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GENERIC PROPERTIES OF PARAMETRIZED VECTORFIELDS II

MILAN MEDVED, Bratislava

(Received February 26, 1974)

In [1] we have studied the generic properties of critical points of vectorfields,
depending on a parameter. This paper is concerned with generic properties of closed
orbits of vectorfields depending on a parameter.

Since this paper is a direct continuation of [1], we shall refer to [1] for definitions
and results. We assume that A4 is a 1-dimensional C"*! compact manifold and X
is an n-dimensional C"*! compact manifold (r = 0). Denote by G'(4, X) the set
of all parametrized C" vectorfields on 4 x X, endowed with the C" topology defined

in [1].
1. 4-TRANSVERSAL CLOSED ORBITS

Let ¢ be the parametrized flow of a ¢ e G'(4, X). We shall use the following
notation:

(1) For ae A the mapping @,:X x R —> X is given by @.(x,1) = ¢(a, x, t) for
(x,)eX x R.

(2) For xe X the mapping ¢, : A x R > X is given by ¢.(a,t) = ¢(a, x, t) for
(a,)e A x R.

(3) For teR, ac A the mapping ¢, : X —» X is given by ¢, .(x) = ¢(a, x, t)
for xe X.

Let € G'(4, X), ae A and let y be a closed orbit of the vectorfield £, through x
(€(x) = &(a, x) for x € X) of a prime period 7. Then y is called a A-transversal
closed orbit, if ®(f) A .4, where 4 = {(x,,y) e X x R* x X|x =y},
R* = (0, +©), ®: G"(4,X) > C(A x X x R*, X x R" x X)is given by §(¢) =
= &, for £€G(A,X), Pfa,x,1) = (x,t,¢%a, x,1)) for (a,x,t)e 4 x X x R*,
" is the parametrized flow of &.

Denote by G}j(4, X) the set of all £ e G'(4, X) such that if a € 4, then all closed
orbits of the vectorfield &, are A-transversal.

Choose a metric drx), dx on T(X), X respectively. Let L be a positive number.
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Denote by G(A4, X) the set of all ¢ € G'(4, X) such that for arbitrary (a, x,), (a, x,) €
€A x X, dpp(&(a, xy), &(a, x,)) < Lydx(x, x,) where L; < L. Obviously, the set
G7(A4, X) is open in G'(4, X).

Lemma 1. If &€ G(A,X), ae A, then every closed orbit of the vectorfield ¢,
has a prime period =4|L.

This lemma follows from [9, Theorem 4].

Lemma 2. Let ¢ € G'(4,X), ac A, let y be a closed orbit of the vectorfield &,
of a prime period 1, xe€y, x € T.X and let ¢ be the parametrized flow of &. Then
there is a parametrized vectorfield n € G'(A, X) such that (d/ds) {¢3(a, x)}s=0 = %
(¢° is the parametrized flow of & = & + sn, s € R).

Proof. Let the mapping ¥ : X x R — X be given by Y(x, 1) = ¢(a, x, t) for
(x,f)e A x R.By[4, Theorem 31.7] thereis a & e I"(r) such that (d/ds) {3(x)}s=0 =
= %, where Y°, se R is the flow of & = ¢, + s&. It suffices to choose 1 € G'(4, X)
such that 5(a, x) = &(x).

Lemma 3. Assume ¢e€G'(A,X) and (a,x,7)€ A x X x R* such that there
is a closed orbit of the vectorfield &, through x of a prime period . Then evg D4 x,)4-

Proof. evy:G(4, X) x A x X x R 5 X x R* x X, evy(&, a, x, 1) =
= ®a, x, t) for £€ G"(4,X), (a,x,1)e A x X x R*. Since G'(4, X) is a Banach
space, we can identify T, G"(4, X) and G'(4, X). By virtue of Lemma 2 it is easy
to show that the condition of transversality is satisfied.

Let {L;}2 be an increasing sequence of positive numbers such that lim L; = +c0.

Denote b; = 4[L;. If ¢ € G (A, X), a € A, then by Lemma 1 all closed orbits of
the vectorfield ¢, have prime periods =b;. Let p: 4 x X x R* — A x X be the
projection and Z < A x X x R*. Denote B(Z,0) = {(a,x,1)e A x X x
x R*|d(Z,(a, x, 1)) < o}, where ¢ > 0 and d is a metricon A x X x R*. Denote
B/(Z, ) = p[B(Z,0)] and N(Z,0) = A x X — B,(Z, o). For ¢ € G'(4, X), denote
Yo(€) = {(a, x) €4 x X | {(a, x) = 0.}, where 0, is the zero in T.X, the set of
critical points. Let g be a natural number and let {¢;};2, be a sequence of positive
numbers such that §; = ¢,4™' < 1b;. For ¢ e G'(4, X), ¢ positive number, define
k

the following mappings: &, (&) : N(U Y(¢),0) x R* > X x R* x X, &, (&) =
x s=0

= #(QIN(U Y(e). 0) x R*, where Y(¢) = {[®;-1,-()7" ()} n[4 x X x

x(0,(j +1)b;), j=1,2,..,k. Now, define the following sets: Gf;, =
j

= {¢e G (4, X)| ®,-:(¢) 7 A ontheset N(U Y(¢),2¢7 ") x [jb; — 8, (j + 1) b, —
k=0

— 6,1}, where i,j,q = 1,2,...
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Lemma 4. The set G, (i,j,q = 1,2,...) is open and dense in G (A, X).

