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LIMITS AND COLIMITS IN GENERALIZED ALGEBRAIC CATEGORIES

Jiki ADAMEK, Praha

(Received January 24, 1974)

The paper presents a complete discussion of the existence of limits and colimits in
a certain class of categories, which generalize categories of universal algebras. Given
functors F, G from sets to sets (with arbitrary variances) the generalized algebraic
category A(F, G) has objects (X, w) where X is a set and w : FX — GX is a mapping;
morphisms from (X, w) to (X', ') are mappings f : X — X' for which the diagram,
consisting of Ff, Gf, w and ' commutes. An example of such a category is presented
by every category of universal algebras of a given type; and there are many others.

The generalized algebraic categories were introduced by V. TRNKOVA and P.
GORALCIK. A considerable amount of papers investgate limits and colimits in A(F, G)
with a common variance of F and G. The present paper is devoted to the case
that the variances differ. The diagram mentioned above is

FX—2— gx FX—Y—>Gx
Ff Gf Ff Gf
FX'T’ GX' FX'-—T"GX'

F covariant, G contravariant F contravariant, G covariant

We investigate the existence of limits and colimits in the categories A(F, G) and
A(G, F) where F is an arbitrary contravariant set functor and G a covariant one. We
omit the case that some of the functors is constant for the sake of brevity. The
table below, where + means that the limits exist and — means the contrary, sum-
marizes the results.

The results concerning limits in A(F, G) are analogous to those concerning colimits
in A(G, F). We denote the analogous theorems by * and, if the proofs are also quite
similar, we omit them. The same holds for colimits in A(F, G) and limits in A(G, F).
Notice that the results are independent of the choice of the functors, depending
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Finite Equalizers Single- | Finite Coequal. Cosin-
Products or ton Sums or gleton
Pullbacks Pushouts |
A(F, G) - - | + IFF - + -
|61 =1 *)
A(G, F) - + - - - + IFF
S FO = Qor
i |Go| =1
|

*) -+ holds for an arbitrary connected diagram scheme.

only on their variances (the only exception is singleton and cosingleton). We prove,
moreover, that whenever limits or colimits exist then, in the underlying sets, they
coincide with the limits and colimits in Set, the category of sets. More precisely,
they are preserved by the natural forgetful functor [J : A(F, G) — Set (O(X, w) = X
and [Jf = f for a morphism f).

The contents of the paper:

I. Preliminaries
II. Limits in A(F, G) (colimits in A(G, F))
III. Colimits in A(F, G) (limits in 4(G, F))

I. PRELIMINARIES

A. Given a category 2, 2° denotes the class of objects and Z(a, b) the set of
morphisms from a to b.

B. The category with no objects will be denoted by 0 . 1 wil denote both the stan-
dard one-point set 1 = {0} and its cardinal. The power of a set X is denoted by IXI

C. A diagram in a category K is, as usual, a functor from a small category, called
the scheme, into K. K is said to have limits over a scheme 2 if each (covariant)
diagram over this scheme in K has a limit; analogously for colimits.

D. A small category 2 is said to be connected if 2 + @ and whenever 2 is a sum
D=2, v D, then either 2, = 0 or 2, = 0. (In particular,  is disconnected.)
Clearly, a category 2 =+ 0 is connected if and only if for each pair of its objects d, d’
there exist objects d = dy, dy,...,d, = d’ such that for every i = 1, ..., k either
D(d;-,, d;) or (d;, d;_,) is non-void.
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E. The limit of the void diagram (the diagram over 0) is called the singleton.
It is an object s such that from any object o there leads just one morphism to s;
analogously for cosingleton. In Set, any one-point set is a singleton and the void
set is a cosingleton.

F. Given a mapping f: A —» B, denote by im f the set of all f(a) where a € A.
If f is the constant mapping to b € B we shall write f = const b.

G. Let H be a covariant set functor. An element ¢ of H1 is said to be a distinguished
point of H if, given arbitrary mappings f, g : | - X, we have Hf(r) = Hg(1) = ty.
Clearly, for an arbitrary mapping k : A - B we have Hk(t,) = t5.

