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ISOMORPHISMS OF POLAR AND POLARIZED GRAPHS

BOHDAN ZELINKA, Liberec

(Received June 20, 1972)

At the Conference on Graph Theory held at Stifin in May 1972, F. Zitex read
a lecture [4] in which he suggested to study two new types of graphs — polar and
polarized graphs. The importance of these graphs for the application of the graph
theory in the railway traffic was pointed out by J. CERNY in his lecture [1] at the same
conference. K. CuLik [2] mentioned the graphs of logic networks and remarked
that also in this direction polar and polarized graphs are applicable.

In this paper we shall study some properties of these graphs which are related to
the concept of isomorphism. All graphs that we investigate here are undirected.

Definition. A polar graph (undirected, without loops and multiple edges) is an
ordered quintuple {V, E, P, %, A), where V, E, P are sets, x is a mapping of the set V
into the set of unordered pairs of distinct elements of P and 4 is a mapping of the set E
into the set of unordered pairs of distinct elements of P such that the following
conditions are satisfied:

(1) Forany ueV, ve V, u + v, we have »(u) n »(v) = 0.
(2) Forany ecE, feE, e + f we have A(e) + A(f).
(3) For any p e P there exist v € V such that p € »(v).

The elements of the set V are called vertices, the elements of the set E are called edges,
the elements of the set P are called poles. If pe P, ve V, p e x(v), we say that the
pole P belongs to the vertex v. If pe P, e € E and p € A(e), we say that the edge e is
incident with the pole p.

This was the formal definition of a polar graph. We shall explain it intuitively.
We obtain a polar graph from an undirected graph by decomposing at each vertex v
the set of edges incident with it into two disjoint subsets. To each of these sets we
assign an abstract element — a pole of the vertex v. Therefore any vertex of a polar
graph has two poles, no two distinct vertices have a pole in common (condition (1))
and any edge is incident with two poles. We shall say also that an edge joins two
poles instead of saying that it is incident with them. Condition (2) expresses the
absence of multiple edges. Condition (3) means that each pole belongs to some vertex.

Now we shall introduce the formal definition of a polarized graph.
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Definition. A polarized graph (undirected, without loops and multiple edges) is
the ordered quintuple <V, E, P, x, 2>, where V, E, P are sets, % is a mapping of the
set Vinto the set of ordered pairs of distinct elements of P and 4 is a mapping of the
set E into the set of unordered pairs of distinct elements of P for which the same
conditions (1), (2), (3) as in the definition of a polar graph are satisfied. The elements
of V are called vertices, the elements of E are called edges, the elements of P are
called poles. If #(v) = [p,, p,] for some ve V, p; € P, p, € P, then p, is called the
southern pole of v and p, is called the northern pole of v.

Thus we obtain a polarized graph from a polar graph by declaring at each vertex v
one of its poles to be the southern and the other to be the northern pole.

When drawing polar or polarized graphs it is useful to draw a vertex as a magnetic
needle (which has also two poles). A polar graph has both poles of this needle white,
a polarized graph has the southern poles white, the northern poles black.

We shall give an example of an application of polar graphs; this example will be
taken from the railway traffic, as mentioned in [1] and [4]. The vertices of a polar
graph are railway stations on a certain territory, an edge joining two vertices is the
segment of the railway line joining these stations and not going through any other
station. Then the poles of a vertex are two sides from which the trains come into the
station. If two edges are incident with different poles of the same vertex, this means
that the corresponding railway line segments come into the station from different
sides and that a train coming by one of them can continue its travel by the other
following always the same direction. If two edges are incident with the same pole of
a vertex, this means that the corresponding railway line segments come into the station
from the same side and that a train coming by one of them can continue its travel
by the other only by changing its direction (i.e. by changing the engine).

Now we shall define some further concepts.

A quasi-loop is an edge joining two different poles of the same vertex. (If we
wished to extend the definitions of polar and polarized graphs onto graphs with loops,
then a loop would be an edge joining a pole with itself.)

