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EXTENSIONS OF ORDERED SEMIGROUPS*) 

ADAM J. HULIN, New Orleans 

(Received July 6, 1972) 

By an ordered semigroup we mean a system (S, o, < ) where S[o) is a semigroup, 
5 ( < ) is a totally ordered set, and the monotone condition — a ^ b and x in S imply 
ax ^ bx and xa ^ xb — is satisfied. 

An (ideal) extension of a semigroup 5 by a semigroup Г with zero is a semigroup I 
containing S as an ideal such that IJS, the Rees factor semigroup, is isomorphic 
with T. 

Let S and Г be disjoint semigroups, Г having a zero element 0, and let Г* = T\0. 
Let Ф be a single-valued mapping of Г* into S satisfying tt' ф 0 impHes (tt') cp = 
= t(pt'(p, and hi Z == S Kj T*. Let о be defined on I as follows (t, f e T"^; s, s' e S): 

\tt' if r̂ ' Ф 0 , 
I Г(рГ> if rt' = 0 ; 

(Ml) t о r 

(M2) t oS = {tip) s ; 

(M3) s ot = s{t(p) ; 

(M4) 5 о S' = S5' . 

Then I is an extension of S by Г. [1, Theorem 4.1] (A necessary and sufficient con­
dition for every ideal extension of S to be determined in this manner is that S have 
an identity element.) 

The object of the present paper is to initiate an investigation of the following 
problem: If I* is an extension of one ordered semigroup S by another ordered semi­
group T with zero, ascertain if it is possible to define a monotone order on I which 
extends the given orders on S and T*; and, if so, to describe all possible ways of 
doing so. The results estabHshed are limited to the case when I is defined as above 
in terms of a partial homomorphism (p of T* into S. 

Let M be the set of all annihilators of T; i.e., ^ G M if and only if t Ф 0 and tf = 
= 0 = t't for all f in T. Throughout we shall assume that M ç Т^, in which case 
we shall call Tan essential semigroup. 

*) This work was begun while the author held a National Science Foundation Science Faculty 
Fellowship. 



We call ( < ) an extending order on Г if ( < ) is a total, monotone order on X 
which extends, or preserves, the existing orders on S and Г*. In Section 1 we show 
that every extending order on Z carries with it a certain "null decomposition" of T*, 
and we determine the structure of all such decompositions. In Example 1 we show 
that for certain semigroups 5 , 1 will admit no extending order, regardless of the con­
ditions imposed on either T* or cp. 

The second section is devoted to establishing necessary and sufficient conditions 
for the existence of an extending order on I. In this section, also, we introduce the 
first of three special types of extending orders to be considered herein: the "close" 
extending orders. We show that if I admits an extending order, then it admits one 
which is close: and we tell how to describe such an order in terms of its null decom­
position. 

Section 2 ends with an example which, among other things, illustrates the other 
two special types of orders mentioned above: "cp-admissible" and "^-separating" 
extending orders. These orders are the subjects of sections 3 and 4, respectively. 
We determine necessary and sufficient conditions for the existence of such orders, 
and describe each in terms of its null decomposition. We also show that if S is 
weakly reductive, then every extending order on I is ф-admissible; and if Г* has 
no annihilators, then every extending order on I" is ^-separating. 

The reader is referred to [1] and [2] for all concepts not defined in this paper. 
It is a pleasure for the author to acknowledge the careful direction by Professor 

A. H. CLIFFORD of the research leading to this paper. 

1. Null decompositions of Г*. By a null decomposition of T* we mean a pair 
(X, y) = {Y,X) of complementary subsets of Г* which satisfy the following con­
ditions: 

(N1) If X Ф 0 Ф y, then XY = YX = {O}. 

(N2) X^ ^X и {0} and У^ ^ У и {O}. 

In the sequel we shall often make use of the following evident lemma. 

1.1 Lemma. Let [X, У) be a null decomposition of Г*. / / tt' ф 0, then t, t' and tt' 
either all belong to X or all to У. 

If we assume, as we do throughout this paper, that T is an essential ordered 
semigroup, the null decompositions of T* are easy to describe. 

1.2 Theorem. / / T is an essential ordered semigroup, then (Г~, T^) and (Г*, 0), 
where T~ = {r e T* : ^ < 0} and T'^ = {t e T* : t > 0}, are the only null decom­
positions of T*. 