H. All monomorphisms in Set are coretractions, if the domain is not @. Thus, if f
is a one-to-one mapping with a non-void domain then for any set functor H, if H
is covariant then Hf is one-to-one and if H is contravariant then Hf is onto. Analo-
gously for mappings onto. If H is an arbitrary non-constant set functor then HX + 0
for any set X + (. We call, for short, a set functor constant if its restriction to the
category of non-void sets is a constant functor.

I. A non-void collection {f;},; of mappings with a common domain X + 0 is
said to be a collective monomorphism if, given arbitrary distinct a, b € X, there
exists i €I such that f,(a) + f(b). We say that a covariant set functor H preserves
collective monomorphisms (or, respectively, finite collective monomorphisms) if,
given a collective monomorphism {f},.; (where I is finite), then also {Hf.},; is
a collective monomorphism.

J. Throughout the following text, F and G denote respectively an arbitrary non-
constant contravariant or covariant set functor.

K. Let H be an arbitrary non-constant set-functor (covariant or contravariant).
It is proved in [6, 7] that for every cardinal number there exists a set X such that the
power of HX is bigger than the cardinal number.

IL. LIMITS IN A(F, G) (COLIMITS IN A(G, F))

Lemma 2,1. A(F, G) has a singleton if and only if IGll = 1. The singleton has
then a one-point underlying set (i.e., it is preserved by [J).

Proof. If [Gll = 1 then there is just one object in A(F, G) with the underlying set 1
and it is easy to verify that it is a singleton. If ‘Gl| #+ 1 then |Gl| >1(GL+0
since G is non-constant). Assume that A(F, G) has nevertheless a singleton (B, w).
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Choose a, b € G1, a # b. There exists a unique ,: (1, const a) > (B, ®) and a unique
ty: (1, const b) —» (B, w). Then clearly = const (G #,(a)) = const (G t,(b)), in

F1 const a 61

A

FB—2 B

4
F1 const 961

particular G t,(a) = G t,(b). Let d : B — 1, then we have dt, = dt, = id, and so
a = b, a contradiction.

Lemma 2,1*. A(G, F) has a cosingleton if and only if either G} = 0 or |F(2)| = 1.
The cosingleton has then the void underlying set (i.e., it is preserved by D).

Theorem 2,2. The forgetful functor [ preserves all limits which exist in A(F, G).

Proof. Let D: % — A(F, G) be an arbitrary diagram. Due to Lemma 2,1 we
may assume that 2 is non-void. For d € 27 denote Dd = (X, »,). Let <X, {f;}4ea-)
be the limit of (] - D (in Set).

Assume that D has a limit in A(F, G), {(Z, o), {rs}4e0-y. Then (Z, {r;}> is a bound
of [J - D and so there exists a unique mapping r : Z —» X with r, = f, . r for all d.
We shall prove that then also {(X, Gr. . Fr), {f,}> is a limit of D. Let {(Z’, '),
{ri}> be an arbitrary bound of D. There exists a unique mapping ' : Z’ - X with
ry = fy. 1. It clearly suffices to show that »' is a morphism, i.e. that Gr . w . Fr =
= Gr'. ' . Fr'. But this is a simple consequence of the fact that (Z, w) is a limit of D.

Theorem 2,2*. The forgetful functor [ preserves all colimits which exist in
A(F, G).

Definition. We say that a category Kis directed if for each pair of its objects d,, d,
there exists an object d with K(d,,d) + 0 + K(d,, d). The dual notion: dual
directed.

Definition. A contravariant set functor H is said to spread limits over a scheme 9
if there exists a diagram D : @ — Set with a limit <Z, {f,},.4-> such that HZ +
*+ Uim Hf,.
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Proposition 2,3. Every non-constant contravariant set functor spreads limits
over any scheme which is not dual directed.

Proof. Let F be a non-constant contravariant set functor.