A complete polar graph is a polar graph in which any two distinct poles are joined
by an edge.

Therefore between any two distinct vertices of such a graph there are four edges,
because an edge must go from each pole of one vertex to each pole of the other.
At each vertex there is a quasi-loop. If such a graph has n vertices, it has 2n* — n
edges.

A complete polarized graph is obtained from a complete polar graph by an evident
way.

Given a non-polar graph G, then to make G polar means to add two poles to each
vertex v of G, to decompose the set of edges incident with v into two disjoint subsets
and to assign the poles to these subsets.

Given a polar graph G, then to polarize G means at each vertex of G to declare
one pole to be the southern and the other to be the northern pole.
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Given a non-polar graph G, then to polarize G means first to make G polar and
then to polarize the polar graph thus obtained.

i G, =V, Ey, Py, %y, A1), Gy =<V,, E,, Py, %,, A, are polar graphs, then an
isomorphism of G, onto G, is a one-to-one mapping ¢ of V; U E; U P, onto V, U
v E, U P, such that

(a) ¥, is mapped by ¢ onto V,, E, is mapped onto E,, P, is mapped onto P,;

(b) if #,(v) = {py, po} for some p, € P,, p,e P;, ve V,, then x,(¢(v)) = {o(p,),
Ql’\l’z)};

(c) if 2,(e) = {py. po} for p, € Py, p, € Py, e€ E,, then Ay(p(e)) = {o(p,), ¢(p2)}-

An isomorphism of G, onto G, is defined analogously if G, and G, are polarized
graphs; only in (b) we consider the directed pair [p,, p,] instead of the undirected
pair {p,, p,} (and naturally also [¢(p,), ¢(p,)] and x instead of x).

We see that for polarized graphs, each isomorphism maps a southern pole always
onto a southern pole and a northern pole always onto a northern pole. An iso-
morphism of polar graphs is uniquely determined by giving the images of poles; the
images of vertices and edges may be derived from them. An isomorphism of polarized
graphs is uniquely determined by giving the images of vertices; the images of poles
(because each vertex has exactly one northern pole and exactly one southern pole)
are derivable from it and so are the images of edges.

An isomorphism of a graph (polar or polarized) onto itself is called an auto-
morphism of this graph. It is easy to prove that the automorphisms of a graph form
a group under their superposition.

Theorem 1. Let K, be the complete polar graph with n vertices v,, ..., v,, let A(K,)
be the group of all automorphisms of K,. Then A(K,) is isomorphic to the direct
product of the groups S, R, ..., B,, where S, is the symmetric group of order n
and B; for i = 1, ..., nis a cyclic group of order 2.

Remark. The order of %A(K,) is then equal to 2" . n!.

Proof. Let each vertex v; for i = 1, ..., n have the poles p,(v;), p,(v;). Let a;
for i = 1, ..., n be the automorphism of K, such that «(p,(v;)) = p,(v;), ayp,(v;) =
= p,(v;) while the other poles of K, (therefore also all vertices) are fixed. Further, to
any permutation 7 of the number set {1, ..., n} let §, be the automorphism of K,
such that- B(p,(v))) = P1(vn)s Ba(P2(v))) = Pa(vni)). Any o; generates a cyclic
group B; of order 2. The mappings f, form a group B isomorphic to the group of
all permutations of {1, ..., n}, i.e. to the symmetric group &, of order n. The groups
B, ..., B, B have pairwise no elements in common except for the identical auto-
morphism of K,. Evidently each automorphism of K, is a superposition of mappings
from these groups and A(K,) is the direct product of them, g.e.d.

Theorem 2. Let K, be the complete polarized graph with n vertices. Then the group
of all automorphisms of K, is isomorphic to the symmetric group S, or order n.
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Proof. As each automorphism of a polarized graph maps the northern pole of
a vertex again onto the northern pole of some vertex and a southern pole onto
a southern pole, it is uniquely determined by giving the images of vertices, i.e. by the
permutation of the vertex set induced by this automorphism. Therefore, to any
permutation of the vertex set of K, there corresponds exactly one automorphism
of K,, (as K,, is complete) and the group of automorphisms of K, is isomorphic to the
group of all permutations of a set with n elements, which is the symmetric group
of order n.

