computation
x=0

that the function
3(t) = Bye HtT) et L g4=(-1D)

satisfies y(t,) = By, y(t) € S,,, —y(t) € S}, and the differential inequality (38) for suf-
ficiently large t, = t; and sufficiently small ¢ > 0. This fact and Theorem 5 imply
Assertion b).

ii) Assertion a) can be proved analogously as Assertion i), b). If ¢(t) = Ae™*

(for t = 1) then in the case b) we deduce easily that the function
y(t) = Be™?“"" | where 0 <& < min(C,7),
satisfies (38) for sufficiently big B = B,. Thus, Theorem 5 implies b).
iii) If ¢(f) = At™? (B > 1) then the function
Pt) = Be™®1 T LTHRTI) 4 gm0

where 0 < & < min (1/(x — 2), B/(« — 1)) is an element of S, and satisfies (38)
for sufficiently big ¢, = t;, B 2 B; and sufficiently small ¢ < 0. Hence, Assertion iii)
is a consequence of Theorem 5.

3.

The maximum principle can be obtained for the weak solution of a more general
class of the equations (1). Let us consider the nonlinear members a(t, x, u, du[0x)
for i = 0,1,...,N in the equation (1). We assume that the conditions (3) ((3')), (4),
(5), (6) and (9) are fulfilled for a(t, x, &) where ¢ € E¥*!, i = 0, ..., N and the sums
are supposed to range through i = 0, 1, ..., N. (In the condition (6) i, j = 0, 1, ..., N.).
Moreover, we shall suppose that ay(t, x, u, 0u/0x) satisfies

i) sao(t, x,s,n) 2 0 for ne EY, se E',
ii) |a0(t, X, S, O)| < lao(t, X, S, ;1)| for ne EM.

Theorem 9. Let the assumptions of Theorem A, (9), (10), i) and ii) be satisfied. Then

the estimates

u(x, 1) £ max { max (y(¢) + j max vrai f(x, t) dt ;
0sést ¢ xR

t
max uo(x, 0) + f max vrai f(x, 1) dr}
€N

xef? 0 x
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and

0sEst

t
u(x, 1) = min{ min ( *&) + J‘ min vrai f(x, 1) dr) ;
13 xe
t
min uy(x, 0) + J‘
xe

0

min vrai f(x, 1) dr}
xe

hold for the weak solution u(x, t) of (1), (2), where y(£) = max {max uy(x, &); 0}
xe0f2
and y*(¢) = min {min uy(x, &); 0}.
xe0

Proof. The method of the proof is the same as for Theorem 1. We put

N pt . o
*(t,v) = Y Diva;|(t, x,t,t— )drdx
i=0 Jo Jo 0x

for v € W(Q). Due to the conditions (9), i) and ii) we obtain
(1, vI’) < o*(t,v) for r20
and

@*(1,v|,) < @*(t,v) for r=0.

Indeed, the condition (4) implies that a(t, x, s, 0) is an increasing function in s and
hence from i) and ii) we conclude

1 1
J. J.v’ =J. Jvao(t,x,tv,O)dtdxg
0Jo 0Jeo
1 ov
< vag(t,x,v,7— )drdx for r=0.
oJa 0x

Similarly we prove the other inequality. Further, we put

Yt v, u;-4) = O*(t;, 0) + L o = uizs|i, +J vf(x,t;) dx
241, o
for v e W(Q). Analogously as in Lemma 1 we prove
q’*(tia U;, ui-—l) 2 W*(th uil', ui—l)
for

r = max {y(t;); max vraiu;_, + At, max vrai f(x, t;)}
xe xe

and hence by the same argument as in Theorem 1 we prove Theorem 9.
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Corollary (maximum principle). Let the assumptions of Theorem 9 and f(x, t) = 0
be fulfilled. If max vraiu(x,t) 2 0 (min vraiu(x, ) < 0), then (25) takes place
or

or
for the weak solution u(x, t) of (1), (2).

The results obtained can be applied for instance in the following cases.

Examples. 1.

ou ﬁ ai[z (%) g: (ax )} + Io(t, %) go(u) = f(x, 1)

6t

i

where g;(s)e M, fori = 0, 1, ..., N are increasing functions and g (s) € C*(— o, ).
11, x) 2 C > 0 and dl(t, x)/ot, ol (t, x)|0t* are in C(Q) for i = 0, ..., N. (The con-
ditions on smoothness of I{(t, x) and g,(s) are introduced in order that Theorem A
might be applied.)

2. @~12N16 [l(t x)( >}+a0(t,x,u)=f(x,t)

ot

where p = 2k — 1, with k positive integer.

3. @—g‘a—a:(t x,Z)+a0(txu) f(x. 1)

ot =1 0x;

ou ou N/ ou\2\m/2-1
a;(t,x, —)=1(t,x) —[1 + —
( (3x) ( ) 0x; ( igl (axi> )

N
4. a_u—zi (txu(j‘)‘*‘ao(tx,u’ > f(X t)
0x

at  i=1 0x;

(t i Zx) = I{t, x)”x—l(l +u? + Z (au)l)m/z 1

fori =0,...,N, m = 2. (For i = 0 we put du[dx, = u.)

where

0
5. 5—Au+cu[ul“‘2=0 in Q < EV,

u(x,0) = ¢(x), ulpg =0 for 120

where ¢ >0, 1 <a <2 and ¢(x)e C}(Q). The identity u(x,t) =0 holds for
t 21t wheret, = (max le(x)])?~*/c(2 - a).
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