Proof. It is clear that if A and b both belong to T~\M, then there exists an element t 
of T~ such that either af ф 0 Ф br or fa Ф 0 Ф tb. In either case, if one of the 



elements, a or b, also belongs to X, then Lemma 1.1 implies that the other one belongs 
to X, too. From this we conclude that if X n T~\M Ф 0, then T~\M ç X. Since 
M Ç T^, if X EX n T~ n M, then there exist elements t^ and 2̂ ^^ T~ such that 
jc = 1̂̂ 2- By Lemma 1.1, t^ EX. Thus X n T~ n M Ф 0 implies X n T" \M Ф 0. 
It follows that if X n T" Ф 0, then T~\M ç X. In this case T~ n M ^ {T~Y\0 = 
= {Т-\МУ\0 Ç X^\0 я X. We have thus shown that if X n T~ Ф 0, then T~ ç X. 
A similar argument leads to the conclusion that if X n T^ Ф 0, then T^ ^ X. 
Therefore, (X, Y) = (T" , T^) or (X, У) = (T*, 0). 

A monotone order on I will be called an extending order if it coincides with the 
given orders on S and T*. The relationship between extending orders on I and 
null decompositions of T* is the subject of Lemma 1.3. 

1.3 Lemma. If {<) is an extending order on I then (X, У), where X = {̂  e T* : 
: ^ ( < ) tcp] and У = { ^ е Г * : г ( > ) tcp], is a null decomposition of T*. 

Proof. Since ( < ) is a total order it is clear that Г* = X u У and X n Y = ф. 
Suppose that neither X nor У is empty and let t^ e X , 2̂ ̂  Y. Then t^ ( < ) t^cp and 
t2(p ( < ) 2̂- Since ( < ) is monotone, t^q)t2(p = t^ о (^2^) ( = ) h ° 2̂ ( ^ ) (^i^) о ̂ 2 = 
= t^(pt2(p. Thus, t^ о t2 = ti(pt2(p. From the definition of о in IJ it follows that 
1̂̂ 2 == 0 (in T*). Similarly 2̂̂ 1 = 0. Thus (Nl) is satisfied. To prove that (N2) also 

holds, let t^, 2̂ EX. Then t^ ( < ) t^ip, 2̂ ( < ) h^>^ ^^^ h « h ( = ) (^i^) ° 2̂ = ti<Ph^-
Hence, if Г1/2 + 0̂  then t^ipt2(p = (̂ 1^2) Ф ^^i^ 1̂̂ 2 ( < ) (̂ 1^2) ^P- We conclude that 
/1Г2 = 0 or t^t2 EX. Likewise, У^ Ç У u {O}. 

Although there always is a null decomposition of T*, the following example shows 
that it is not true that every extension admits an extending order. 

E x a m p l e 1. Let S be an unbounded right zero semigroup (ab = b for all a, b E S) 
and let X and y be elements of Г* such that xy Ф 0. We claim that no extension of S 
by Г determined by a partial homomorphism admits an extending order. Suppose, 
by way of contradiction, that there exists such an extension I which does admit 
an extending order, and let ( < ) be one such order. Assume that x(<)x(p. By 
hypothesis S contains an element a such that a < xcp. U x (<) a < x(p, then xcp = 
= a(xcp) = aoX'^a^ = a, a contradiction. Suppose a {<) x (<) xcp. Then yep = 
= a(y(p) = a о y [<) xy (<) (xcp) о y = xcp yep = yep, another contradiction. Since S 
also contains no greatest element, we again arrive at a contradiction if we assume 
that xcp (<) X. We thus conclude that our claim is valid. 

The reader should observe that in Example 1, Г may be any essential semigroup 
and cp, any partial homomorphism. 

2. Extending orders on I and L'G'-decompositions of T*. Define the relation Q 
on s as follows: s^ Q S2 if and only if s^x = S2X and xs^ = xs2for all x in S. Then Q 
is a convex congruence on S, and we can order the semigroup S = Sjg in the usual 
manner, i.e., s^ < S2 if and only if s^ Ф 52 and s^ < 52. (We wirte s for SQ.) In the 
following evident lemma we give an explicit description of this order on S. 



