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THE COMMUTING OF COREFLECTORS IN UNIFORM
SPACES WITH COMPLETION

ANTHONY W. HAGER, Middletown and MicHAEL D. RIcEg, Fairfax

(Received March 29, 1973)

In the category of uniform spaces and uniformly continuous maps, let % be
a coreflective subcategory with functor ¢, # an epireflective subcategory with functor r
for which each reflection map is an embedding. For example, # can be complete
spaces I', with r the completion operator y; or # can be the “a-complete” spaces
defined in § 2. We consider the question of when rc¢ = cr occurs. We give some simple
conditions for equality, and show how, under certain hypotheses, the categories and
functors can be modified to achieve commuting. The constructs seem of interest.

1. Reflection and coreflection. We shail work in the category % of separated
uniform spaces and uniformly continuous maps. (The definitions and construction
below can be given in more general categories, but we omit discussion of this.)

The subcategory @ is coreflective if each object U € % has a %-coreflection, i.e.,
there is U «“cU, cU € ¥, such that each U « C, C € ¥, factors uniquely through
¢y - ¢y is called the coreflection map. We shall abuse terminology by saying things
like *“The coreflection (%, ¢)”. The definition of a reflection (%, r) is dual. One says
“epi-reflection” if each reflection map is epic (i.e., has dense image). We suppose
that every subcategory is neither @ nor {0}.

The following useful facts are due to KENNISON [8a]. (See [4] for generalization
and further discussion.) The subcategory % is coreflective iff ¢ is closed under sums
and quotients; each coreflection map is one-to-one and onto. (The latter permits
this interpretation of the coreflection uX «“* cuX : ¢,y is the identity on X, and cu
is the coarsest ¥-uniformity finer than p.) The subcategory # is epi-reflective iff #
is closed under products and closed subspaces.

The standard examples of coreflective categories are fine spaces and uniformly
discrete spaces. Actually, % abounds with interesting examples; see [2c, e], [7],
[9b].

The usual example of an epi-reflection is (I, y), where I' is complete spaces, and y
is completion. Others are precompact spaces, ‘‘separable’ spaces, compact totally

371



disconnected spaces, etc. We shall be concerned essentially only with epi-reflections
(2, r) for which each reflection map is an embedding; we then say that # is embed-
ding. From [2d], # is embedding iff # o I', and then

rnX =N{R:uX < R < yuX, Re A} < yuX .

For general (%, r) :if uX = Re #, then uX — rpX is an embedding (see [5] for
the proof of the corresponding fact in Tychonoff spaces; the proof translates to %),
and it follows that whenever X < R e #, then

X = (R :uX < R < R, R e ).

2. Embedding reflectors. Of course I' is an example. Another is ¢ ~'I", where ¢
is the fine coreflection. By definition, uX € ¢ ~'I" iff uX €T, i.e., the topological
space underlying uX is “topologically complete ¢ ~'I is epi-reflective by 4.1 and 4.2.

Let N, be an infinite cardinal, « being the usual index by an initial ordinal (0, 1, ...).
We construct an embedding reflection (I',, 7,):

In the topological space X, a G,-set is the intersection of <N, open sets. (G, =
= open, G, = G, etc.) X is a-dense in Y if each non-void G,-set meets X. The
a-closure of X in Y consists of all pe Y such that each G,-set containing p meets
X . X is a-closed in Y if X coincides with its a-closure.

uX is called a-complete if uX is a-closed in yuX. Let I', be the category of x«-
complete spaces. Note that I'y = I'; and o < f implies I', = I'.

2.1. Proposition. I', is epi-reflective. uX € I', iff each Cauchy filter with the
< N,-intersection property converges. The reflection y ,uX is the a-closure of uX
in yuX, or equivalently, all points of yuX which correspond to Cauchy filters on uX
with the < N,-intersection property. Thus, pX e I' iff uX € I', and each Cauchy
filter contains a Cauchy filter with the < N,-intersection property.

The proof of 2.1 can safely be omitted. Of course, the a-complete spaces are the
obvious analogue of Herrlich’s a-compact Tychonoff spaces [3], [6] (where the reflec-
tion is the a-closure in the Stone-Cech compactification and hence for @ = 1 is the
Hewitt realcompactification). We have a more substantial reason for considering
(T2 74), however: It is shown in [9¢] that I', is the epi-reflective hull of metric uniform
spaces, and that y,m = my,, where m is the metric-fine coreflection [2a]. We
comment more extensively in 7(c) below.

