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INTRODUCTION

The purpose of this paper is to investigate the uniform exponential stability and
the uniform stability at constantly acting disturbances of an w-periodic solution u,
of the problem (9’), given by the equation

(0,1 Uy — Uy = F(t, x,u,u,u,e), 120, xed0,n)

(e being a small parameter), by one of the boundary conditions

(0,2) u(t,0) = u(t,m) =0,
(0,3) u (1, 0) + oo u(t,0) = u(t,n) =0,
(0,4) u (1, 0) + oo u(t, 0) = u(t, n) + o, u(t, ) =0

(where ap, 2, € E; and t 2 0) and by the condition of periodicity,
(0,5) u(t + o, x) =u(t,x), 120, xe0,n).

In § 1 the problem of the uniform exponential stability and the uniform stability
at constantly acting disturbances of the solution u is transformed to the problem of
the uniform exponential stability of the zero solution of an equation of the type

Uy — Uge = alt, x, &) u + bit, x, e)u, + c(t, x, &) u,
with the boundary conditions (0,2),
(0,6) u(t,0) =u(t,m) =0, =0
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or
(0,7) ut,0) =uft,n1) =0, t=0.

Then the second Ljapunov method is used. It enables us to obtain sufficient conditions
for the uniform exponential stability and the uniform stability at constantly acting

disturbances of the solution u, in § 2. However, we deal with somewhat more special
forms of the right-hand side of the equation (0,1) in § 2.

1. FUNDAMENTAL DEFINITIONS AND THEOREMS

Let the following conditions be fulfilled:

(<) The function F(1, x, u, u,, u,, ¢) together with its partial derivatives

0F O0F O0F OF 0*F 0*F 0*F 0*F
) D) D) ) ) ) Y D]
¢t 0x OJu; Oe Ou;0u; Ou; 0t Ou;0x  Ou; 0k
OF OF

Ou; Ou; 0x  Ou; Ouj Ouy

(i,jo k =1,2,3)

is defined and continuous in all variables for 1 > 0, x€<0, n), (u, u, u,) € Ej,
£€<0, ¢, (¢; > 0). (We denote (u, u, u,) = (u,, u,, us). We shall use this notation
thoughout the paper if it is convenient.)

(5) F(t + o, x, u,u, uy, &) = F(t, x, u, u, uy, €)
everywhere in its domain of definition.
(3) F(1,0,0,0, u, &) = F(t, 1,0,0, u,, e) = 0

fort 2 0, u, e E,, ¢€<0, &) in the case of the boundary conditions (0,2), F(1, m, 0,
0,u,¢)=0fort20, uekE,, ¢€{0,¢) in the case of the boundary conditions
(0,3).

We shall sometimes use also the notation (2[(x); (0,2)]) (and similar) instead
of (#), if it is important to point out that we deal with an equation (*) that is a special
case of (0,1) and with the boundary conditions (0,2). If only the boundary conditions
or only the equation are important, we shall denote the problem respectively by
(2[5(0,2)]) or (Z[(*): -]); it is then understood that the equation or, respectively,
the boundary conditions remain the same in the whole consideration, as long as the
notation is used.

We shall denote by (.#) the problem arising from () by omitting the condition
of periodicity (0,5). We shall write (.#[(); (0,2)]), (.#/[(*); *]). etc. sometimes, as
in the case of (2).
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In the sequel we consider only those solutions of (#) or (.#) which are continuous
representants of elements of the space

C(<0, o0); W5((0, 1)) N C'(<0, a0); W3 ((0, 7)) N C*(<0, 0); W,((0, 7)) .

Let u be a function of variables t = 0, x € (0, 7). Then we denote by u(t, *) the
function resulting from u if ¢ is fixed.
Put

(1,1) fu(e, )|, = {Jt:[uz(l. ..V) + ui(t, x)] dx}m ’
(1,2) ||u(t, ). = {J:[uz(t, xX) + u(t, x) + ug(t, x) + up(t, x) + up(t, x)] dx}”Z

Definition 1,1. We say that a solution u, of the problem (£) is uniformly expo-
nentially stable with respect to the norm H . ”2 if there exist 0 > 0, K, > 0, K, > 0
such that

(1,3) Ju(z, ) = wole, *)]» < 6 =

= “u(l. ) — w1, )||2 < K,Hu(r, °) = uy(t, )HZ e Kl oy > g

for every solution u of the problem (.#) and for all T > 0.
Let us denote

(1,4) Uy — g, = F(t, x,u,up uy,e) + G(t, x, u, u, uy, €).

Definition 1,2. We say that a solution u, of the problem (2) is uniformly stable at
constantly acting disturbances with respect to the norm Hlll if to an arbitrarily
chosen n > 0 there exist , > 0, J, > 0 such that

(1,5) {u(z, +) —uo(z, )HZ <&y, |Gt - u up u, r)”, <9,
for all ¢+ = 1, satisfying the inequality
fu(t, *) —uo(t, )|, < n} = Ju(t, ) —uo(t, )|, <n forall 1=+

for each function G fulfilling («,) and (#/;), for every solution u of (.Z[(1,4): -])
and for all 7 = 0. (HG(I, U, Uy, Uy, 8)“] means in fact HG(t, sou(t, o), ult, 0),
u,(t, -), £)|| 1, but we shall use the shorter notation |G(t, *, u, u, u,, )|y in the sequel.)

Throughout the paper we shall deal with the stability with respect to the norm |- |,
only, that is why we shall no more repeat it.

The following lemma enables us to transform the problem of stability of a solu-
tion u, of (2) to the problem of stability of a certain solution v, of a problem given
by an equation that differs from (0,1) and by the boundary conditions (0,2), (0,6)
or (0,7).
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Lemma 1,1. Let u be a solution of (.#), y(x) a function of the class C* for x €
€ <0, ) and let

(1.6) u(t, x) = u(t, x). e*™ for 120,
Then it holds:

xe0,n).

