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WEAK STABILITY OF MULTIVALUED DIFFERENTIAL EQUATIONS

PAveL KRBEC, Praha
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I. Introduction. In this paper we give a version of weak stability theorem for
multivalued differential equations of the form

(1) %€ F(t, x)

where F is an upper-semicontinuous mapping.

1I. Notation and basic definitions. Let R" be the Euclidean n-dimensional space,

o its zero element, o(x, y) the Euclidean distance from x to y, Hx” =9(0,x). If 4 is

a subset of R", let o(x, A) = info(x, y). ¢*(A, B) = sup o(x, B) and U(A,z) =
ycA

xeA

= {x e R"| o(x, A) < ¢&}. The set of all compact, convex and nonempty subsets of R"
is denoted by X", the set of all subsets of R" by Q". Given S = R™, then a mapping
F : S — X" is upper-semicontinuous on S if for every y € S and for every ¢ > 0 there
exists a & > 0 such that F(U(y, 6)) = U(F(y), ¢). Let I = <0, T), T > 0. A mapping
F:1 — X" is Borel measurable if its graph {(1, x)e R""" | x € F(t)} is a Borel subset
of I x R". Let F : R™ — X" be upper-semicontinuous, let f : I — R™ be continuous.
Then the composition Fof:I — X" is upper-semicontinuous and therefore its
graph is closed in I x R" — see KUurRATOWSKI [3] p. 187, Theorem 7 and p. 184,
Theorem 1. Let A, A,, ... be subsets of R". Then x € lim A4, if for every ¢ > 0 there
is a value n such that U(x, &) 0 A, + 0 for every k, k = n. See Kuratowski [3].
Let I =<0, T), T> 0 and let F(t)e Q", F(t) nonempty a.e. in I. Let @ be the set
of all point-valued, integrable functions f, f : I » R" with the property f() € F(t) a.e.
in I. Following AUMANN [ 1] we define

LF(:)dt = {J‘,f(t) di|fe d)} :
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This integral has the following properties (see Aumann [1]):

i) if F is Borel measurable and integrally bounded (i.e. if there exists an integrable
function h, h: R — R such that |iA“ < h(t) for all x and almost all ¢ in [ such
that x € F(r)) then {; F() dt is nonempty;

ii) if F(1)is closed for almost all ¢ in I and if F(+) is integrally bounded, then [, F(r) dt
1s compact;

ni) if F,, F,, ... 1s a sequence of set-valued functions that are all Borel measurable
and bounded by the same integrable point-valued function, then

f,m F(r)dt MJ‘IFk(t) dt.

When proving the weak stability theorem we shall use the standard definition of limit
of transfinite sequences of real numbers, see SIERPINSKI [5] p- 390.

I11. Multivalued differential equations. We shall investigate multivalued differential
equations of the form (1), under the following assumptions on the right-hand side F:

a) the mapping F is upper-semicontinuous on R"*!;

b) there exists a constant m such that for each x € R" and almost all t in R and each
veF(1, x) it is ”}” < m;

c) o€ F(t, o) for almost all 7 in R.

A function x(-) is called a solution of equation (1) on the interval I = (T, T},
T, < T,, if it is absolutely continuous on I and if x(t) € F(t, x(1)) a. e. in I. It is well-
known that if F, F :1 x R" — X™ satisfies the assumptions a) and b) then for each
(10, Xo) € R"*! there exists a solution x(-, fo. xo) of equation (1) on the interval
{19, o0) satisfying the initial condition x(t,, 1, x,) = xo. See OLECH [4]. The assump-
tion ¢) implies that o is a solution of equation (1) on (— oo, + o0). This solution will
be called trivial. We shall use the following lemma (proved in Cellina’s work [2]
p. 534):

Lemma 1. Let F:R"™"' — X" be upper-semicontinuous. Then a continuous

Sunction x(+) is a solution of (1) on the interval 1 if and only if for each pair
t,t, el t, <ty it holds

(2) x(t,) — x(t;) eJ.hF(s, x(s)) ds .