3. Commuting functors. Suppose that (%, c) is coreflective, and (%, r) is epi-
reflective; this will be standing notation. A mapping uX —’ vY will be called Z-dense
(or perhaps #-epic) if there is no space R e # with f(X) § R § vY. From the con-
struction of ruX in § 1, it is clear that: f is #-dense iff rf(X)=rvY(f(X)being given
the relative uniformity); an embedding uX —¢ vYis Z-dense iff rvY = ruX.
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3.1. Proposition. Let # be embedding. These conditions are equivalent:
(a) er = re.
(b) c# <= R, and each cr,x is an R-dense embedding.
(c) ¢# < % and both
(b)) euX =" cruX IX is uniformly continuous for each pX.
(bz) X is R-dense in cruX for each uX.

Proof. The proof is routine from consideration of the diagram:

cuX — uX —— ruX

A

reyX —m—omo-— cruX e

3.2. Remarks. (a) Clearly, the conditions in 3.1 are equivalent “locally”, i.e., for
a particular uX.

(b) The point in 3.1 is what ¢ does to the #-reflection maps uX — ruX. It is easy
to see that every cr,y is a #-dense embedding iff ¢ preserves all Z-dense embeddings.

(c) One can formulate a rather trivial dual of 3.1 (b) as follows: Call uX -/ vY
a ¢-map if ¢f is an isomorphism. Then: ¢r = rciff ¢ = € and each rc,y is a ¢-map.
This does not seem useful.

(d) A fairly simple argument shows that (for arbitrary reflection (%, r)) ¢2 = #
iff 6 < % [9a].

3.3. Proposition. (a) uX -7 vY is I',-dense iff f(X) is a-dense in vY.

(b) If € is hereditary for a-dense sets, then for each pX, cuX =¥ ey, uX|X is
uniformly continuous (i.e. 3.1 (b,)).

(¢) If ¢ preserves topology, then

X is a-dense in ¢y, uX for each pX (i.e. 3.1 (b,)), and cI'y = T,

(d) If (4, ¢) is hereditary for a-dense sets and preserves topology, then ¢y, = y,c.

Proof. (a) is routine. (b) and the first part of (c) are obvious. Let uX e T',, and let #
be a cu-Cauchy filter with the N,-intersection property. Then y is u-Cauchy and
converges by 2.1. Then # converges in cuX (because the topology is that of uX).
(d) now follows using 3.1.

3.3(d) for a = 0 is noted in [7b, p. 127].

4. A preliminary construction. Suppose given a class & of spaces with an “operator™
& =9 which assigns to each 4 € & a one-to-one onto map 4 «°4eAd. Let (o, e)
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be the class of spaces uX for which each uX — A factors through e,. Suppose further
that each ed € (&, ). (So e behaves like a coreflector.)

Or dually: Suppose that each A—°“*eA is epic; define uX € (e, o) iff each uX « A4
factors through e,; suppose that each e € {e, o). (So e behaves like an epi-reflector.)

4.1. Theorem. (a) (=, e is coreflective, with functor extending e.

(b) <e, > is epi-reflective, with functor extending e.

(b) is a specialization of a theorem of Kennison [8b], and (a) is the dual. A special
case was given by ISBELL [7a]. (The method has also been studied and used in [2],
[9], [1]. [10]. For our category %, a simple proof can be given from the Kennison
criteria stated above. 4.1 is a useful referent for the main construction in §’s 5,6
below, and will be used in several examples.

(Recall from 3.2 (d) that cZ < R iff 16 < %.)
4.2. Theorem. (a) If ¢# < R, then (R, c> = r '6.
(b) If ¢ < € then {r, 6> = ¢ 'A.

Proof. We shall prove (a). (b) is dual.
Let uX € r '4, i.e. ruX € %. Consider:

UX ——+ ReF

where first f exists because r is a reflection, then ¢ exists because ruX € 6. Thus
X € (R, c).
Let uX € (2, ¢). Consider:

L 1
u —— ruX = rpX

\\ ~
T~< ~9
~ N
~o ~
f= N
~ ~
< N

*crux

where first f exists because uX € {2, ¢), then g exists because cr uX € ¢. Since g
is the identity on the set ruX, it follows that ru = cru, i.e. that ruX € €.

ViLiMOVSKY [10] has proved 4.2 (a) for ¥ = fine space and # = I
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5. The modification of 4. Given (%, ¢) and (%, r), we look for the least coreflective
category containing ¢ whose functor commutes with r. We cannot show that this
category always exists. However, under certain hypotheses we prove existence via an
explicit description. Assuming that # is embedding, set ¢ uX = cr uX/X; ¢ depends
on A, of course. (This is designed to accomplish 3.1 (b,).)