(i) The function v satisfies the equation

(]*7) Uyp = Uy = [(Z,)Z - X}/] v = 21,1’1‘ +
+ e F(t, x, e v, e *v, —y'e "o + e "v,, ¢) ;
(i) u satisfies (0,2) if and only if v satisfies (0,2).
(iii) If #'(0) = ay. then u satisfies (0,3) if and only if v satisfies (0,6).
(iv) If 7' (0) = g, ¥'(n) = a,, then u satisfies (0,4) if and only if v satisfies (0,7)

(v) The solution u, of (2[(0,1); (0,2)]) (respectively (2[(0,1); (0,3)]), respectively
(2[(0,1); (0,4)])) is uniformly exponentially stable if and only if the solution

v = uge®™ of (2[(1,7); (0,2)]) (respectively (2[(1,7); (0,6)]), respectively
(2[(1,7); (0,7)])) is uniformly exponentially stable.

(vi) The same proposition as (v) holds for the uniform stability at constantly acting
disturbances.

Thus we can deal only with the solution v, of (2[(1,7); -]) with the boundary
conditions (0,2), (0,6) or (0,7).

Let us denote by F'(t, x, v, v,, v,, ) the right-hand side of the equation (1,7)

OF’
a(t, x, ¢) = . (t, x, vo. Vors Voxs €),  b(1, X, 8) = i— (1, x, vo, Vor, Voxs €)
ov )

UV,

-

ot, x, 8) = (EF— (1, x, v, Vor Voxs €) s diflt, x, v, 0,5 U, €) =

~2 ’
”)_[ J - mgm (1, x, v + aPv, vo, + aPv,, vo, + tPv,, &) B dadf .
0 OV

(i,j = 1,2, 3 and 4;; is the Kronecker symbol),

(1.8)

Uy — Uy = au + bu, + cu, .

We shall suppose that

(1.9) % (0) = 7'(r) = 0 if we deal with (0,2),
| x(n) =0 if we deal with (0,6) .
Then F’ fulfils («,) (with (0,6) considered instead of (0,3)).
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Theorem 1,1. Let the zero solution of (#[(1,8); -]) be uniformly exponentially
stable. Then the solution vy of (2[(1,7); *]) is uniformly stable at constantly acting
disturbances.

Proof. L. First we shall prove that the solution v, of (2[(1,10); (0,2)]), where

(1,10) Vo — Uee = F'(t, X, 09, 0gs 0os €) + a(t, x, &) (v — o) +

+ b(t, x, &) (v, — vo,) + ¢(t, x, &) (v, — voy),

is uniformly stable at constantly acting disturbances.

Let n > 0 be given. We shall look for d,, 5, > 0 satisfying all conditions in
Definition 1,2, but with the equation

(1,10y Uy — Uy, = F'(t, x, 09, Vg1 Voys €) + a(t, x, &) (u — vg) +

+ b(t, x,€) (u, — vo,) + ¢(t, x, &) (uy — vo,) + G(t, x, u, u, ug, €)

instead of (1,4).

It follows immediately from the uniform exponential stability of the zero solution
of (.#[(1.8); (0,2)]) that the solution v, of (2[(1,10); (0,2)]) is also uniformly expo-
nentially stable, i.e. there exist & > 0, K; > 0 and K, > 0 such that (1,3) (with v,
and (.#[(1,10); (0,2)]) instead of u, and (.#)) holds.

We can suppose that 1 < K. Let us choose §, = n/2K,. Let u be a solution of
(«#[(1,10)'; (0,2)]) such that “u(‘r, ) = vy(7, *)|2 < 6;, where T = 0. If the inequality
t’u(t, -) — vt )H2 < 0, does not hold for all ¢ = 7, there exists T > 0 such that
(T, ) = vo(T. )| = 84, [Ju(t, +) = vo(t, *)|, < &, for all te(z, T).

Let v be such a solution of (.#[(1,10): (0.2)]) that o(T. x) = u(T, x), v(T, x) =
= u,(T, x) for all x € <0, ). Let us continue u, v and all members on the right-hand
sides of the equations (1,10)" and (1,10) on the whole x-axis as odd and 2n-periodic
functions in the variable x. Then

x+t—3

u(t, x) — oft, x) = ; J‘l‘ f ) {a(9, 0, ¢) [u(9, 0) — v(%,0)] +
+ b(9, 0, ¢) [u(9, 6) — v(3, 0)] + (9, 0, ¢) [u 9, o) — v (3 0)] +
+ G(9, 0, u(9, 6), u(9, 0), u (9, 0), &)} do d9

for all t = T. By standard but laborious calculations it may be proved that there
exists K > 0 so that

t
(L) (e, -) = oft, )3 < K(t - T)j (u(®. ) = o, )2 +
T
+ HG(S, U, U, Uy, P)Hf} dy for t=T.
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Lemma 1,2. (FiLATOV [2], p. 78.) Let @, ¥, f be real continuous functions defined
on {a, by, f(t) > 0 on {a, b) and

o(1) < Y1) + th(s) o(s)ds for teda,bd.
Then

(1) = (1) + j 1)U exp [ j 1) ds] d.
Using this lemma, we can derive from (1,11) by easy calculations the inequality
e ) = oV S K= )4 ][00, 00
and this yields 1
(1.12) Juts =) = wolt, )3 = 2ot ) = wolt, )|

+ 2[K(t = T) + 17 J‘ 1G(%, . u,upuge)|idy, 1= T.
T

I+

Suppose that |G(9, *, u, u, u,. )|, < d, for all =T such that [u(9,-)—
— vo(H )"z < 5 and let the last inequality hold for all 3 € T, t). Then we have

(1,13) lu(t, ©) = vo(t, )[3 = 2K3sTe 2071 4
+2(t — T)[K(t — T) + X" 03 .
It may be proved that there exist 1, > 0 and C > 0 (independent of #) so that
(1.14) 6, = C6; = (C]2Ky)n,
2Kie 20 4 of [Kty + X0 C? < 1,
2Kie 2K 4 25[Ks + 7] € < 4K} for se <0, t,) .