2.1 Lemma. 5̂  < 52 if and only if there exists an element x of S such that either 
s^x < S2X or xsi < XS2. Also Si S S2 if and only if s^x ^ S2X and xsi ^ XS2 for 
all X in S. 

If, for each t in Г*, we let t^ = tcp, then ф is a partial homomorphism of T* into S. 

2.2 Lemma. If I admits an extending order, then cp is order preserving. 

Proof. Let ti < t2. Then, for each x in S, 

(tiCp) x = t^oX^t2oX = {t2(p) X and x(ti(p) = xot^Sxot2 = x{t2(p) . 

It follows from Lemma 2.1 that t^cp S ^2^-
Example 1 shows that the converse of Lemma 2.2 does not hold. 
Let [X, 7 ] be a null decomposition of T*. For each t in T* define A^ and B^ as 

follows: Af = {s e S : x(p ^ s for some x eX with t ^ x], B^ = {s e S : yep '^ s 
for some y e Y with t ^ y}. Then A^ is an upper class and B^, a lower class in S. 
We note for future reference that if cp is order preserving, then tcp is the least [greatest] 
element in A^ [ Б J ifteX [teY]. 

Example 2 below shows that this need not be true if cp is not order preserving. 

E x a m p l e 2. Let S and T be given by a < b < a^ < ab < ba < b^' < 0 and 
m < n < m^ < nm < mn < n^ < 0, respectively, with any product involving 
three or more factors equal to 0. Let cp be the partial homomorphism from T* 
into S such that mcp = a and ncp = b. Clearly, cp is not order preserving. Taking 
[X, y ] = [T*, 0] and t = nm, we see that A^ = {ab, ba, Ь^ 0} and that tcp = 
= (nm) cp = ba is not the least element in A^. 

2.3 Lemma. Let (<) be an extending order on I, and let \_X, У] be its null decom­
position. Then 

(a) ^ ( < ) 5 implies tcp ̂  s; 

(b) t [>) s implies tcp ̂  s; 

ip) V Si ( < ) t ( < ) 52 and t Ф M, then s^ < S2; 

(d) for each t in T"^, В^{<) t {<) At. 

Proof, (a) Let t ( < ) 5 and let x e S. Then (tcp) x = t о x ^ sx and x{tcp) = x о t S 
^ xs. Thus tcp S s. (b) is the dual of (a), (c) We may assume that tt' Ф 0 for some f 
in T*. Then 5̂  ( < ) f ( < ) 52 implies Si(t'cp) [<) tf [<) S2{t'cp). Hence, by Lemma 2.1, 
5i < 52. 

(d) Let s e Л,. Let x in X be such that t ^ x and xcp ^ s. By definition of X, 
X ( < ) xcp. Therefore ^ ( < ) 5. Dually, if s e B^, then 5 ( < ) .̂ 

The next two corollaries are immediate consequences of Lemma 2.3. 

2.4 Corollary. Let ( < ) be an extending order on I and let [Z, У] be its null 
decomposition. Then 



(a) 

tip < s; or 
tip = s and teX\M; or Umplies t [<) s; and 
tip = s, t eX n M and s e A^] 

(b) 

tip > s; or 
tip = s and t G Y\M; or Umplies t (>) s . 
tip = s, t E Y n M and s e B^ 

Remark . Throughout this paper statements such as (a) and (b) will be considered 
to be order duals, 

2.5 Corollary. / / ( < i ) and (<2) ^̂ ^̂  ̂ ^^ extending orders on I sharing the same 
null decomposition, then t ( < i ) s and s(<2) t only ifteM,tip = s and B^ < s < A^. 

By a close extending order on I we mean an extending order which places each 
element t of T* as close to its image tcp as Corollary 2.4 permits. It is clear that if 
such an order exists, it is uniquely determined (among close extending orders) by 
its null decomposition [X, 7 ] as follows: 

2.6. t {<) s if and only if 

tip < s; or 
tip = s and tEX\M; or 
tip = s, t GX n M and s G А^\ or 
tip = s, t G Y n M and s ф B^. 