5.1. Theorem. Let # be embedding, and let ¢<# < R. Then: uX € (R, c)y iff
uX = ¢ uX; each uX « Ae{R,cy factors uniquely through cuX —'* uX.

5.1 does not assert that ¢uX is the coreflection into (#, ¢). Write €* for (%, ¢),
and ¢* for the functor. (These depend on (%, r).)

5.2. Corollary. Let # be embedding, c# < R, and suppose that:

(*) For each uX, X is #-dense in ¢r uX .
Then

(a) Each cuX € €*: hence ¢ = c*.

(b) c*r = re*.

(c) eruX = repX iff *uX = cpX (ie. cpX = crpX).

(d) If (%', ¢') is coreflective, 6" = 6, and ¢'r = rc’, then €' > ¢*.

(e) ¥* consists exactly of the A-dense subspaces of spaces in .

(f) (%) holds if for each uX, X is #-dense in cruX.

(We note (f) because of the desirability of having (*) in terms of the data given
a priori.)

5.2 immediately yields.

5.3. Corollary. Suppose that ¢I', < I', and that X is a-dense in ¢y, 1X for each
nX. Then €* consists exactly of the a-dense subspaces of spaces in €.

Proof of 5.1. Let uX € (A, ¢>, and cdnsider:

r
uX —< rux
N

cruX

Since r,y is an embedding, so is f; thus cruX[X = pX.
Conversely, let cruX/X = pX. Consider

ruX —— pX L Res
\\
A
LY
cruX === mm e e > cR
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where g = c(rf), and h is the restriction of g to the subspace uX. Thus, uX € (%, ¢>.

Finally, consider:

cruX < cruX/ X —l*ux

‘\‘\\h

ruX T TA ~ Az

where g = rf; and then h = ¢(rf), which exists because rA4 € €. Since f takes values
in the set X, h o r, takes values in the set X. Thus, 4 —»""* cr 1X/X is a map.

Proof of 5.2. (a). From (x) and ¢# = #, rcpX = crpX follows. Thus, ¢uX e
er % = @* (by 4.2).

(b) By (a) and 3.1 applied to c*.

(c) By cuX = crpX/X and repX|X = cpX.

(d) If ¢'r = rc’, then ¢'pX = 'ruX/X, by 3.1. Thus, ¢'(¢ uX) = ¢'r(¢ uX)[X =
= ¢'(cruX)/X (from (a)), which is cruX/X = éuX because 6’ > %. So ¢'[€* is the
identity, and ¢’ o %*.

(e) Each euX is #-dense in cruX € 6. Conversely, if uX is #-dense in Ce @,
then ruX = rC. But rC € % because ¢# < #, and hence r¢ < 4 by 3.2 (d). Then
uX er ¢ = @*.

(f) is obvious.

5.4. Remark. From 3.3 and 5.3, when ¢ preserves topology and £ =T (a = 0),
then yc* = c*y where ¥* = the dense subspaces of %-spaces. This applies with
% = fine spaces # or metric-fine spaces .# (§ 7), and the categories €*look interesting.
From [2c], on the category -% of complete separable subfine spaces, the passage
pX 1> U(uX) (the family of real uniformly continuous functions) is a categorical
isomorphism onto the category of function algebras with countable composition.
Now separable .# < & [2a], and for uX e .4, U(uX) has the stronger property
of inversion. Thus U(.#* n &) is a category of function algebras possessing some
property between countable composition and inversion; it would be interesting to
see an algebraic description of this property. Similar remarks apply to U(#*) (but it
is not clear what U(%) is). See [2e].

6. The modification of #. Given (%, c) and (2, r) we look for explicit description
(and proof of existence) of the least epi-reflective category containing # whose functor
commutes with c. Assume # embedding, and set 7 uX = the image in r uX of rc uX
under r(r,y o c,x). This construct may be described in terms of filters as follows:
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Each Cauchy filter # in uX ‘“‘converges” to a point p of yuX. If pe rcuX, cally
“Cauchy (#)”. Then

FuX = {pe rpX: There is a cu-Cauchy (2) filter on uX with # — p}.

6.1. Theorem. Let # be embedding, and let r¢ — €. Then: uX e (r,¢) iff
uX = ruX; each uX — Ae<r, %) factors uniquely through pX — ruX.
Let Z* = (r, €) with r* the functor. These depend on (%, c).

6.2. Theorem. Let # be embedding, ré < €, and suppose that:

(%) For each uX, cuX < cruX .
Then:
(a) Each ruX e (r, €y; hence ¥ = r*.
(b) cr* = r*c.
(¢) eruX = repX iff r*uX = ruX (i.e., cuX is R*-dense in cruX).
(d) If (#'r") is epi-reflective, # = R, and cr' = r'c, then R > R*.
(f) (x) holds if for each puX, cuX = cruX.
One could add this Proposition as the dual of 6.1 (e) in the sense of 3.2 (c): 6.2 (e).