Thus the estimate |[u(9, *) — vo(%, +)|, < # must hold for all 3& (T, T + t,. But
it follows from (1,13) and (1,14) that [u(T + to, *) — ve(T + 1o, *)|2< 9, hence we
can prove that ||u(.9, ) = vo(% *)|2 < nfor 3e T+ t5, T+ 2ty in the same way.
Successively we find that the inequality |u(9, ) = vo(9, *)|, < n holds for all
3=>T

II. We can prove that the solution v, has the same property as in part I similarly
if we deal with the boundary conditions (0,6) (or (0,7)). The only essential differences
are:
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a) We continue u, v and all members on the right-hand sides of the equations
(1,10)" and (1,10) as even, 4n-periodic functions in the variable x for x € E; such that
u(t, x) = —u(t, 2n — x); the function v and all members on the right-hand sides of
(1,10)" and (1,10) satisfy the same equality (in the case of the boundary conditions (0,7)
we continue all functions mentioned above as even, 2n-periodic functions in the
variable x for x € E).

b) We can derive the inequality

lu(t. +) = ole, )2 < K(t - T)3Jq ((®, +) — oo, )2 +
T
+|G(9, - u, up uy, 8)||7 d9
instead of (1,11) in the case of the boundary conditions (0,7).
II1. We shall prove the uniform stability at constantly acting disturbances of the

solution v, of (#[1,7); -]) now.
Let us denote

(1,7y Uy — U = F'(t, x,u,up ug, 8) + Gt x, u, u, uy, )
where G’ satisfies («,) and (o/3).
The right-hand side of (1,7)’ can be written in the form

F(t, X, u,u, uy, &) + G'(t, x, u, up, uy, ) =
= F'(1, x, vo, Vop, Voxs &) + alt, x, &) (u — vo) + b(t, x, &) (u, — vo,) +
3
+ C(t, X, B) (ux - on) + Z dij(t9 X, U, Uy, Uy, 8) (ui - U()i) (uj - vOi) +
=1

+ G'(t, x, u, up uy, €).
Put

ij=

3
G(t, x, u, up, uy, €) = Zldij(t’ X, U, Uy, Uy, 8) (U; = vo;) (u; — voj) +
+ G'(t, x, u, uy, uy €).

It may be proved that if u is a solution of (.#[(1,7)’; -]) such that |u(t, +) —
— vo(t, )“2 < n’, then there exists K’ > 0 (depending on %) so that

3
(1’15) “ Zld‘f(tv Ty Uy Uy, Uy, 8) (ui - UO,-) (ui - UOJ')“‘ = Klllu(t’ ') - UO(" )ll% .
1,]=
We can find n > 0, n £ 5’ and 65 > 0 so that

K'n? + 95 < (C[2K,)n



where C and K, are the constants from (1,14). There exists 6, > 0 corresponding
to n as in part I of this proof.

Let u solve (.#[(1,7); +]) and let |u(z, *) — vo(t, *)|, < &, for any t 2 0 and
1G(1, *, u, uy, uy, 1;)“1 < &, for t = t such that |u(t, *) — vo(t, )”2 < 1. Because
n<n, it is |Gt u u,ug )|, <03 also for all += 1 such that [fu(t, +) —
— vo(t, *)|2 < n. Then these t 2 t satisfy the inequality

1G(t, . uyup ug e)|, < K'p> + 85 < (C2K,)n =9, .

Using the results of parts I and II, we have the estimate ”u(r, “) — vt )HZ <n<vy
for all t = t. QED. ‘

Theorem 1,2. Let the zero solution of (M[(1,8); -]) be uniformly exponentially
stable. Then the solution vy of (2[(1,7); -]) is uniformly exponentially stable, too.

Proof. Writing the solutions v of (.#[(1,7); -]) in the form v = vy + u with u
being a solution of (.#[(1,16); -]), where

(1.16) Uy — Uy = alt, x, e)u + b(t, x, &) u, + c(t, x, &) u, +

N\ 2 ; X 2
+dyy (1 x u, ug g e)u® + dy(t, x, uy ug ug e)uu, + .+ daa(t x, uy Uy, g, g) Ul

it can be shown that the uniform exponential stability of v, is equivalent to the same
property of the zero solution of (.#[(1,16); -]).

Hence it suffices to prove that the zero solution of (.#[(1,16); -]) is uniformly
exponentially stable.

Let us continue all solutions of (.#[1,8); +]), (.#[(1,16); -]) and the right-hand
sides of (1,8) and (1,16) on the whole x-axis in accordance with the boundary con-
ditions in the same way as in the proof of Theorem 1,1 in the case of (.#[(1,10); -]),
(#[(1,10)’; -], (1,10) and (1,10).

The zero solution of (.#[(1,8); -]) is uniformly exponentially stable, i.e. there
exist & > 0, K; > 0, K, > 0 so that

L7y

for every solution v of (.#[(1,8); -]) and all = 2 0. (In fact, it follows from the
linearity of the equation (1,8) that 6 may be any positive number here.)
Let us choose 1€ (0, K,) and put

(1,18) o(t, x) = e* o1, x) .

o(t, ), < o= |oft, *)|| £ Kyfolr, )| e, 12

We can easily find that v is a solution of (1,8) if and only if # solves the equation

(1,19) T — Uey = [a(t, x, &) — Ab(1, x, €) — 2*] ¢ +
+ [b(t, x, &) + 24] 5, + c(t, x, &) T, .
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There exist constants C, C, > 0 such that all functions v, & fulfilling (1,18)
satisfy the inequality

(1200 a2 5 e Hal s 5 e e 120,

Hence if @ is a solution of (.#[(1,19); +]), it holds

(1,21) [i(z, )], < —-~——e”=>|‘v(t )2

IIA

= KiGlix, +)

sexp[—(K, = 2)(t —1)],

Similarly if @(t, x) = e*" u(t, x), then u is a solution of (1,16) if and only if & is
a solution of the equation

A
v

0, t

v

T.