Proof. Density. Let &, e G} (4, X). From [5, Theorem 3] it follows that there
is a § > 0 and an open neighborhood N, (&) of & in G (4, X) such that for

J J
éGN.’jq(éo), N( U Yk(é)’ q_l) < N(kUOYk(éo), q_l - 5)' Define the mapping b :
k=0 =
J
:Nij(&o) = c'(N(kgOn(go), g ' —6) x (0,(j + 1)b), X x R* x X), &) = &,

J
where @, = ®(&)/N(U Y (&), g~ —6) x (0,(j + 1)b,). By Lemma 3 ev; &5 4.
k=0

= {€e N (&) | #(¢) A 4}. From [4, Theorem- 19.1] it follows that
is dense in N,;,(&). Therefore, there is a &€ N, (&) close enough

Denote M;;,
the set M;

ijq
a -~y J A
to &, such that &(&) A 4. Since ®(E)/N(U Yi(é), 297 ") x [jb; — 6, (j + 1) b; —
k=0
~ j a ~
—0:] = @, 1(O)IN(U Yi(&), 297 ") x [jb; — 6;, (j + 1) b; — 8], so & e Gy, and
) k=0
the density is proved.
From [4, T_h‘?f_’ET,}?}Lt follows that the set M,;, = {¢ e N;;(&) | &(¢) A~ 4
J
on the set N( U Y,(),2q7%) x [jbi — d; (j + 1) b; — &;]} is open in Ny;(&o)
k=0
and therefore in G (4, X), too. Since the set G7_ is open in G'(4, X), the set M,
is open in G'(4, X).
Proposition 1. The set G3(4, X) (r 2 1) is residual in G'(4, X).

k ©
Proof. Define the sets Hy, = N G};,, Ky, = U Hy, The set K, is open in
j=1 i=1

ijg
@ oy 0
G'(A4, X). Since G'(4,X) = UG, (4, X), so K> UHy = UG,(4,X) =
i=1 i=1 i=1
= G'(4, X), i.e. the set K,, is dense in G'(4, X). Therefore the set G}(4, X) =
= N K, is residual in G'(4, X).

k,gq=1

2. POINCARE MAPPING

Let ¢ € G'(4, X), ag€ 4, xoe X and let y be a closed orbit of &, through x, of
a prime period 7. Let (U x V, « x ) be a chart on 4 x X at (ao, X,) such that
if &, «p is the local representation of ¢ with respect to this chart, then éax,,(O, 0) =
= (1,0), where o(ao) = 0, B(xo) = 0. The existence of such a chart follows from
[4, Theorem 21.6].

Let ¥ = X be an (n — 1)-dimensional submanifold of X such that B(V n X) =
= {5, vz --s ) €B(V) | 1 = 0}. Then p; o B o @[(x x B)~* (0, 0), 7o] = 0, where
Py R x R""! 5 R is the projection. The implicit function theorem implies that
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there is an open neighborhood W = V; x V, of (4, x,) in A x X and a C" function
1:Vy x ¥, > R such that p, . fo¢*(a, x,1(a,x)) =0 for all xeV, x V, and
7(ay, Xo) = 7o. Define the mapping L: V; x V, —» X, L(a, x) = ¢%(a, x, 1(a, x)) for
(a,x)eVy x V5. Let H=L[V; x (V,nZ). We shall denote this mapping by
H[¢, aq, X0, 7, V1 % (V2 0 Z)], too. The mapping H is called the Poincaré mapping.

Now, define the mapping H : V; x (V; n Z) - X x X by H(a, x) = (x, H(a, X))
for (a,x) e V; x (V; n Z). Obviously, A(Z) = {(x, y)eX x X |x = y} is a closed
submanifold of ¥ x X of dimension n — 1.

j
Lemma 5. If ¢ € Gy, (a0, X0, T0) € N(U Yi(8), 2¢7") x [jb; — 6;, (j + 1) b; —
k=0
— 8;], then H &4y 5y A(Z).
Proof. Since ¢ € Gjj,, 50 D;,-1(&) AA.Let A(ay, x,) € A(Z)andlet (U x V, a x f)
be a chart on 4 x X at (a, Xo), ®(ao) = 0, B(x,) = O such that if £, is the local

representation of &, then &, 4(0, 0) = (1, 0). Using the condition for the transversality
of the mapping ®,,-:(¢) in this coordinates, it is easy to prove the assertion of Lemma 5.

j
Corollary. Let ¢ e GYj,, (a0, Xo, 70) € N( U Yi(8), 2¢™") x [jb; — 6;, (j + 1) b; —
k=0
— 8;] and let there exist a closed orbit of &, through x, of a prime period t,. Then

A7'(4A(2)) is a closed 1-dimensional submanifold of Vi x (V, 0 X) for V; x V,
sufficiently small neighborhood of (ag, Xo).