1. F spreads products of pairs.

Let {f,g} be a collective monomorphism, f:M - X, g:M - Y. If FM +
+ im Ff U im Fg then F spreads the product of X, Y denoted <X x Y, {ny, ny}>:
let h: M - X x Y be the unique mapping with f = nxh, g = nyh. Then h is one-
to-one and so Fh is onto and we have im Fry U im Fry = im F(nyh) U im F(nyh) =%
+ F(X x Y). Now, assume that for an arbitrary collective monomorphism {f, g}
we have FM = im Ff U im Fg. Then denote P~ = Hom (—, 2); clearly {P~ . Ff,
P~ Fg} is a collective monomorphism, thus P~ F preserves finite collective
monomorphisms. It was proved in [10] that, whenever a covariant set functor
preserves finite collective monomorphisms then it can be expressed as a sum K, v K,
where K, has no distinguished point and K, is constant. Such a functor has clearly
the following property: given an arbitrary distinguished point ¢t of K and an arbitrary
mapping h : 4 > B we have Kh™'(t5) = {t,}. (This is, in fact, a reformulation of
the above condition.) The proof of I will be completed if we show that P~ - F does
not fulfil this condition. As F is non-constant there clearly exists a mappingf: A - B
such that Ff is not onto. Let pe FA — im Ff and let ¢ be a distinguished point of
P~c F:t =0 (as an element of exp F1); for every set X we have ty = 0. As P~ o
- Ff({p}) = 0, clearly (P~ Ff)™" (ts) 2 {t4}-

1. F spreads limits over any scheme 2 which is not dual directed.

Let X, Y be sets with the product (X x Y, {ny, ny}> such that F(X x Y) #
# (im Fry U im Frny). Further, let dy, d, be objects of & such that for an arbitrary
object d either 2(d, d,) = 0 or 2(d, d,) = 0. Define a diagram D : & - Set:

Dd =X if 2(d,d\)+0,

Dd=Y if 2(d,d)*0, '

Dd=1 if 2(d,d)=0, i=12;
let § be a morphism from d to d’

Ds=idy if Dd' =X,

DS =id, if Dd

D6 = const if Dd’

Yy
1.

]

Clearly, (X x Y, {f,}>, where f, is either my or 7, or const, is a limit of D in Set
and F(X x Y) #+ Uim Ff,. This completes the proof.

Theorem 2,4. If F spreads limits over a scheme @ then A(F, G) has not limits
over 2.
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Proof. Let Dy : 2 — Set be a diagram whose limit (Z’, {f;}) is spread by F.
Let M be a set with |[GM| > 1 (it exists as G is non-constant). Let D, be the sum of
the diagram Dj, and of the constant diagram to M (then, for each object d, Dod =
= Dyd v M; denote by g, the inclusion of Dyd into Dod). If <Z, {f,}> is a limit
of D, then there exists a unique g : Z’' — Z with fu,g = g.f,; g is clearly one-to-one.
Then F spreads the limit of D,, too: if FZ = (J im Ff, then FZ' = J im Fg Ff} (as Fg
is onto) but FZ’' 2 U im Ff; o | im FfjFg, = Uim Fg Ff,.

We shall now find a diagram D : 2 — A(F, G) which has no limit in A(F, G).
As |GM| > 1, clearly also |GZ| > 1; let a, b be distinct elements of GZ. The dia-
gram D is defined as follows: for each object d, Dd = (Dod, const G f,(a)) and,

qbeGZ

FDd *

[ S

.
[ R,
LR R

GDd

moreover, []. D = D,. Assume that D has a limit in A(F, G). Then, due to Theorem
2,2, without loss of generality the limit is {(Z, w), {f,}» for a suitable w : FZ - GZ.
We have clearly two bounds of D : {(Z, const a), {f,}> and {(Z, '), {f;}> where
o' = consta on Jim Ff; and w = const b on FZ — Jim Ff,;. Therefore there
exists a unique r : (Z, const a) - (Z, w) such that for all d, fyr = f,; (Which implies
that r = id, and so w = const a); furthermore there exists a unique r' : (Z . »") -
— (Z, ) such that f;r = f; and so @’ = w = const a, a contradiction. Therefore D
has no limit in A(F, G).

Corollary 2,5. A(F, G) has not limits over any scheme which is not dual directed.
In particular, it has not finite products and pullbacks.

Theorem 2,5*. A(G, F) has not colimits over any scheme which is not directed.
In particular, it has not finite sums and pushouts.