(1,22) iy — iy = [a(t, x, &) — Ab(t, x, &) — 2*] it +
+ [b(t, x, &) + 2] @, + o1, x, €) i, +
e Mdy — Adyy + Xy, u* + [dy, — 2Ad,,] i, +
+ [dys — Adys) i, + dyyii; + dysitii, + dyyis),

where d;; = d;(t, x, e" i, e *(u1, — Aii), e *i,, ) for i,j = 1,2, 3.
1 Ly t x

Let us denote @ = a — Ab — A*, b = b + 24, ¢ = ¢. Let T be an arbitrary non-
negative number and let 3, @i be solutions of (.#[(1,19); *]), (.#[(1,22); -]) such that

(1,23) (T, x) =a(T, x), 3(T.x) =i T, x), xe0,n).

Then # and @ satisfy the integro-differential equation

(1, x) — (8, x) = j j a0, o) [i(9, o) — (9, 0)] +

149
+ b9, 0) [@(9, 6) — 59, 0)] + &3, 0) [@(9, 0) — T3, 0)] +
+ e Md,, = Ad,y + 22dy,] 039, 0) + [dyy — 22dy,] @(9, ) @(9, 6) +
+ [diy — Adys] #(9, 0) i (9, 0) + dy, (9, 0) +
+ dyy @9, 6) 4 (9, 0) + dyy 49, 0)]} do dY,

where d;; = d,(9, o, e ¥, e~ **(ii, — 2dl), e **il, ¢) for i,j = 1,2, 3 here.

It can be proved by similar calculations as in the case of the inequality (1,11) that
if we deal with the boundary conditions (0,2) or (0,6), there exists a constant k > 0
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so that the following estimate holds:

I+

(20 it ) = e ) 5 k=) [ (a0, ) - 9.
b [dy (8, - e, e i, — Ad), e i, €) —
— 2d (9, -, e M, e (i, — Ad), e i, €) +
+ 22dy (9, -, e M, e M, — Adl), e M, )] B39, 1) + ..
o dys(9, - e M, e M d, — Adl), e M, e) (9, )| 1) A

A similar inequality may be derived also in the case of the boundary conditions (0,7).
Nonetheless, in the sequel we shall use (1,24) only, because the rest of the proof is
almost the same for the boundary conditions (0,7).

If we restrict ourselves to such ¢ = T that for all 9 € (T, ) it holds [[a(9, -)|, <
< Re** (where R is a positive constant, large enough) and if we use (1,24), we get

la(r, ) — #(1. )

BYCER

t

S K(t - T)J‘ {as, ) = a9, )3 + e 2**a(9, +)
.

where K is a positive constant depending on R. Using Lemma 1,2 we can derive

Ja(e. -) = &(t, -)

22 K(— T)(1 + exp [K(t - T)z])f'e‘““”ﬁ(-'% SRR

T

(125) Jate, -)

+2K(1 — T) (1 + exp [K(t — T)]) J t.e~2;.9

2= 2 ) +

(o, )3 9.

Further, let T be an arbitrary nonnegative number and let us deal with the solutions ¥
of (#[(1,19): *]) and i of (.#[(1,22); -]) satisfying

(1,26) i(t, x) = o(t, x), @t,x) =0r,x), xed0, ),

(127) 0+ (e, ) = [ate, )

3 < ™",
The constants K, C, can be surely chosen so that
(1,28) 2K,C, > 1.

We want to prove that if & > 0 is sufficiently small, then
(1.29) [a(e, ) < 2K, Colla(e, ), t=r.
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Let us suppose that this is not true, i.e. that there exists t, > 7 such that

(1.30 fitt0. ) = 2K, Clie. ).
(131 fit, s < [ Yo e Cate).
There exists » > 0 such that

(1.32) (V2 K\ exp [ (K, — )] < 1.

Firstly, let us suppose that 1o € (7, © + 2r). Using the relations (1,21), (1,25),
(1.27), (1,30) and (1,31) we obtain

(o, )z = K, Caflae, )[2)* = 2[i(to, )3 +

# 2Ko = )1+ exp[K(o — ) [ a3, )4 49 =

< 2K{C3fi(z, +)|| 3 + 4rK(1 + exp (42K)) (2K, C, |Jii(x, -)Hz)“J’ e 2 dy .

T

Thus, we have
I < 16rK(1 + exp (4°K)) (C,K,)? |z, -)|3 % e M,

$2 24 2
(1,33) 1 < 4rK(1 + exp (4r°K)) o™ }e““‘ = 4rK(1 + exp (4r’K)) Cil,;
) A

v2
1

Secondly, let us suppose that t, € {(t + 2r, o). Then t, can be expressed in the
form t, = © + rn + p, where p e {r, 2r) and n is a natural number.

Let #,, be the function of variables ¢, x defined on {t + rn, ) x <0, ©) which is
a solution of (.#[(1,19); -]) on its domain of definition and satisfies

(1,34) bt + rn, x) =it + rn, x),

but + rn, x) =i (v + rn,x), xe<0,n).
Using the inequality
JaGe + )]s < 2K Caffite N < 2
we have with help of (1,21) and (1,34)
[o(t, )2 £ KiCaoa + v, <)y exp [—(Ky — 2) (t — 1 — rn)], t Z ¢ + rn,
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hence

(1,35)

t=21+4+ rn.