3. CONSTRUCTION OF A VECTORFIELD TO A GIVEN PERTURBATION
OF POINCARE MAPPING

Lemma 6. Let & € G'(4, X), (aq, X0, To) €4 x X x R and let y be a closed orbit
of the vectorfield &,, of a prime period t,. Let V, x V, be an open neighborhood
of (ag, Xo) in A x X such that the Poincaré mapping H = H[¢, ay, xo, 7, V; X
x (Vo n 2)] (H(a, x) = ¢(a, x, (a, x)) for (a,x)e Vy x (Vo 0 X), where ¢ is the
parametrized flow of &) is defined. Let W, be an open neighborhood of a, in A such
that W, = V, and let W, be an open neighborhood of xo in X such that W, < V,.
Let Hy = H|W, x (W, 0 X). Then there is an open neighborhood U(H,) of the
mapping H in C'(W; x (W, n X),X) such that for every H,eU(H,) there is
a &€ G'(A, X) such that §(a, x, 1(a, x)) = H,(a, x) for all (a,x) e W, x (W, n 2)
where @ is the parametrized flow of E. Moreover, & depends continuously on H,.

Proof. Let ¢, ¢, be real numbers. Define the following sets:
T, = Ty(e, 82) = {(a, y) e A x X | y = 9(a, x, 1), (a,x) e V; x (V0 Y),
g <t <1(ax)+ e},

T, = Ty(er, &) = {1, 1, 2) | 710, 2) e Van 2,07 () € Vi 8 < 8 < 7(a, x) + &},
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where (U x V, « x ) is a chart as in the definition of H. Let 7, : a(V;) X po
o B(Vo nZ) > R be defined by t,(n, z) = 1(«”*(u), B~'(0,2)), where p:R! x
x R"™1 - R""! is the projection. Now, define the mapping ®,, ,, : Ty(ey, &) =
= Ti(ey, &2), B, (1 1, z) = (@™ (1), (™ (), B~1(0, 2), 1) for (u, 1, 2) € Ty(ey, &,).
If %, 20, %, <0 are chosen small enough, then (Ty(x,, ,), idga+1) is a chart
on R**! and (T(%,, »,), ®.',) is a chart on 4 x X. The local representation f of ¢

x1,%2

with respect to the chart (Ty(x,, »,), ¥y,,,) has the form f(u,t,z) = (1,0) for
(.1, 2) € @, (T (%, %,)). Denote Iy = «(W,), I, = {t|0 <t < 1,(u, 2), pel,
B0, 2)eW, a2}, Iy =BW,nX), Iy = {z|(0,z) el}. Let roy = min (g, z)
only x Iy and let ¥ : R* x R! x R"!  R! be a C" function such that ¥ = 0
outside Ry = I,; x {t|4ro <t < §ro} x I, where I, is an open interval in R!
such that I;; = I, I5, is an open set in R"~! such that I;; = I;, ¥ = 1 on the set
Ro =10 x {t|4ry <t < 3%ro} x I, where I, is an open interval in R! such
that I, = I, 15, isan opensetin R"™ ' such that I, = I3 and (3% ¥(u, s, z) ds =
=1 for (g,z)el, x I;. Denote B={geC(I, x I, x I, R"" ") | g(n, 1, z) =
=Y(u, t,2) h(,z), heC(I, x I,,R" ")}. B is a closed, linear subspace of
C'(I; x I, x I, R"" 1) and hence it is a Banach space.

Let o, (n,z) =z + [69(t, s, @ 4(1t, 2))ds for (u,t,z)el, x I, x I, geB
(.. is the flow of g). Define the mapping # : B — C'(I; x Iy, R"™ 1), #(g) (1, z) =
= Quun. o 2) for geB. Let ide C'(I; x I;, R"™!) be defined by id(u,z) = z
for all (u, z) eI, x I, while ITe C'(I; x I, x I;, R" ) is defined by I(u, t,z) = 0
for all (u,t,z) eI, x I, x I;. Obviously #(IT) = id.

Let

4% (g, ) = lim 2+ sh) = Z(9)

s=0 N

be the Gateaux differential and let D#(g, h) be the Frechet differential of #.

Sublemma. If g, he C'(I; x I, x I3, R"™ 1), then
(1) d=# (g, h) exists.
(2) The mapping
dF 1 C(I, x I, x I;, RV x C(I; x I, x I, R"™Y) = C'(I, x I5, R"™Y)
is uniformly continuous in g and continuous in h on the set K(c) = {we B| ||w| <

< 0}, (o> 0) with respect to the C" metric on C'(I; x I, x I, R"™").