Theorem 3. Let G be a non-polar graph without isolated vertices. Then G can be
made polar in such a way that the group of automorphisms of the resulting polar
graph is isomorphic to the group of automorphisms of G.

Proof. Let us make G polar so that at any vertex v one pole of v is incident with
all edges which are incident with v in G while the other pole is incident with no edge
(is isolated). We obtain a polar graph Gp. As no vertex of G is isolated, each vertex
of G, has one pole isolated, another non-isolated. Any automorphism of G, is
uniquely determined by images of vertices, because if an image of a vertex v is given,
we know that the isolated or non-isolated pole of v is mapped respectively onto the
isolated or non-isolated pole of the image of v. And, if a permutation of the vertex
set of G induces an automorphism of G, it induces obviously also an automorphism
of Gp. Hence the assertion holds. If G has an isolated vertex u, the assertion does not
hold: a counterexample is a graph G consisting only of one isolated vertex u. The
group of automorphisms of G consists only of the identical mapping, but the group
of automorphisms of G, has order 2; in addition to the identical automorphism it
contains the automorphism interchanging the poles of u.

Theorem 4. Let G be a non-polar graph. Then G can be polarized in such a way
that the group of automorphisms of the resulting polarized graph is isomorphic
to the group of automorphisms of G.

Proof. Let us make G polar in the same way as in the proof of Theorem 3. Then
let us declare all non-isolated poles to be northern, the isolated poles of non-isolated
vertices to be southern. If a vertex is isolated, its northern pole is chosen arbitrarily.
As already mentioned above, any automorphism of a polarized graph is uniquely
determined by the images of vertices, therefore the assertion holds. (Even the isolated
vertices do not matter, because no automorphism interchanging poles of a vertex

can exist.)

Theorem 5. Let ® be a finite or countable group. Then there exists a polar graph G
and a polarized graph G’ so that the groups of automorphisms of both of these
graphs are isomorphic to ®.
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Proof. According to a theorem of FRUCHT [3], to G there exists a non-polar
graph without isolated vertices whose group of automorphisms is isomorphic to G.
Hence Theorem S is a consequence of Theorems 3, 4.

Theorem 6. Let G be a non-polar graph with a Hamiltonian path. Then G can be
polarized so that the resulting graph has no automorphisms except the identical
automorphism.

Proof. Let H be a Hamiltonian path in G. Let the vertices of H (and also of G)
be vy, ..., v,, let the edges of H be vv;,, fori =1,...,n — 1. Let us polarize G so
that for I £ i < j = n the edge v;v; is incident with the northern pole of v; and with
the southern pole of v;; let the resulting polarized graph be Gp. Thus if we have
a path P joining v, and v, for some k, [ which goes from the northern pole of v, to the
southern pole of v,, any edge of P joins a northern pole of one vertex with a southern
pole of another one and any two edges of P incident in G with a certain vertex are
incident in G, with different poles of this vertex, then k < I and the subscripts of
vertices on P form an increasing sequence if we go from v, to v, along P. If ¢(v,) = v,,
¢(v,) = v, in an automorphism ¢ of Gp, then there exists a path P’ from v, to v, with
the same properties as P (k substituted by r, [ substituted by s) namely, the image
of P in ¢ and therefore r < s. Thus ¢ preserves the ordering of subscripts and as ¢
is one-to-one, it must be the identical mapping.

An example is in Fig. I where G is the complete graph with five vertices. A coun-
terexample showing that for graphs without Hamiltonian paths the assertion does
not hold in general is a star with six or more vertices. Let ¢ be the center of such a star.
For a vertex v + ¢ there are four possible cases: (a) the southern pole of v is joined
with the southern pole of ¢, (b) the southern pole of v is joined with the northern
pole of ¢, (c) the northern pole of v is joined with the southern pole of ¢, (d) the
northern pole of v is joined with the northern pole of c¢. If there are at least five
vertices different from the center, there must be at least two vertices of them for which
the same case occurs and they can be interchanged by a non-identical automorphism
of this star.