In virtue of (1,25) we have

fo

(o, )3 = 2[7ulto. )3 + 2Kp(1 + exp(sz))j e a(s, -2 s

ttrn

and using (1,35) we get
[[a(to, 3 = 2K5C3|a(t + rn, )3 exp [-2(K, — ) p] +

to
+2Kp(1 + exp (Kp?) f e~ 289a(9, )[4 do .

t+rn

Since r = p, it is in virtue of (1,32):

la(to, +)

13 < a(t + rn, I3+

to
+ 2Kp(1l + exp(sz))j e 2 u(9, -)[3 d9,

t+rn

(1,36) la(to. )3 = (e + rn, )3 +
+ 4Kr(1 + exp (4K;‘Z))JW e (9, )3 d9.
thrn
Similarly we prove that
(137) e +ric )3 < Jate + (i = 1), )3 +
+ 4Kr(1 + exp (41<;~2))JM e a9, )5d9, (i=1,...
chr(i-1)

It follows from (1,36) and (1,37) that

fo

(1.38) [(tos )3 = (. )2 + 4Kr(1 + exp (4K %)) f

and by virtue of (1,27), (1,30) and (1,31) we have

>

KiCa|ate )z = fao. )3 < [ )3 +

+ oo
+4Kr(1 + exp (4K7?)) (2K, C, ii(x, -)“g‘f e % dy,

T

X 5 )
(1,39)  4KiC3 — 1 < 16Kr(1 + exp (4Kr2)) K2C2 <-C‘)— ef‘-f) _'; e T,

1 24

(e )2 = KiGolla(e + rn )|y exp [=(Ky = 2) (¢ = = — ra)],

e (9, +)|3 d9
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Now we can choose 6 > 0 so small that neither (1,33) nor (1,39) holds, which
contradicts the assumption of the existence of t, > t satisfying (1,30) and (1,31).
Thus the inequality (1,29) holds.

It follows from (1,20), (1,27) and (1,29) that for every solution u of (.#[(1,16): *])
and allt = 0,

Jue: Na < 50 = ute )]s =

2K,C3

S .)nz e_l(‘—ﬁ’ t g T

i.e. the zero solution of (.#[(1,16); -]) is uniformly exponentially stable. QED.

Now we shall use the second Ljapunov method, which is based on the following
theorem:

Theorem 1,3. Suppose that for t = 0 there exists a functional V(t) on the space
of (w1, w,) such that w, e W3(0, ), w, € W3(0, 7). Assume that if we write V(t) (u(t, ),
uft, +)) = V(t, u) for u fulfilling

(1,40) u € C(<0, o0); W3((0, m))) n C*(<0, 0); WZ((0, 1)) N
N C(K0, o); W5((0, m)),

it holds:
(1,41) there exist a, B > 0 such that
allu(t, )|z = Vit u) < Blu(r, )|
Sor all t 2 0 and u satisfying (1,40),
(1,42) there exists y > 0 such that
dv(e, u)fde < —yllu(t, -)|3
for all t 2 0 and all solutions u of (M[(1,8); +]).

Then the zero solution of (M#[(1,8); -]) is uniformly exponentially stable.
Let us denote (u, u,, Uy, Uy, ty,) = (uy, Uy, uy, uy, us). We shall investigate the

functional ¥(t, u) in the form

(1,43) V(t, u) = Z A,J(t X, &) uu; dx

0 i, j=1

where A;; are functions continuously differentiable with respect to ¢ and x for ¢t = 0,
x € €0, 7r> and w-periodic in the variable t. Let the matrix of coefficients A;; have
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in the case of the boundary conditions (0,2) the form

A(t, x, €), C(x, ), D(x,e), 0, 0
C(x,¢), B(x,¢), 0, 0, 0
(1,44) D(x,g), O, B(x, ¢) + G(x, ¢), E(x,¢), F(x,¢)c(t, x, ¢)
0, 0, E(x, ¢), F(x,¢), 0
0, 0, F(x, &) c(t, x, €), 0, F(x, €)

where the functions A4, B, C, D, E, F, G have all properties of the coefficients
Aift,x,¢) (i,j =1,2,...,5) and ¢ is the function on the right-hand side of the
equation (1,8). Using the fact that if u is a solution of (.#[(1,8); (0,2)]), it satisfies

U1, 0) + (1,0, ) u (1, 0) = u(t, @) + c(t, M, ) u(t, 1) =0, 120

and integrating by parts we can prove that for every solution u of (.Z[(1,8); (0,2)]) it
holds

n 5
(1,45) dv(t, u)/dt = Y Bi(t,x, &) uu;dx

0 i, j=1

where the matrix of the coefficients B;; has the form

A, + 2Ca, A+ Ba+ Cb—- D, Cc— C,+ Ea,,
A+ Ba + Cb — D,, 2C + 2Bb, Bc — B, + Eb,,
(1.46) | Cc — C, + Ea,, Bc — B, + Eb,, —2C — 2E,c + 2Ea,
Fa,, Fb,, Eb + Fa — F.c + G,
0, 0, —E, — Ec + Fe,
Fa,, 0
Fb,, 0
Eb + Fa — F,c + G, —E, — Ec + Fc,|.
2E + 2Fb, Fe — F,
Fe — F,, —2E

Similarly, let us choose the matrix (4;;); j=,. s as in (1,44), only put D(x, ¢) = 0
in the case of the boundary conditions (0,6) or (0,7). Then, by means of integration
by parts and using the boundary conditions, we can find that if u is a solution of
(«[(1,8); (0,6)]) or (.#[(1,8); (0,7)]), d¥(t, x)/dx has the form (1,45), where the
matrix (B;;); j=1,....s is the same as (1,46), only with D.(x, ¢) = 0.

It is quite clear that if it exist a positive definite matrix (Af(t, x, €)); j=1....
a negative definite matrix (B;(, x, €)); ;=5 so that all coefficients 4%, B; (i, j =

401



= 1,...,5) are continuous in all variables and w-periodic in the variable ¢ and if

n 5 n 5
(1,47 At x, e)uu; dx = Y AT(t, x, &) uu; dx,
1y J J J
0 =1 0 =1
n 5 1 5
1,48 Bii(t, x, e)uu; dx < BY(t, x, &) uu; dx
J J J J
0 =1 0 Q=1

for every solution u of (.#[(1,8); +]), then the functional V(t, u) satisfies the conditions
(1,41) and (1.,42), i.e. the zero solution of (.#[(1,8); -]) is uniformly exponentially
stable.