IV. Weak stability. Definition 1. The trivial solution of equation (1) is called
weakly stable if for each t, and ¢ > 0 there is a > 0 such that for each y € U(o, d)
there exists a solution x(-, to, y) satisfying |x(1, to, ¥)| < ¢ for all 1, t = 1,,.
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Definition 2. A function V: R"*! - R satisfying the conditions

i) Vis lower-semicontinuous on R"*', i.e.

lim V(r, y) = V(1. x) forevery (t,x)eR""';
(.9~ (£,%)

ii)
inf
feF(1,x) ”;ﬁ‘

o Vit+to, x+1.&+1.py)— V(t,x)

0 T
-0

ot

<0 forall (1,x)eR"!',

is called a weak Liapunov function for equation (l)

Theorem. Let V be a weak Liapunov function for equation (1). Then for every
initial condition (to, x,) there exists a solution x(+, ty, x,) of equation (1) defined
on {1y, +0) such that

V(t, x(1, to, X)) < V(tp, xo) foreacht, te{t, +0).
Corollary. If V is a weak Liapunov function for (1) and if V satisfies the additional
conditions

iii) V(t,0) = o and V(t, -) is continuous at o for each t;
iv) Vis positively definite, i.e. there exists a function ¢ : {0, c0) — <0, o) such that
o(r) > 0 for every r > 0 and V(t, x) 2 (/)(”x“)for all (1, x)e R,

then the trivial solution is weakly stable.
The proof follows from the above theorem by a standard argument.

Proof of the theorem. Let an initial condition (fo, x,) and a positive number T,
T > t,,be given. We shall construct a solution x(s, t,, x,) of (1) with the property

V(to, x0) = V(n, x(n, to, xo) foreachn, ne 1, T).

Let ¢ > 0 be given. By the assumption ii) in Definition 2, for each (1, x)e R"*!
there exists a positive number 7 and vectors &, ¢ e F(r, x) and y such that the
inequalities

(3) t<e, ”y“és and V(t+ 1, x+1(¢+y)—-V(,x)Se.t

are satisfied simultaneously. Let (¢, x) = sup {rl there are ¢ and y such that e
€ F(t, x) and (3) is valid}. Since F(1, x) is compact and V is lower-semicontinuous we
obtain that there exist &(1, x) and y(¢, x) such that

4 &(1, x) e F(1, x)

and such that the inequalities (3) are valid with © = (1, x), & = &(t, x) and y =
= (1, x).
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Now let w; be the ordinal number of the set of all ordinal numbers of classes one
and two, which is ordered according to their magnitude (i.e. w, is the first non-
denumerable ordinal number) and let t*(t, x) = min (z(t, x), T — ). We shall need
the following definition:

Definition 3. Let o be an ordinal number, « < w,, and let W(x) be the set of all
ordinal numbers which are smaller then «. Then a mapping

Z:W(x)u {a} - {t,, T> x R"

is called a generalized sequence (with the length o(Z) = ). The mapping Z:
W(w,) - {te, TY> x R" is called a generalized sequence with the ength w,.

Definition 4. Let .# be the set of all generalized sequences Z with the property
o(Z) < w,, satisfying the following conditions:

1) for g = 0itis Z(B) = (1, Xo);

2) if f is an ordinal number of the 1-st kind, # > 0 and Z(f — 1) = (15, x;-,),
Z(B) = (tp xp) then t; =ty + (15—, xp_y) and x5 = x5y + T(t5_y. Xp-y) .
(&t xp—1) + (tp-15 Xp-1));

3) if B is a number of the 2-nd kind and Z(f) = (15, x4), Z(y) = (1,, x,) for y < f8

then 1, = sup t, and x; = lim x,;
v<p ¥ B

4) if B <y < o(Z) and Z(B) = (1, x;), Z(y) = (1, x,) then t, < t, < T.

ForZ,,Z,e .# wedefine Z, X Z,ifw(Z,) £ o(Z,)and if Z,(B) = Z,(B) for each B,
0<p<z,)

It is easy to see that Z, < Z, holds, Z, £ Z,, Z, £ Z, implies Z, = Z,, and
Z,=XZ7Z,,Z, X Z;implies Z, X Z,, i.e. the relation =< is a partial order relation.

If a set .#,, . #, = M is such that for each Z,,Z, e .#, it is either Z, X Z,
andfor Z, < Z, we shall say that the relation < is a simple ordering on the set .#,.

By means of the generalized sequences we shall construct an ‘“approximate”
solution xZ(+) of equation (1) on the interval (. 1,z,) in the following way. Let
Z e . # and let ¢Z(*) be such that if « is an ordinal number, Z(x) = (t,, x,), t, < T
and 1 € (1,, t,4,), then @%(1) = &(1,, x,) + V(1 X,). It is easy to see that such a func-
tion () exists for every Z, Ze .# and that ¢Z(-) is defined, bounded, and Borel
measurable on the interval t,, t,,z)). By means of ¢7(+) we define the “approximate”
solution x%(+) on {tg, t,z) by

xHt) = xo + '[ ¢X(r)dt .
to

Hence, the function x*(+) is absolutely continuous on {f,, t,z) and it is easy to see
that xX(1,) = x,.