Proof. Denote Q(t,s, 11,2, g, h) = @, 440t 2) — @, ,(1, 2). (d[dr) Q(t, s, 1, z,
9:h) = g(u, t, 0, gealtts 2) = 91, 1, 0 g(, 2) + shlp, t, @, g4ap, 2))- Let

t
j h(/"a v, (pv,g+sh(v’ Z) dv

0

)

% (n 1, 2)
4

K, = sup

Iy xI;%xI;3

) K2 = Ssup

Iy xIy;x13

Ky = supt,(u, 2).

I xI3
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Then by Gronwall’s lemma

(*) lo(t, s, i, z, g, h)| £ sK for (u,t,z)el, x I, x I,

where K = K, exp (K,K;). Therefore Q — 0 if s —> 0 uniformly with respect to
(u, 1, 2) eI, x I, x I;. Using [7, Theorem 8.6.2] we have

d 0
a Q(ty S, U, 2,9, h) = I:EZ— g(#s t> (pt,g(ua Z)) + w:l Q(’a S, 1, zZ, 9, h) +

+ Sh(:u, Iy (Ptvg+sh(.u’ Z)) B

where w = w(Q) is a matrix function such that if ¢ > 0, then there is a 6 > 0 such
that |w(Q)| < & for |Q| < d and (u, t,z)el, x I, x I.
Denote X(t, s, i, z, g, h) = Q(t, s, u, z, g, h)[s. Then

d 0
(%) aX(t, s, 1, 2, g, h) = GL g(u, t, @, 41, 2)) X(t, 5, 1, 2, g, h) +
z

+ 9+ h(p, 1, 00 gralpts 2) 5
where y = (w/s) Q.
Using () we have y < K|w| and so y — 0 if s — 0 uniformly. Denote by
Qo(t, 1, z, g, h) the solution of the equation

d 0
(%) Y gt 00y 2) v + b t, 041, 2))
dt 0z
for which the condition Q¢(0, 4, z, g, h) = 0 is satisfied. Since y >0 if s >0
uniformly and the equalities (¥x), (xx*) are satisfied, so lim [Q(t, s, u, z, g, h) —
s=0

— Qo(t, s, 1, 2, g, h)] = 0 uniformly in the C° metric. The convergence in the C
metric can be proved similarly. Since d#(g, h) (1, z) = Qo(t,(1, 2). 1, z, g, h), so
d#(g, h) exists. Since Q(t, s, p, z, g, h) is a solution of the differential equation
(%), the form of this equation implies the assertion (2) of Sublemma.

By [8, VIIL, Theorem 2] and by Sublemma D% (g, h) exists and DF(g, h) =
= d#(g, h) for g,heK(s). DF(g,h) = F'(g)h, where F'(g)eL(B, C'(I, x
x I3, R""')). The mapping g — F'(g) is continuous and bounded in a neigh-
borhood of ITe€ B. Let h, € B. Then there is an hy € C'(I; x I3, R"" ') such that
ho(p, t,2) = P(u, t, z) hy(n, z) for (u,t,z)ely x I, x Iy. [Z'(IT)(ho)] (1, =) =
= lim (1/s) [#F(I1 + sho) (n, z) — F() (1, z)] = [5*? ¥(u, o, 2) hy(p, z) do =

s—=0
= hy(u, z) and so F'(Il) is a linear isomorphism of B onto C'(I; x I, R"™").
F(IT) = id. The conditions of [8, Theorem 10.2.5] are satisfied. By this theorem
there is an open neighborhood N of the mapping id in C'(I; x I, R"~ ‘) and an open
neighborhood N of the mapping IT in C'(I; x I, x I3, R""') such that #|N is
a diffeomorphism of N onto M. U, = {(a, ¢(a, x, t)| —x<t<ux, (a,x)eV x
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x (V0 2)}, Vi1 Uy = R (a, o(a, x, 1)) = («(a), 1, z), where B7'(0, 2) = x,
V, = {o(ao, x, 1) | t(ag, x) — x < t < 1(ag, x) + %, (ag, x)eV; x (Va0 2)}, ¥y, :
2V, > R, ¥, p(ap, x, 1)) = (t,z), B710,2z) = x, »>0. If % is chosen small
enough, then (U,, ¥,,) is a chart on 4 x X at (ao, xo) and (V,, ¥,,) is a chart
on X at x,. Let h, : I, x I, - R""! be the local representation of H, with respect
to (U, 71,), (Vo W2,)- Then hy = id. Let U(H;) = {Fe C'(W, x (W, n Z), )|
| Fe M}, where F is the local representation of H,; with respect to (U,, ¥y,),
(Vs W2)- Then hyeM and g, = # '(hy) is such that @, .. .1 2) =z
+ (6% g,(1, v, @, 4,(1, 2)) dv = hy(n, z) for (u,z)el; x I, where g,(u,t,z) =
= Y(u, 1, z) h(, z). Since ¥ = 0 outside R, (R, is defined on the p. 75), s0 g; = 0
outside R;. Let g€ C'(I; x I, x I3, R") be defined by g(u, 1, z) = (1, g,(1, 1, z))
for (i, t,z)el; x I, x I;. We can define a parametrized vectorfield & such that g
is the local representation of & with respect to the chart (T,(x,, /2) 9., ) and
= ¢ outside Tl(xl,xz) From the properties of g it follows that & e G'(4, X).
The construction of & yields: (1) ¢(a, x, 1(a, x)) = H,(a, x) for (a,x)e W, x
x (W, n X), where ¢ is the parametrized flow of & (2) For every neighborhood
V(&) of &, there is a neighborhood U(H,) = U(H,) of the mapping H, in C"(W, x
x (W, n %), Z) such that if A, e U(H,), then there is a &e U(¢) such that
@(a. x, 1(a, x)) = H,(a, x) for (a, x)e W; x (W, n X) and & depends continuously
on H,.