Thus we shall investigate the conditions under which there exist a positive definite
matrix (47); ;= .5 and a negative definite matrix (BJ;); ;. s satisfying (1,47) and
(1,48). But we shall deal with some rather more special forms of the right-hand side
of the equation (1,8) and making use of Theorems 1,3, 1,2, 1,1 and Lemmas 1,3, 1,1,
we shall derive sufficient conditions for the uniform exponential stability and the
uniform stability at constantly acting disturbances of the periodic solution u, of the
problem (#) with rather more special forms of the right-hand side of (0,1), cor-
responding to the right-hand sides of (1,8).

,,,,,

Remark 1,1. We have supposed that (1,9) holds because we used the fact that the
right-hand sides of the equations (1,8), (1,10), (1,10)" and (1,16) satisfied ( .75).
This assumption guaranteed the continuity of functions which had resulted from these
right-hand sides by their continuation on the whole x-axis in the variable x in the way
described in the proofs of Theorems 1,1 and 1,2. Then the solutions of the equations
(1,8), (1,10), (1,10)" and (1,16) satisfied the integro-differential relations, used in
these proofs.

Now we shall show that the condition (1,9) is no more necessary. Assume that the
zero solution of (1,8) is uniformly exponentially stable and that (1,9) does not hold.
Then we can put y(x) = z,(x) + x,(x), where z,, z, are of the class C* on <0, n),
1y satisfies (1,9) and y1(0) = o, in the case of the boundary conditions (0,6). If we
put w(t, x) = u(t, x). e, we can easily find that w solves the equation

(1,49) Wi — W = [(02)> + 15 + a4+ cpa]w + bw, + [205 + ] w,

if and only if u solves (1,8) and that the zero solution of (1,49) is uniformly exponen-
tially stable if and only if the zero solution of (1,8) is uniformly exponentially stable.
If we recall the definition of the coefficients a, b, ¢, we see that the equation (1,49)
may be written in the form

’ ” aF ’ 0F
(1,493) Wi =Wy = [(ll)z — X1 + N (t, X, Ug, Ugys Upxs 8)'_-7.1 (;— (L X,Ug, Upys qu,K)]W +
ou Uy

x

oF , OF
+ — (t~ X, Ugy Ugps Uoxs &) Wy + | =271 + — (t, X, Ugy Uggs Uoxs €) | Wi -
Ju, du
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Now it is seen that we can write (I,49) also in the form (1,8) but we must consider z,
instead of y in the definition of the function F" and hence also of the coefficients a, b, ¢
in the equation (1,8). But y, satisfies (1,9) and so Theorems 1,1, 1,2 and Lemma 1,1
(again with z, instead of y) imply that the solution u, of () is uniformly exponentially
stable and uniformly stable at constantly acting disturbances.

L] 2. THE UNIFORM EXPONENTIAL STABILITY THEOREMS

Lemma 2,1. Let the functions a,, ¢, be of the class C' on {0, n), let b, by of the
class C' on <0, o0) x <0, n) and a,, b, ¢, of the class C' on <0, ) x <0, ) x
x £0,&,> and let by, a,, b,, ¢, be w-periodic in the variable t.

Then there exists &, > 0 such that for all ¢ € €0, &y the zero solution of (M[(2,1);
(0.2)]). where
(2,1) Uy — Uy = ay(x)u + by(t, x)u, + ¢,(x) u, + eay(t, x, &) u +

+ eby(t, x, &) u, + ec,(t, x, €) u,,

is uniformly exponentially stable, if

(2.1.1) by(t,x) <0,

(2.1.2) a\(x) < [xer?oi%exp ( j :c,(a) da)J exp <- J :c,(o) da)

for te (0, w), xe 0, ).

Proof. We shall investigate the matrix (1,44) in the form

—By(a, + cay)exp [, Cyexp |, O,

Co exp |, Byexp [, O,
(2,1,3) 0, 0, By exp |,

0, 0, Eon exp (=),

0, 0, Fon(c, + ec,)exp |,
0, 0
0, 0
Eonexp (=), Fon(c, + ec,)exp §
Fonexp |, 0
0, Fonexp |

where £ € <0, £,>, n€(0, 1), exp | = exp ([; ¢,(0) do), exp(—[) = exp (= [§ ¢,(0) do),
By, Co, Ey, F, are positive constants.
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Let us denote m = mm exp (/6 ¢i(0) do) and let 6 € <0, 1). Since every solution u

of (.#[(2.1;(0,2)]) satlsﬁes (0.2), we can use the Rayleigh inequality (see [5]):

(2.2) f :uz(t, %) dx < f :uﬁ(z, x) dx .

Then we get
o

J. {Bo (exp [) u? + 2Eon exp (=) usu + 2Fon(c, + ec,) (exp J) ug,,}dx =
0

= J"{[Bom(l — 0) + Bymd + By(exp | — m)] ui +

+ 2(Eon exp (—[))'/* (Eon exp (=Dy"* uu,, +

+ 2Fon(e, + ec;) expf)'* (Fon(e, + ecy)exp ) uu,,} dx >
2 f {Bom(1 — 8) u® + By[md + exp [ — m]ul — |Eon exp (=)' u? -
0

— |Eon e:xp(—j)l”2 ul — ,Fon(c, + ecy)exp [V ul —
- ,Fon(c, + &c,) exp _[]3/2 ul}dx.

Hence (1,47) holds, where the matrix (4}%), ;_, , has the form

.....