Theorem7. Let G be a non-polar graph having a Hamiltonian path which is neither
a circuit with less than six vertices, nor a snake with less than four vertices. Then G
can be made polar so that the resulting polar graph has no automorphisms except
the identical automorphism.

Proof. First, let us polarize G as in the proof of Theorem 6. Then we consider
the resulting graph as polar (we do not distinguish the southern and northern poles).
If this polar graph G, has no automorphisms except the identical automorphism, the
proof is complete. If not, we shall distinguish three cases: (a) G is a circuit (at least
with seven vertices); (b) G is a snake (at least with four vertices); (c) the other pos-
sibilities. If G is a circuit, then two cases are possible at any vertex v of G: either the
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edges incident with v in G are incident in the polar graph G, with the same pole of v,
or with different poles. Let the vertices of G be vy, ..., v, and the edges vw;;, for
i=1,...,n— 1, v,v,. Then G can be made polar so that the first case occurs at
vy, V3, by, the second case at all other vertices (Fig. 2 for n = 6). It is easy to prove
that for the graph thus obtained the assertion holds. If G is a snake with the vertices
vy, ..., v,and edges vv;,, fori = 1,..., n — 1, we can make it polar so that both the
edges at v, are incident with the same pole of v, while at vs, ..., v,_, the edges are

v, év,

v,
Fig. 1. Fig. 2. Fig. 3. Fig. 4.

incident with different poles (Fig. 3). For such a graph the assertion holds. Now take
the last case. Let H be a Hamiltonian path in G, let its vertices be vy, ..., v, and edges
viv;y, for i =1,..,n — 1. Consider the polarization of G mentioned at the begin-
ning of the proof. If an edge goes from v, into a vertex v;, i & 2, i + n, then take the
least i with this property and change the graph G, so that the edge v,v; is incident
with the other pole of v; than the edge v;_,v; (in G, they were incident with the same
pole, because both 1 and i — | are less than i). We have a circuit C with the edges
v;vj.y forj =1,...,i — 1 and v,v;. This circuit has the length i and at the vertex v,
the edges of C are incident with the same pole, at the other vertices with different
poles. Such a circuit is evidently exactly one in this graph, therefore any auto-
morphism must map C onto itself, v; onto itself. It also maps v, onto itself as the
only vertex with an isolated pole and not belonging to C. If such an automorphism ¢
is non-identical, we must have ¢(v,) = v;, @(v;) = v,. The vertex v, is connected
with v, by a simple path P of the length n = 2 and at each vertex of P the edges of P
are incident with different poles (this path P is obtained from H by deleting v,).
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However, any path connecting v; with v, with this property can have a length at
most n — i, therefore such a non-identical automorphism ¢ cannot exist. If v, is
joined in G only with v, and v,, then there exists a Hamiltonian circuit consisting
of the Hamiltonian path H and the edge v,v,, therefore there exist at least n

W

OO

A
L]
19
(2

DO =
1
s

Fig. 5.

Hamiltonian paths obtained from it by deleting an edge. We can choose another
Hamiltonian path which has the required property (as G is not a circuit). If v, is
joined in G with no other vertex than v,, we take the least j such that v; is joined with
a vertex v;, i > j, i #j + 1, i # n and use the same argument for v; instead of v;.
If for any j the vertex v; is joined only with v;_;, v;,, and possibly with v,, we change
the subscripts so that v; becomes v, _;,, for i = 1, ..., n; as G is not a snake, some
of the above mentioned cases must occur.
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Fig. 4 shows the case of the complete graph with five vertices. In Fig. 5, there are
all possible polar graphs obtained by making circuits with less than six vertices polar;
from this figure it is easy to see that each of them has a non-identical automorphism.
In Fig. 6, the same is done for snakes with less than four vertices.