It is not difficult to prove that if .#, is a simply ordered set, /4, < .#, then there
exists a Z* in ./ satisfying Z < Z* for all Ze #, and w(Z*)<w,. Applying Zorn’s
lemma to .# shows that there exists a maximal element Z in .# such that o(Z) =
=1n < o, and Z(n) = (1,, x,). If there were Z(n) = (1,, x,), t, < T, it would follow
that there exists Z, € #, Z X Z,, Z + Z,, in contradiction to the maximality of Z.
Hencet, = T.

Since ¢ is arbitrary, it follows that for every positive integer n there exists a gener-
alized sequence Z, such that both functions ¢77,(+) and x7;,(+) are defined on <t,, T.
Let us write ¢,(+) and x,(+) instead of @7%,(+) and x7;,(+), respectively. Using the
assumption b) concerning the right hand side of equation (1) we conclude that the
functions x,,('), n =1,2,... are equibounded and equicontinuous. Hence, there
exists a subsequence (let us denote it again by {x,(+)}) which is uniformly convergent
on {1y, T)>. We shall show that x*(r) = lim x,() is a solution of equation (1) on

n-> o

{ty, T. In virtue of Lemma 1 it is sufficient to prove that the relation
12

(5) x*(1,) — x*(1y) c—.f F(t, x*(1) dt
151

holds for every t,t,,t, < t;, < t, £ T. To prove (5) we shall follow Cellina’s idea,
see [2]. The set {;* F(1, x*(t)) dt is compact, hence it is sufficient to prove

0 (x,,(tz) ~ oty -[ :TF(S, () ds) S0

for n —» oo or, equivalently,

12 12
Y <J @(s) ds , J F(s, x*(s)) ds) -0
t 1
for n - oo.

Let us denote {z| z = ¢,(1) — v, ve F(t, x*(1))} by @,(t) — F(t, x*(t)). Then we
have (as a consequence of the definition of Aumann’s integral)

0 ( j ::«o"(s) ds, j :F(n x*() ds) o ( j :«p”(s) — F(s. x*(s)) ds) ‘

Now let 7€ t,, t,) be fixed. The mapping F(-) is upper-semicontinuous, hence, for
every &, > 0 there exists a 6 > 0 such that

(6) F(t, U(x*(z), 8)) = U(F(, x*(1)), &) -

As a consequence of the definition of x,(*) we have that for every positive integer n
there exists an « such that te {1}, 17 ), where 7}, 1, , are such that Z,(a)=(1}, x,(13)),

a

Z,(x + 1) = (17,1, x,(135,)) and (3) implies that 17, , — t; < 1/n. The above argu-
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ment together with the assumption b) concerning the right hand side of equation (1)

yields
I [ | 1
- |H\ @u(s) dsl < - <m + ) .
I en | n n

It follows that there exists a positive integer n, such that for every n, n = n, the
inequalities

X"(T) -

“n\‘a

1
~ <
n

x(e) = x(13)

=

)

IS IS

Z) ‘ ,”(‘L’) - \*(T)E! < :

hold simultaneously.

x,(1h) — x*(‘c)” < 6/2 and we have

o) = o ")eU(F(t (1), "7>c

v <F(U(r, (1)), 9), '_‘1> cu <F(t, (), 1 + "1>

Consequently o € lim (¢,(t) — F(r. x*(t))) and using the property iii) of Aumann’s
integral we have

0 eJﬂlli_m (@u(s) — F(s, x*(s))) ds = imjlu(q),,(s) — F(s, x(s))) ds .

(It is easy to prove that the functions ¢,(+) — F(-,x*(+)), n = 1,2,... are Borel
measurable.) So we have

0 <0, 'rz((p,,(s) — F(s, x*(s))) ds) -0 for n— o

and hence, x*(+) is a solution of equation (1) on <1y, T). Let ¢ be fixed, 1 € {ty, T>.
From the construction of x,(+) and from (3) it follows that in every neighbourhood
U(t, 1/n) there exists a point # such that (73, x3) = Z,(«) and

1

V(ty x,(17) — V(tg, xo) =~ T.
n

But x,(+) = x*(*) uniformly and 1, — 1, hence x,(f;) - x*(¢) and the lower-semi-
continuity of V implies

V(t, x*(1)) — V(to, xo) < lim (V(1y, x,(13)) — V(to, X)) < lim

n— o n—o N

The solution x*(+) can be constructed by the same method on the intervals (T, 2T,
{2T, 3T, ... which completes the proof.
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Note. For a similar theorem concerning ordinary differential equations with con-
tinuous right-hand sides see YORKE [6].
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