Remark. Let H : ¥, x (V, n %) - X be the Poincaré mapping and let A : V; x
x (V, nZ)—> X x X be the mapping given by H(a, x) = (x, H(a, x)). Let 4(Z)
be the diagonal in X x X. Denote Z = A™'(4(Z)). W(Z,&) = {(u, t, z) | («™ (1),
B7'0,2)eZ, 0 <t < 7,(n, z). We can choose the function ¥ from the proof of
Lemma 5 such that ¥ = 0 on W(Z, é), Then for every a € 4, the vectorfield &, has
the same closed orbits as the vectorfield &,.

Let &€ G'(4, X) and let y be a closed orbit of the vectorfield &,, through x, of
a prime period to. Let H = H[¢, aq, Xo, 7, V; x (V5 0 Z)] be the Poincaré mapping.
For a e V,, define the mapping H,:V, n X > X, H,(x) = H(a, x) for xe V, n Z.
Denote by G5(4, X) the set of all &e G)(A4, X) such that the mapping T, H,, :

T(V, N Z) > T, X has the following properties: :

(1) Tt has no eigenvalue on S = {Ae C | || = 1} of multiplicity 2.

(2) All eigenvalues of this mapping meet S transversally at (ao, xo).

(3) If a complex eigenvalue of this mapping lies on S, then there is no other eigen-
value on S except of its complex conjugate.

(4) 1t has no complex eigenvalue A such that 2" = 1 for a natural number m > 1.

Remark. The condition (2) means the following: If A, is an eigenvalue of T, H,,.
2o € S, then there is an open neighborhood of (ag, x,) in Z (Z = H'(4(X))) and
a unique C" mapping 1:N — R? such that 1 = (1, 4,), A(a,x) = 2,(a, x) +
+ ily(a, x) is an eigenvalue of the mapping T.H, for (a, x) €N, A(ao, xo) = 4o
and 17 {(uy, p,) € R? |} + pf = 1}.
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j
Denote by G7;,,,(S) the set of all € € G, such that if for (ao, x,) € N( U Yi(&), 247 ")
k=0

there is a closed orbit of the vectorfield é , through x, of a prime period 7, € [jb; — 9;,
(j + 1) b; — &;], then the mapping T, H,, has the properties (1)—(3) from the defini-
tion of the set Gg(4, X) and has no complex eigenvalue such that 2" = 1 (m being
a natural number).

Lemma 7. The set G,

ijgm

A, X) is open and dense in G;,.
1q

Proof. Openness. Let & € Gj,m(S). From [5, Theorem 3] it follows that there
is a §; > 0 and an open nelghborhood Nijf(&o) of &, in G7 (A, X) such that for

EeN (o) N( U Y(€),297") N( U Yi(&), a7* — &) where § > 5, and

N;; (&) = G, Now define the mapping ¥ : N (&) > C~ 1(N(UY,((éo)
q ' =) x (0,(j + 1) by) x L(T(X), T(X)) (L(T(X), T(X)) is defined in [4, §9]),
¥E) = Vo where Viax0) = T 7 = o[ N(UNGE). a7 - ) x

J
< (0. + 1) b)) Glray = (@, . 1) for y eN(U Yilo), 47" = 9).
Let W = L(T(X), T(X)) be the set of all B e L(T(X), T(X)) such that

(1) Be (T X, T, X) for some x € X;
(2) B has eigenvalues on S (different from 1) of multiplicity >2.

The set W is a closed subset of L(T(X), T(X)). By [4, Theorem 18.1] the set

uq {é ENuq(éO) | {lp(é) (N( U Yk(qo) q - 5) X [jbi - 5-‘: (J + ]) bi - 5.‘]} [
N W= 0} is open in N,;,(&). Therefore, there exists an open neighborhood N (&)

of & in G} (A, X) such that for & e Ny(&o), {¥(&) [N(kgoyk(g), 2471 x [jbi — 5,

(j + 1) b; — &;]]} » W = 0 and this proves the openness of (1). The openness of (4)
can be proved similarly. The openness of (2) follows from [4, Theorem 18.2] and the
openness of (3) is clear.