In the end of this paper we shall prove some analoga of Whitney’s theorem on
reconstructing a graph from the incidence relation on its edge set.

NN

Fig. 6. Fig. 7.

A <

Fig. 8.

H. WHITNEY (quoted in [3]) has proved that every edge isomorphism of two
undirected graphs is induced by a vertex isomorphism, with the exception of the
graphs in Figs. 7 and 8. A vertex isomorphism of graphs is an isomorphism in the
usual sense. An edge isomorphism is a one-to-one mapping of the edge set of one
graph onto the edge set of another graph preserving the incidence relation (two edges
are in this relation, if and only if they have a common end vertex). The graphs in
Fig. 7 are edge-isomorphic, but not vertex-isomorphic. Any one of the graphs in
Fig. 8 has an edge automorphism which is not induced by a vertex automorphism,
but it cannot be edge-isomorphic with a graph with which it is not vertex-isomorphic.
From Whitney’s theorem it follows that any graph which does not contain a connected
component isomorphic with a graph from Fig. 9 can reconstructed from its edge
set with the relation of incidence given on it.

For a polar graph we shall consider three relations on the edge set. Two edges
e, e, of G are in the relation ¢,, if and only if there exists a pole in G with which they
both are incident. They are in the relation ,, if and only if there exists a vertex v in G
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such that e, is incident with one pole of v while e, is incident with the other. Finally,
they are in the relation %, if and only if there exist two vertices u, v in G such that e,
joins one pole of u with one pole of v and e, joins the other pole of u with the other
pole of v: obviously 95 < 0,. We shall investigate how much information about G
can be obtained from these relations.

Fig. 9.

Given a polar graph G, then the pole graph of G is a non-polar graph G* whose
vertices are the poles of G and in which two vertices are joined by an edge, if and
only if the corresponding poles are joined by an edge in G.

Theorem 8. Let the edge set E of a polar graph G and the relation ¢, on it be
given. Then we can reconstruct the pole graph G* of G if and only if no connected
component of G is isomorphic to any one of the graphs in Fig. 7.

Proof. The relation ¢, on the edge set E of G corresponds to the usual incidence
relation on the vertex set of G. Therefore the theorem follows from Whitney’s
theorem.

It is easy to sec that from ¢, no more information about G can be obtained. We
cannot recognize which pairs of poles belong to the same vertex and which do not.

Theorem 9. Let G be a polar graph such that at each vertex of G one pole is
incident at least with three edges, the other at least with two edges. Let the edge
set E of G and the relation 9, on it be given. Then we can uniquely reconstruct the
graph G.

Proof. Let four edges e, e,, e;, f, from E satisfy (e, f;) €, for i =1,2,3.
There are four possible cases which are in Fig. 9. But if there is also an edge f, * f,
such that (e;, f) € ¢, for i = 1, 2, 3, then only the first case in this figure is possible:
otherwise f; and f, would form a double edge. Therefore to any pair e, f of elements
of E we find a pair {R(e, f), S(e. f)} of subsets of E such that e e R(e, ), f€ S(e, f),
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(¢, f')e 0, for each ¢ e R(e, f) and f’ € S(e, f), the sets R(e, f), S(e, /) being the
maximal subsets of E with these properties. The condition of the theorem implies
that always one of these sets has at least three elements while the other has at least
two elements. Now it follows that to each pair with these properties there corresponds
a vertex of G; different pairs are associated
with different vertices. The sets which form
such a pair correspond to the poles of this
vertex. Therefore, for any edge we know
the vertices and the poles with which it is
incident and hence we can reconstruct G.

Fig. 10. e Fig. 11.

In Figs. 10 and 11 we see pairs of graphs with the same set E of edges and with the
same relation ¢, on it which are not isomorphic. These graphs are counterexamples
showing that if the condition of Theorem 9 is not satisfied, this theorem does not
hold in general.