A* consists exactly of the images of spaces in Z under ¥-maps. The proof is obvious,
indeed, virtually the definition of ¥-map. Again, this seems uninteresting.

Proof of 6.1. Consider the diagram:

rcuX

I ¢

CUX —— X — FuX

where ¢ is r(r,x o ¢,x), onto the image FuX. If uX e (r, €), then cuX € Z by 4.2,
and cpX = rcuX; thus ¢ maps cpuX onto ruX, and so uX = ruX. If uX = ruX,
then ¢ maps rcuX onto uX, and cuX = rcuX follows; i.e. cuX e, so uX e
ec '# =<{r, ).

To prove the “extension property” of 7 uX, we can use either description of 7 uX.
The filter description seems preferable: Consider

ruX «—— FUX «—— pXx

1
1

I‘f: f
\J

rA = Ae(r, 3>
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We are to show that rf[F uX takes values in A. Let pe 7 uX, and let & — p with &
cp-Cauchy (#) on puX. Let 4 = f(F), ie., 4 = {G < A: There is Fe # with
f(F) = G}. Upon replacing f by ¢f here, we see that & is Cauchy in cA (as well as
in A).

Now f(%) - f(p) (a property of yf). Since yf/r uX = rf and rf takes values in rd,
f(%) > rf(p) € rA. This shows that f(%) is Cauchy (2), so that r f(p)e 74 = A.

Proof of 6.2. (a). We shall prove that reuX = ciuX; then FuXec '# =
= {r, ¢). Consider:

f ,

regX ——— cruX

= J

cux » X —— FuX
i

where ¢ is r(r,x < ¢,x), onto 7 uX; e = ci, and by (*) is an embedding; f = co, which
exists because rcuX € €. Evidently, f is onto. Now, kfj = ke; since k is monic,
Ji = e. Thus f is an embedding (because our category is uniform spaces!). So,
repuX = cruX.

(b) Consider the diagram

re(cuX)

| T~

cleuX) = cuX —— FeuX

(asin 6.1, but for ¢uX instead of uX). Here, ¢ is an embedding; and onto. So repuX =
= (re(epX) =) FepX.

Now using (a), ciuX = repX = FeuX.

(¢) If ruX = FuX, then cruX = cfpuX, which by (a)is reuX. If cruX = repX,
then c¢FuX = cruX, so in the diagram of (a), k maps onto ruX, and so does o.
That is, ruX = ruX.

(d) is routine and (f) is obvious.

7. Some remarks. (a) Assume # embedding, and ¢£ = A (= r¢ < %). We have
no counterexamples to the assertions that cuX € (%, ¢y and ruX e {r, €) without
assuming 5.1 (*) and 6.1 (x)). These questions are not important to the present paper,
because one must have the conditions (*) to get commuting. But the questions seem
worthwhile in view of the importance of the (<, ¢) and (e, &) constructions.
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(b) Here is an example of (%, ¢) with ¢I" & I'. Let ## be precompact spaces, and
for P € # let eP have basis of all finite covers. eP is the precompact reflection of the
discrete uniformity on P; e = pd. The functor for (o7, e is uX > (1 v pdu) X.
If K is infinite and compact, then K e I', but eK ¢ I' (for yeK is the Stone-Cech
compactification of discrete K).

(c) Let .« be metric spaces, ¢ = the fine coreflection. The members of (o7, e) =
= ./ are called metric-fine [2a], and the coreflection is called m. This example, with
results from [9c], motivated at least our treatment of the categories I',: The basic
facts here are: m preserves topology, and .# is I-densely hereditary. (See [2a], [9d].
These are actually easy. For the latter: if uX is I-dense in vYe .4, and uX - oMe o,
then there is the extension vY—7yoM. Now gM is I-dense in yoM iff oM = yoM.
So f takes values in oM, vY—7eoM is a map, and so is f/uX.)

By 3.3 (d), then, my, =y;m, a result from [9c]. Consider 6.2, with 4 = .4,
# = T'. The condition in 6.2 (f) fails; but 6.2 () holds! The proof of this uses the
description of muX given independently in [ 1c] and [9(d)] (see also [1a] and [9(b)]).
which description further implies that y* = y,. See [9c]. (d) There is this obvious
question: if Z is embedding, is there coreflective ¢ such that 6.2 () holds for  and I',
and I'* = #?
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