j
Density. Let & € GYj,, (4o, Xo, 7o) e N(U Yi(£), 247 ") x [jb; — 8;, (j + 1) b, — 6]
k=0

and let y be a closed orbit of the vectorfield ¢,, through x, of a prime period 7.
Let H = H[¢, ag, Xo, 7, V; x (V, n Z)] be the Poincaré mapping such that Z =
= H™'(4(2)) is an open 1-dimensional submanifold of ¥, x (V, N X). Let W, x W,
be an open neighborhood of (ay, x,) such that W; x W, = V; x V,. By [3, Theorem
2] there is an F e C'(W; x (W, n X), ) arbitrary close to H/W; x W, such that
for (a,x) e W, x (W, n X) the mapping T,F, (F,(y) = F(a, y)) for y € W, n ) has the
properties (1)—(4). By Lemma 6 there is a & € G'(4, X) such that H[E, aq, x,, 7, W; X
x (W, n X)] = F|W, x (W, n X), where 7 is a closed orbit of &,, close to y which
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can be constructed arbxtranly close to ¢ if F is close enough to H/W1 X (W2 N Z)

Since the set N( U Y(¢),2¢7Y) x [jb; — 6, (j + 1) b; — &,] is compact, the proof
of Lemma 7 is complete.

Proposition 2. The set G5(A, X) (r 2 1) is residual in G'(A, X).

The proof of this proposition follows from Lemma 7 analogously as Proposition 1
from Lemma 4.

For £ € G'(4, X) denote by P,(&) the set of (a,x)€ A x X such that the vector-
field &, has a closed orbit through x of a prime period 7 and 2 = 1 is the eigenvalue
of the mapping T,¢, of multiplicity 2. Let P,(&) be the set of (a,x)e A x X
such that 4 = —1 is an eigenvalue of the mapping T,¢(, ..

Let ¢ € Gj,(S), (aq, xo0) € Py(&). Then there is a chart (U x V, & x f)on 4 x X
at(aq, xo) such that «(a,) = 0, B(x,) = 0and thelocal representation of the mapping
H = H[¢&, ag, X0, 7, Vy x (V3 1 )] with respect to this chart has the form

V2 = Y1 + o + “zJ’f + w(ll, Vi Zl)a Z; = le + X([I, Yis Zl)’

where dim y, = 1, dimz, = n — 2, 0, X e C", X(0,0,0) = 0, w(y, y,, 0) contains
only u%, uy, and terms of higher order than 2 and B is a matrix which has the fol-
lowing properties:

(i) B has no eigenvalue on S of multiplicity >2.
(ii) If a complex eigenvalue of B lies on S, then there is no other complex eigenvalue
on S except of its complex conjugate and A = 1.
(iii) B has no complex eigenvalue A such that A™ = 1 for a natural number m > 2.

Let D7}, be the subset of GY;,,(S) such that for all & € D, the matrix B from the
expression of the local representation of H has no complex eigenvalue on S and
A = —11is not an eigenvalue of B. This set is open and dense in Gj;,,. The openness
is obvious. To prove density we assume ¢ € Df;,,. We change H into H by changing
the term Bz, in the local representation of H into (B + ¥(u, y,, z;) 6E) z,, where E
is the unit matrix, ¥ is a C" bump function vanishing outside (x x g)(U x V)
and equal to 1 at a neighborhood of (0,0, 0), 0 < § is a real number such that
B + &E has no complex eigenvalue on S and A = —1 is not an eigenvalue of B + JE.
By Lemma 6 there is a & such that for every a € 4 the vectorfield &, has the same
closed orbits as &, H[E, aq, xo,7, V; x (V3 0 Z)] = H and & can be constructed
arbltrarlly close to & if § is sufficiently small. _

Denote by LY;,m the set of all & € DY, such that if (ag, x,, 7o) € N( U Yi(¢), 297 1) x

x [jb; — 8; (j + 1) b; — &;] and y is a closed orbit of & then there is a chart
(U x V, a x p) as before such that a, =+ 0.

ijgm

Lemma 8. The set L;,,, (r = 2) is open and dense in G'(4, X).

The proof of this lemma is analogous to the proof of Lemma 7.
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e Lo}
Define the set G5(4, X) = r
ne the s 2( ) J\qQ:l inLiqu' For Ce G'(A,X), H=H[§, ag, Xo, ¥, V1 X

x (V, n.}:)] define the sets Zy(H) = {(a, )€V, x (V, n 5) | HYx) = x, Hi(x) + x
for0 <j <kj k=12, ..., where Hy(x) = H,(x) = H(a, x), Ha(x) = H,(H;™'(x)).

Theorem 1. There is a residual set G3(4, X) (r = 2) in G'(4, X) such that the
following is true: If & € G5(A, X), then

(1) the set P,(&) consists of isolated points.

(2) If (aq, xo) € A x X, vy is a closed orbit of the vectorfield &,, through x,, then
there is a chart (Vy x Vy, hy x hy)on A x X at(aq, xo), hy(ao) = 0, hy(x,) = 0
such that
(a) the Poincaré mapping H = H[¢, aq, Xo, 1, Vi x (Vo 0 Z)] is defined and
Z, = Z,(H) is a 1-dimensional submanifold of A x X.