—By(a, + ca,)exp [ + Bym(1 - §), C, exp |,
Coexp |, By exp |,

0,
Bo[mé + exp [ — m] — |Eon exp ( =D|"? = |Fon(e, + ec,) exp 12,

£l

0,

0,
0,
0,
Fonexp | — |Eon exp =DP2 o

0, Fonexp | — |Fon(e, + ec,) exp (IS

S O O
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We can easily find that the form of the matrix (1,46) corresponding to the special
form (2,1,3) of the matrix (1,44) is

(2,1.4) B, = —Bgeay exp | + 2Co(a, + eay)exp |,
By, = By, = Co(b, + eby)exp |,
B3 = By, = Egn(a,, + eay,)exp(—f) + Coecoexp |,

B,y = B, = Fo(a,, +¢ea)expf, Bys=Bs =0,

By, = 2By(b, + eby)exp | + 2Coexp |,

B,y = By, = Egn(b,, + eb,,)exp (=) + Boec, exp |,

Bys = By = Fon(bix + eby)exp |, Bys =Bs, =0,

Byy = —2Coexp | + 2Eqne, (¢, + £¢;)exp (=) +
+ 2Egn(a, + ea,)exp(—{),

Bys =  Byy = Eon(b, + eby)exp (= [) + Fon(a, + eay)exp | —
— Fones(es + sex)exp f

Bys = Bsy = —Egnec exp (—[) + Foneca,exp |,

2Fon(b, + eby)exp | + 2Eqn exp (=),

o)
IN
»

I

Bis = Bsy = Fonepe expj, Bss = —2Egn exp(—j).

It can be found that if u is a solution of (.#[(2,1): (0.2)]), then (1,48) holds with
B, = 2Co(a, + ea,) exp [ — Bgeay, exp | — 2Com(1 — 3) +

+ [Fon(ae + eaz) exp [|'/2 + |Eon(a, . + eas.) exp (= f)| + |Coe, exp f] .
BY, = By, = Co(b, + ¢by)exp [, BYy = B5, =Blu=p* —p* —B* -0,
B}, = 2By(b, + ¢b,)exp | + 2Co exp | + |Fon(b,. + eb, ) exp f|'2 +

+ |Egn(by, + eby ) exp (= )| + |Boec, exp f] .
B}y = B%, = B3, = Bj; = B}s = B5, = 0,
BY; = —2Co(exp [ — m + om) + |Eon(b, + ¢b,)exp (\j) +

+ Fon(a, + eay)exp | — Foney(c, + ec;) exp f|'2 "

+ |Eon(a, . + eay.)exp (= f)| + |Eon(bix + ebay) exp (= )| +

+ |Coec, exp f| + |Boec, exp [| + |Eqnec, exp (—j)l ’

B§4=B:3=B§5=B’53 =0,
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Biy = 2Fon(b, + eby)exp | + 2Eqn exp (= [) + |Fon(a, + ea,.)exp [|** +
+ |[Fon(e,. + ecy)exp [’ + |Eon(b, + eb,)exp (—J) +
+ Fonla, + eay)exp | — Foney(c, + ec,) exp “3/2 + IFOqsvz exp H ,
Bis = Bf, = 0. Bis = —2Egnexp(—[) + |Eonec, exp (= [)| + |Fonec, exp il

The matrix (4};); j=, .5 is positive definite and the matrix (B};), ;- s is negative

ij

definite provided the following inequalities are fulfilled:
AT AT, — AT >0, BBy, —Bi; >0, A, >0, Bi<0 (i=2134,5).

It follows from (2,1,2) that there exists 6 € (0, 1) such that a,(x) < (1 — d).
.exp(—[)m. Hence if ¢ 20, n >0 and Cy/B, > 0 are sufficiently small, then
AT Ay, — AT3 > 0 and BB, — Bf3 > 0. All other required inequalities are
fulfilled for sufficiently small ¢ 2 0, n > 0 and E,/F, > 0.

Hence there exists &, > Osuch that if ¢ € €0, &,), then the zero solution of (.#[(2,1);
(0,2)]) is uniformly exponentially stable. QED.

We can easily prove the following theorem with help of Lemma 2,1 and the results

of § I.
Theorem 2,1. Let the right-hand side of the equation
(2,3) Uy — U = gt x, u,) + a(x)u + c(x)u, + ef (1, x, u, u, ug, €)

satisfy the conditions ( ), ( <Z,), ( o5) and let y(x) be any function of the class C*
on {0, ) such that

~

(2.1.5) g(tx.up) < 0,
ou,
(2.1.6) a(x) — ofx) 1'(x) = x'(x) + 1*(x) <

< exp < - f :c(a) do + 2 }((x)) . min exp ( f :c(o') do -2 X(x))

for 1€ (0, ) and x €0, n).
Then there exists &, > 0 such that for € (0, &) the solution u, of (2[(2,3);
(0,2)]) is uniformly exponentially stable.

Example. The existence of a 2n-periodic solution of the telegraph equation
Uy — Uy, = au + bu, + cu, + &f (1, x, u, u,, u,, ¢

(where a, b, ¢ are constants) with the boundary conditions (0,2) is investigated in [ 1].
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Using Theorem 2,1 we can find that if the right-hand side of this equation satisfies
(), (o£,) and (5), then the 2n-periodic solution is uniformly exponentially stable
if b <0, a — 3¢ < L. It suffices only to choose y(x) = icx in Theorem 2,1.

Lemma 2,2. Let the functions a,, ¢, be of the class C' on 0, n), let ¢, be of the
class C' on <0, my x 0,&,> and a,, b of the class C' on <0, 00) x (0, 1) x
x <0, &,>. Let a,, b be w-periodic in the variable 1.

Then there exists ¢, > 0 such that for all ¢ € (0, &0 the zero solution of (#[(2,4);
(0,2)]). where

(2.4) Uy — Uy, = [ay(x) + say(1, x, )] u + eb(t, X, &) u, +
+ [eq(x) + sea(x, €)] uy s
_is uniformly exponentially stable, if

(2.2.1) b(1,x,0) < 0,

(2.2,2) exp (__J' ¢.(0) do) . min exp (f ¢,(o) da) —a,(x)>0,
0 xel0.n) [
(2,2,3) ay (1, x,0) > 2 [exp <—J ¢y(o) da> . min exp <J ' (o) da) - al(x)] .
0 xe(0,m) 0

. max b(t, x, 0)
xed0,n)
1e{ 0.