Proof.
I. A(G, F) has not finite sums.
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As both functors G, F are non-constant there clearly exist sets U, V with the sum
U v ¥, {iy, iy} such that |im Giy — im Giy| > |G1| and that Fiy is not a bijection.
Then Fi, is not one-to-one and we may choose distinct t,ueF(U % V) with
Fiy(t) = Fiy(u); moreover, we choose an arbitrary a €im Giy — im Giy. Then

GUvV)
Gi, Gi,
GU GV
const Fiyt) const Fi,(t)
FU Fv
Fiy Fi,
F(uvv)

A(G, F) has no sum of (U, const Fi,(t)) and (V, const Fiy(t)). Assume the contrary.
Then due to Theorem 2,2 the sum would have a form {(U v V, ), {iy, iy}> for
a suitable . Clearly, (U v V, const ), {iy, iy} is a cobound and so there exists
a unique r:(U v V,w) - (U v V, constt) such that r.iy =i, and r.i, =
= i, — then, of course, r = idy,,, which proves that w = const . On the other
hand, as a ¢ im Gi,, we have another cobound {(U v V, '), {iy, i, }> where '(a) =
= u, else ' = const t. Then, reasoning as above, we get ® = w — a contradiction.

I1. If 2 is not directed then A(G, F) has not limits over 2.

Let dy, d, be such objects of & that for each object d either 2(d,, d) = 0 or
2(d,, d) = 0. Let W, = (U, const Fiy(t)) and W, = (V, const Fiy(t)); we proved
above that W, and W, have no sum. Denote by py and p, the void mappings to the
set U and V, respectively. Then iy.py = iy . py and we put x = F(iy . py) (?).
Finally, put W; = (0, const x).

To construct a diagram D : 2 — A(G, F) with no colimit we proceed in the same
way as in part II of the proof of Proposition 2,3, using W,, W,, W, instead of X, Y, 1
(in particular, DS is the void mapping if the domain is Wj).

Theorem 2,6. A(F, G) has not equalizers.

Proof. As F and G are non-constant functors there clearly exist mappings
f, 9 : X - Ysuch that (a) FX # im Ff U im Fg (i.e., there exists.a € FX — (im Ff U
U im Fg)) and (b) the equalizer of Gf, Gg in Set is neither GX nor 0 (i.c., there exist
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t,u € GX such that G f(u) + G g(u) and G f(t) = G g(t) = t,). Put © : FX — GX,
w(a) = u, else ® = const t. Then clearly f, g : (X, w) > (¥, const t;) and we shall

Fy const t'G y

Ff Fg Gf Gy
FX 9 ,GX

Fi Gi

Fz—2 >z

prove that f, g have no equalizer in A(F, G): if i :(Z, ®) - (X, o) fulfils fi = gi
then Gi. & . Fi(a) = w(a) = u and we get a contradiction as Gf. G i(x) *
# Gg . G i(x) where x = &F i(a).

Theorem 2.6*. A(G, F) has not coequalizers.

III. COLIMITS IN A(F, G) (LIMITS IN A(G, F))

Lemma 3,1. A(F, G) has not finite sums.

Proof. Let A, A, be sets with the product (4, x A,, {mn;, n,}> such that
F(A; x A,) % im Fr, U im Fn, (see Proposition 2,3). The sets can be certainly
chosen so that |G(4, x A,)| > 1. Choose distinct x, y € G(4; x A,) and let te
e F(A, x A,) fulfil t¢im Frn;, i = 1,2.

We shall prove that A(F, G) has no sum of (X, wy) and (Y, wy), where X = Y =
= A X A,; wy = constx, wy(t) =y, else wy = constx. To do this, it clearly
suffices to find distinct cobounds with underlying mappings n, and =,. It follows
immediately from the properties of 4;, 4, and of x, y, t that such cobounds are
{(Ay, const G m(x)), {ny, m,}> and {(4,, const G m,(x)), {rny, m,}>.

Lemma 3,1*, A(G, F) has not finite products.

Proof. For an arbitrary set M denote by r,, the mapping from M to 1. As both F
and G is non-constant, there clearly exists a set X such that |GXl > lGll and lFX‘ >
> |F1|. Put 4 =X x {1,2}, b = Au 1. Define f,g: 4 > B:

foreach xeX, g({x,1)) =0 (recall that 1 = {0})
9({x,2)) = <x, 2y,
fx,iy) =<x, 1), i=12.
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Choose h : B —» X so that hf is onto while hg is constant. As im f nim g = 0 and
|G(im g)| > |G1], clearly there exists u € im Gg — im Gf; choose t € GA with G g(r) = u.