(b) If(ao, XO) € Pl(é), then (h1 X hz) (Zl(H)) = {(ﬂa YVis Yas oo yn) | n= q’O(.Vl)?
vi=o{y1),i =1,...n,y, €J}, where J is an open interval,0e J, ¢; € C',
i=0,1,...,n,

d d?
?6(0) =0, —¢o(0) =0, —i(po(O) >0.
dy, dyi

(c) If u > 0, then there are exactly two numbers y, >0, z; < 0 such that
(ay, x;) = (hy x hy)™ 1 (u, vy, 0) € Z,(H), (ay, x;) = (hy x hy)™' (1, 2,,0) €
€ Z,(H) and the following is true: If s is the number of eigenvalues of the
mapping T,,H,, with moduli >1, then the number of eigenvalues of the
mapping T, H, with moduli >1iss — 1.

x2°%ay

(3) 1f (a, x) € Py(€), then the mapping T.H, has exactly one eigenvalue equal to 1.
(4) Vi x (V, n %) — Z,(H) contains no invariant set.

Proof. It is possible to prove this theorem by virtue of Lemma 6 and using the
results of P. BRUNovsKY [3], who has proved a similar theorem for one-parameter
families of diffeomorphisms.

Let ¢ € Gj,,(S), (a0, xo) € P5(¢). Then there is a chart (U x ¥V, a x f)on 4 x X
at (a,, Xo) such that «(a,) = 0, f(x,) = 0 and the local representation of the mapping
H = H[¢, aq, x4, 7, V; x (V5 0 X)] with respect to this chart has the form

Y2 = =Yy +oguy, + °‘2,Vf + yi + w(u, Vs 21) ,
z, = Cz, + X(u, Vi zl),

where dimy, =1, dimz, =n — 2, 0, X e C", X(0,0,0) = 0, w(u, y,, 0) contains
only p?, uy, and terms of higher order than 2 and C is a matrix which has the
properties (i)—(iii) as the matrix B above (see the case (aq, Xo) € Py(¢)).

Denote by M7, . the set of all ¢ € GY;,,,(S) such that the matrix C from the expres-

ijgm ijqm
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sion of the local representation of H has no complex eigenvalue on S and 4 =1
is not an eigenvalue of C. By the same argument as in the case (ao, xo) € Y;(£) the
set M bjam is open and dense in Gj;,,(S). Denote by N7;,,, the set of all & € M7, such
that ocz + yl =+ 0. This set is open and dense in G'(4, X). Therefore the set G3(4, X) =

= n UNqu is residual.

j.qm=1i=1
Using [3, Theorem 4] and using our method of construction of vectorfields to

the Poincaré mapping, it is possible to prove the following theorem.

Theorem 2. There is a residual set G3(A, X) (r = 3) in G'(A X) such that the
following is true: For & € G5(A, X),

(1) the set Py(&) consists of isolated points.

(2) If (ag, xo) € Py(¢) and H = H[¢, ag, x0,7, Vy x (Vo Z)] is the Poincaré
mapping, then Z, = Z,(H) is a 1-dimensional C"~' submanifold of A x X.

(3) Vi x (V;nX) = (Z, v Z,) contains no invariant set.

Let T be a positive real number and let G'(4, X, T) be the set of &€ G"(4, X)
with the following properties: If y is a closed orbit of the vectorfield &, (a eA)
through x of a prime period t < T and H = H[¢, a,x,y, V; x (V, n X)] is the
Poincaré mapping, then

(1) v is A-transversal,

(2) the mapping T.H, (H,(x) = H(a, x) for xe V; x (V, n X)) has the properties
(1)—(4) from the definition of the set G§(4, X).
(3) a) If (a, x) € P,(¢&), then T,H, has no complex eigenvalue on S and has not the
eigenvalue A = —1.
b) The Poincaré mapping H = H[¢, a,y, V; x (V, N X)] has the local represen-
tation as on p. 79, where o, #+ 0.

(4) a) If (a, x) € P,(&), then T,H, has no complex eigenvalue on S and has not the
eigenvalue 1 = 1.
b) The Poincaré mapping H = H[¢, a, x,y, V; x (V, n X)] has the local repre-
sentation as on p. 80, where a3 + y; + O.

(5) The mapping T,H, has no complex eigenvalue A such that A" = 1 for a natural
number m < [T]], where [z] denotes the greatest integer strictly less than z.

For ¢ e G'(4, X) denote by P,(&, T) (Py(&, T)) the set of (a, x) € Py(¢) ((a, x) €
€ P,(&)) such that the closed orbit of the vectorfield &, through x has a prime period
t<T

Let Yo(¢) = {(a,x)e A x X | &(a,x) = 0} for ¢eG'(4,X), where 0, denotes
the zero of the space T,X. For (a, x)€ Yy(¢) denote by &,(x): T.X - T.X the
Hessian of the vectorfield &, at x ([4, § 22]).

81



Let G}(4, X) be the set of all £ € G"(4, X) with the following properties: If (a, x) €
€ Yo(&), then .