Jor 1e€<0,m), xe 0, n).

This lemma can be proved in the same way as Lemma 2,1. That is why we do not
preset all its proof here but only indicate the form of the matrix (].44).

Let us denote exp | = exp [[5 (¢,(6) + &c,(o, €)) do]. exp () =
=exp [ — [ (¢c,(0) + eca(o, €)) do] and let By, Co, Ey, Fo, be positive constants.
Then the matrix (1,44) can be chosen in the special form

—Bg(a; + ea,)exp |, Coeexp |, 0,

Coe exp |, By exp |, 0,
0, 0, Boexp | — Foela, exp | + Foelciexp |,
0, 0, Eoe’ exp (—f),
0, 0, Fo&(c, + ecy)exp |,
0, 0
0 0

Eoe exp (—f), Foe(c, + ec,)exp |
Foe exp |, 0
0, Foe* exp |

Lemma 2.2. enables us to derive:
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Theorem 2,2. Let the right-hand side of the equation
(2,5) Uy — uy, = ef(t, x, u, u, &) + ec(x, &) u,

satisfy the conditions (o ,), (), (o) and let y(x) be any function of the class C*
on €0, ) such that

Y
(2.2,4) = (1, x, g, g, 0) < 0,
du, :
(2,2,5) exp (2 x(x)) . mm cxp( 2 7(x) + 2(x) = 2*(x) > 0,

0? . ” '
(2,2,6) Eu—o—tf(t, X, U, Ug,, 0) > 2[exp (2 x(x)). r?om>exp(—2 x(x)) + 7' (x) = 1*(x)] -

. max - S, x, ug, g, 0)
1e¢0 0> OU,
xe{0.n)
for te€<0, w), x <0, n).
Then there exists ¢, > 0 such that for ¢€(0, &,y the solution uy of (2[(2,5);
(0,2)]) is uniformly exponentially stable.

Remark 2,1. It is seen that the assertion of Theorem 2,2 holds if

.,

— f(t. x, ug, ug,, 0) <O,

du,
(‘12
—— f(t, x, ug, g, 0) > 2 max — f(t X, Ug, Ugy 0)
cu ot IL/O(:)\(Mr

xe{0,m)

for t € (0, w), x € €0, m). It suffices to choose y(x) = 0 in Theorem 2,2.

In the conclusion we shall write theorems analogous to Theorems 2,1 and 2,2,
but dealing with the boundary conditions (0,3) and (0,4) instead of (0,2). These
theorems could be proved similarly as Theorems 2,1 and 2,2, only without the use of
the Rayleigh inequality [§ u?(t, x)dx < [§ uZ(t, x) dx. Nevertheless, we can use
instead the inequality 4§ u®(t, x)dx < [§ul(t, x) dx (see [5]) for solutions u of
the equations corresponding to (2,1) and (2,4) in the case of the boundary conditions
(0.3).

Theorem 2,3. Let the right-hand side of (2,3) satisfy (Z,), («7,), (45) and let y(x)
be any function of the class C* on {0, )y such that y'(0) = a,, (2,1,5) holds and

a(x) = o(x) 1'(x) = 2"(x) + 1*(x) <
< Jexp < —J:c(a) do +2 )((x)) . min exp ( f :c(a) do — 2 X(x))

for t€<0, ), xe 0, n).
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Then there exists &y > 0 such that for g€ 0, &, the solution uy of (2[(2,3);
(0,3)]) is uniformly exponentially stable.

Theorem 2,4. Let the right-hand side of the equation (2,5) satisfy the conditions
(,), (7,), (#3) and let y(x) be any function of the class C* on <0, n) such that
%'(0) = a,. Let (2,2,4) and (2,2,5) hold and let

’)2 g M ”, ’
~~(~v-—; F(t, x, ug, ug,, 0) > 2[4 exp (2x(x)) . min exp (=2 x(x)) + x"(x) — ¥*(x)] -
du ot xe<0, 1>
. max 0
te{0.m) T— f(t! X, Ugy Ugys 0)

xe0,n) OU,

for 1€<0, w), xe<0, n).

Then there exists &y > 0 such that for ¢€ (0, g, the solution u, of (.?’[(2,5);
(0,3)]) is uniformly exponentially stable.

Theorem 2,5. Let the right-hand side of (2,3) satisfy (), (), («;) and let
x(x) be any function of the class C* on <0, ) such that y'(0) = a2y, ¥'(n) = 2,
(2,1,5) holds and

a(x) — c(x) 1'(x) = £"(x) + ¥*(x) <0

Jor t€<0, w), xe 0, n).

Then there exists &y > 0 such that for ¢€<0, &) the solution u, of (2[(2,3);
(0,4)]) is uniformly exponentially stable.

Theorem 2,6. Let the right-hand side of the equation (2,5) satisfy the conditions
(o2,), (), (#3) and let y(x) be any function of the class C* on <0, ) such that
7' (0) = g, x'(n) = o, Let (2,2,4) hold and

x'(x) = x*(x) >0,

2 P
0 St x, ug, ug, 0) > 2[1"(x) — x'*(x)] . max < S(t, x, ug, ugy, 0)
du Ot Iei%,w; Ju,
Xe ,

for 1€<0, w), xe0, ).

Then there exists &, > 0 such that for ¢€(0, &0y the solution u, of (2[(2,5);
(0,4)]) is uniformly exponentially stable.

Remark 2,2. If we use Theorem 1,1; we immediately conclude that under the as-
sumptions of Theorems 2,1, ..., 2,6 the solution u, of the corresponding special form
of (2) is uniformly stable at constantly acting disturbances, too.
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