Let us prove that there exist g € F1 and a € FB such that F f(a) + F r,(q) =
= F g(a). As hg is constant there exists j : 1 - X with jr, = hg. As |FX| > |F1
there exists g € F1 with |(Fj)*(q)| > 1. Choose b e FX, b + F ry(q) with F j(b) =
= q. Put a = F h(b). As hf is onto, F(hf) is one-to-one and as r, = ryhf we have
F f(a) + F r4(q). Furthermore, r, = ryhf and so F g(a) = F(jrs)(b) = F r,(q).

We shall show that A(G, F) has no product of (B, w,) and (B, ®,) where o, =
= const F ry(q), w,(u) = a else w, = const F rg(q). Let, to the contrary, {(Z, w),
{@1, @,}) be their product. As u ¢ im Gf we have a bound {(4, const F r4(q), {f, f}>
and as F g(a) = F r,(q) we have a bound {(A4, const F r4(q)), {9, g}>. Therefore
there exist mappings h, k such that f = ¢,h = ¢,h and g = ¢k = ¢@,k. Con-
sequently F ¢,(a) = F r,(q); hence (G k(t)) = Fo, .o, .Go,(G k(1)) = F r,(q)
(because r; = ry.¢,) and (G k(t)) = Fo, . w, . Gpy(G k(1)) = Fo, . w, . (u) =
= F ¢,(a). This leads to a contradiction as Fh(F ¢,(a)) = F f(a) + Fr,(q) =
= Fh(F r4(q)) = Fh(F ¢(a)).

Lemma 3,2. A(F, G) has no cosingleton.

Proof. Let, to the contrary, (B, w,) be a cosingleton. As the functors F, G are
non-constant there exists a set X with |FX] > [GB[ and lGX| > IGB|. Letw: FX —
— GX be an arbitrary mapping with |im w| > GB. There exists a unique morphism
f:(B, wp) = (X, w); then w = Ff . w, . Gf which is a contradiction as Iim a)ol <
< |im o).

Lemma 3,2*. A(G, F) has no singleton.

Theorem 3,3. A(F, G) has colimits over a given scheme if and only if the scheme
is connected. In this case the colimits are preserved by the forgetful functor .

FX
~ \
FXs . FXgq, ® Do *FXy,
Wy Wy, 0y,
¢
GDdo
Gxdo . ---GXd1 o« 2Y" .Gxdl...
N /
X
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Proof. It follows from Lemmas 3,1 and 3,2 that A(F, G) has not colimits over
any non-connected scheme 2:if 2; £ 0and @ = 2, v 9,, let «/,, o, be algebras
in A(F, G) which have no sum and let D : 2 — A(F, G) be the diagram which on 2,
is constant to «/; and on 92, is constant to /,. Then D has no colimit in A(F, G).

To prove the theorem we shall show that if 2 is an arbitrary connected scheme then
A(F, G) has colimits over 2 preserved by (. Let D : 2 — A(F, G), let Dd = (X, w,)
and let <X, {f,}4cg-> be the colimit of D in Set. We try to find  : FX — GX such that
(X, w), {fa}> is the colimit of D. To this end verify that w = Gf, . w, . Ff; is in-
dependent of d. In fact, if there exists a morphism J : d — d’ then clearly Gf; . w, .
- Ffa = Gfs . o, . Ff;. Now apply the fact that & is connected (see 1.D.).

Using the fact that (X, {f;})> is the colimit of [J. D in Set, it is now rather easy
to prove that w is the desired mapping.

Corollary 3,4. A(F, G) has pushouts and coequalizers.

Theorem 3.3*. A(G, F) has limits over a given scheme if and only if the scheme is
connected. In this case the limits are preserved by the forgetful functor [].

Corollary 3,4%. A(G, F) has pullbacks and equalizers.

As a consequence of the results of both parts of the paper we obtain:

Theorem 3,5. Let H,, H, be non-constant set functors with different variances.
Whenever the category A(H,, H,) has limits or colimits over a given diagram scheme
then they are preserved by the forgetful functor 0.
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