(1) if the mapping ,(x) has an eigenvalue 0, then it has multiplicity 1,
(2) if &,(x) has a complex eigenvalue with zero real part, then it has multiplicity 1,
(3) if é,,(x) has an eigenvalue 0, then it has no complex eigenvalue with zero real part.

By [1, Theorem 1, Theorem 2] the set G}(4, X) is open and dense in G"(4, X).
Let Gj(4, X, T) = G'(A4, X, T) n G4(A, X). We shall prove the following lemma.

Lemma 8. The set G}(A, X, T) (r = 3) is open and dense in G'(4, X).

Proof. Density follows from Gj(4, X, T) o G5(4, X) n G3(4, X) n Gi(A4, X).
Now, we shall prove the openness. It suffices to prove it for the set G}(4, X, T) =

= Gy(4,X) n G}(4, X, T), because G'(4,X,T)= U Gy(4,X,T), where {L}7=,
i=1

is an increasing sequence of positive numbers such that lim L; = +oo0. If (€
i—> oo

€ Gi(4, X, T), then by Lemma 1 for a € A every closed orbit of the vectorfield ¢,

has a prime period =b, where b = 4/L.

Let ®:G(4,X) > C(Ax X x R*, X x R* x X) be the mapping defined
on p.71. The properties (1)—(5) of the set G'(4, X, T) together with the properties
(1)—(3) of the set G%(4, X) imply that if &, e Gi(4,X, T), then (&)~ 4 on
A x X x [b, T]. By [4, Theorem 18.2] there is an open neighborhood N(&,) of &,
in G'(4, X, T) such that ¢(¢) m 4 on A x X x [b, T] for & e N(&,) and this yields
the openness of the property (1).

Let L(ty) : L(T(X), T(X)) » X x X be the linear map bundle defined in [4, § 9],
whose fiber over a ponit (x, y)e X x X is the Banach space L(T, X, T,X) of con-
tinuous linear maps from T,.X into T,X, ie. L(T(X), T(X)) = U L(T.X, T,X).

(x,)
Let W; (i = 1, 2, 3) be the set of all 4 € L(T(X), T(X)) such that

(H) A4eL(T.X, T.X) for some x € X,

(H1) A e W, has the eigenvalue A = —1 of multiplicity > 1,

(H2) A € W, has a complex eigenvalue on S of multiplicity >1,

(H3) A e W; has a complex eigenvalue A such that 2* = 1 for a natural number
k < [T/b].

By an argument similar to [4, Theorem 30.2], W; = U . (i = 1,2, 3), where W;;

are submanifolds of L(T(X), T(X)) and W, (i = 1,2, 3) are closed.

Define the following mapping:

@' :G(A4,X) > C (4 x X x R*, (T(X), T(X)) for &eG(4,X), ¥'(¢) =
for &€ G'(4,X), where @y(a, X, 1) = T.0% o, (a,x,1)e A x X x R*, ¢f, (x) =
= ¢¥a, x, t), ¢ is the parametrized flow of ¢ The mapping ¢’ is a C'™!
representation.

82



Let &, € G}(A, X, T). From the properties (1)—(4) of the set G'(4, X, T) and from
the properties (1)—(3) of the set G4(4, X) we obtain that ®'(&) (4 x X x [b, T]) n
N W, =0 fori=1,23. Since A x X x [b, T] is compact and W, (i = 1,2,3)
are closed, [4, Theorem 18.2] implies that there is an open neighborhood N,(&,)
in Gi(4,X.T) such that ¢'(§)(4A x X x [b, T])) A W, =0 for i =1,2,3, e
€ N,(&o)- This establishes the openness of the properties (2)—(5) except of the open-
ness of the property that there are not two eigenvalues of T.H, on S and that o, + 0
(«3 + v, # 0). It is clear that if (a, x) € Py(&, T) ((a, x) € P5(&, T)), then there is
a neighborhood U x V of (a, x) in A x X and a neighborhood N,(¢,) such that for
all £ e N,(&p) thesets Py(E, T) = U x V(Py(&, T) = U x V). Let(a,X)e Py(&, T) n
N (U x V) and let 7 be the closed orbit of &; through X. Since &, € Gj(4, X, T),
so for N,(&,) sufficiently small, the Poincaré mapping H = H[¢, 4, 5,7, U x
x (V n X)] has the form as on p. 79 (p. 80) such that a, & 0(«3 + y; + 0)and T.H,
has no two eigenvalues on S. Since 4 x X x [b, T] is compact, the sets P,(g’o, T),
P,(&y, T) are finite and the proof of Lemma 8 is complete.

The following theorem is a consequence of Lemma 8:

Theorem 3. There is an open, dense set G5(A4, X, T) in G"(4, X) (r 2 3) such that
if £€Gy(A, X, T), then

(1) Py(&, T) and P,(&, T) are finite.

1) If (ay, xo) €A X X and y is a closed orbit of the vectorfield £,, through x,
0
of a prime period v < T, then the properties (2)—(4) of Theorem 1 and the
properties (2)—(3) of Theorem 2 are fulfilled.
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