As we have mentioned above, in a polar graph two vertices can be joined with more
than one (at most four) edges. If G is a polar graph, then let D(G) be the class of graphs
obtained from G by deleting, for any pair of vertices joined by more than one edge,
all edges except one. Also quasi-loops are deleted.

Theorem 10. Let G be a polar graph. Let the class D(G) contain a graph G/,
none of whose connected components is isomorphic to any of the graphs in Fig. 12.
Let the edge set E of G and the relations ¢,, 0,, 05 on it be given. Then G can be
uniquely reconstructed.
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Proof. First we shall construct a graph G’ from D(G); if possible, we construct
a graph satisfying the condition. If two edges ¢, e, join the same pair of vertices,
they are either in the relation ¢, N ¢, (Fig. 14) or in the relation ¢4 (Fig. 15); there-

A~V

) A2
S =E
7B D
B~ DD

fore we can recognize, which pairs of edges join the same pair of vertices. Also we
can easily recognize quasi-loops; they are such edges e that (e, e) € g,. Thus we can
construct G’ € D(G). Then we treat the graph G’ as non-polar; the relation ¢, U o,
is the usual incidence relation on it. If none of the connected components of G’ is
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isomorphic (as a non-polar graph) to any one of the graphs in Figs. 7 and 8, the
graph G’ can be uniquely reconstructed according to Whitney’s theorem as non-polar.
Then we use the relations g,, ¢, to make it polar. In the end we add the edges which
were deleted when constructing G’; this is also easy since we know ¢,, ¢, and 0.
Thus it remains to study singular cases, when some of the connected components
of G’ is isomorphic to some of the graphs on Figs. 7 and 8. If it is isomorphic to some
of the graphs on Fig. 8, it can be reconstructed as a non-polar graph, but the location
of edges cannot be uniquely reconstructed (scc the last chapter of [3]). In these cases,
given a triple of edges any two of which are incident, the crucial step is to decide
whether they form a triangle or a star. But if any two of such edges are in ¢,, or one
pair is in ¢, and two others in g,, they must form a triangle. And if we reconstruct
a triangle from one of the graphs in Figs. 7 and 8 with the exact location of edges,
we can easily reconstruct also the rest of the graph, again with the exact location of
edges. Therefore we have difficulties only with polar graphs, some connected com-
ponent of which is isomorphic (as a non-polar graph) with some of the graphs
on Figs. 7 and 8 and is such that any three edges of it, any two of which are in 9, U g5,
have the property that either any two of them are in ¢,, or one pair of them is in ¢,
and two others in ¢,. In Figs. 12 and 13 we see all of the possible components. In
Fig. 12 we see the pairs of non-isomorphic graphs with the same edge set and the same
relations ¢, and ¢,. A graph G’, a connected component of which is isomorphic to

Fig. 4. Fig. 15. Fig. 16.

some of them, cannot be uniquely reconstructed. If we define an edge-isomorphism
of polar graphs as a one-to-one mapping of the edge set of one graph onto the edge
set of another preserving ¢, and ¢,, we may say that these graphs are edge-isomorphic,
but not vertex-isomorphic. In Fig. 14 we see graphs with the property that any
graph edge-isomorphic with such a graph is vertex-isomorphic with it, but there
exist edge-automorphisms of such graphs which are not induced by vertex-automor-
phisms. These graphs can be reconstructed uniquely, but not with the exact location
of edges. In Fig. 16 we see the two possible reconstructions of one of these graphs
(edges are numbered); in both the cases we obtain isomorphic graphs, but the location
of edges is different. Thus the theorem is proved.
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We have used the graphs from D(G), because Whitney’s theorem holds only for
graphs without loops and multiple edges. A dilligent reader can construct the list
of all connected graphs with the property that any graph from ®(G) is isomorphic
to a certain graph in Fig. 12 (by adding edges).

o

Fig. 17. Fig. 18.

In Figs. 17 and 18 we see two conterexamples showing that without 0% a graph
cannot be uniquely reconstructed. These pairs of graphs have the same E, ¢, and 0,,

but different 05
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