Remark . То define an extending order on I we tell when an element t of T* is 
less than an element 5 of S; then t{>) s means t(<) s is not true. In the case of 
a close extending order, for example, we obtain ^ ( > ) 5 from (2.6) by replacing < , X, 
Af, У and В thy > , 7, Б^, X and A^, respectively. 

Our immediate goal (Theorem 2.13 below) is to show that if Г admits an extending 
order, it admits a close extending order, and to give necessary and sufficient conditions 
for this to occur. Let (X, Y) be a null decomposition of T*. The ordered pair [X, У] 
will be called an L!G'-decomposition of T* if X satisfies Condition L' given below, 
and У satisfies its order dual. Condition G'. 

Condition L' 

(L'l) If tf GX [ftGX] and s < tip, then s{f(p)фAtt, [(t'cp) s ф А^^^], 

{V2) If tf GX [ftGX], t^ < t and t^cp = t(p, then t^t' GX [t't^GXl. 

Together Lemma 2.2 and Lemma 2.7 below prove half of the first statement in 
Theorem 2.13. 



2.7 Lemma. Let ( < ) be an extending order on I and let [Jf, У] be its null decom­
position. Then [X, y ] 15 an llG'-decomposition of T*. 

Proof. Since Conditions V and G' are order duals, we need only show that X 
satisfies Condition L'. Furthermore we need only consider the "right half" of that 
condition. 

(L'l) Let fr' e X and s < tip. By Corollary 2,4, s{<)t. Hence if x e X and tt' ^ x, 
then s(t'(p) .= s о f (<) tt' S ^ ( < ) XÇ' It follows from the definition of A^^^ that 
s{t'(p) Ф Att'. 

{V2) Let tt' eX, t^ < t and t^ip = tcp. Then î о ̂ ' ^ tt' and tt' {<) (tt') cp = 
= tcpt'cp. Since Г̂ ф = f̂ , t(pt'(p = t^cpt'cp. Thus f̂  о t' ( < ) t^cpt'ç; i.e., f̂ '̂ e Z . 

2.8 Lemma. L^^ cp be order preserving. Let ( < ) be a total order on the set I 
which preserves the existing orders on S and T* and such that t (<) s implies 
tcp й s and t ( > ) s implies tip ^ s. Let X = {t e T* : t ( < ) tcp} and Г = {̂  e T* : 
: ^ ( > ) tç]. If X satisfies (L'l) and Y satisfies (G'2), then ( < ) satisfies the right 
monotone condition if and only if (i) s [<) t and tt'E X implies s{t'(p)[<) tt', 
and (ii) s (>) t and tt' e Y implies s(t'(p) ( > ) tt'. 

Proof. In the course of this proof Lemmas 1.1 and 2.1, as well as the definition 
of (o) in I, are often used. Specific reference to these properties will not be made. The 
necessity of (i) and (ii) is evident, so let us assume (i) and (ii). We consider four major 
cases. 

(a) s I < s 2. Using the monotonicity of < in S, we have s^ о a ^ S2 о a for all a in I. 
(b) 5 ( < ) f. If fl 6 iS or if a e Г* and ta = 0, then s о a ^ t о a since s {<) t implies 

s ^ tip. If tt'E Y, then (tt') (p {<) tt' and s{t'(p) ^ tcpt'cp (<) tt'. The case when 
s{<) t and tt' EX is condition (i) of this lemma. 

(c) s(>) t. This is the order dual of (b). 
(d) ti < tj. Since cp is order preserving, t^cp ^ t2Cp. Thus, if a e S' or a e T* 

and r^a = 0 = ^2«, then t^ о a ^ t2 о a. Suppose t^^t' = 0 and t2t' ф 0. If t2t' E У, 
then ti о t' = t^cpt'cp ^ t2cpt'cp ( < ) t2t'. If t2t' EX, then t^cp < t2cp since X satisfies 
(L'2). Thus t^cp ( < ) 2̂ ^i^d, applying (i), we conclude that t^ о t' = t^cpt'cp ( < ) t2t'. 
The subcase t^t' ^ 0 and t2t' = 0 is dual to the one just considered, and makes 
use of (ii) and the fact that ysatisfies (G'2). Finally, if t^t' ф 0 Ф t2t', then t^t' й ^2 '̂ 
in T*. 

As noted earlier, to define an extending order on I we tell when t [<) s, and let 
t {>) s mean that ^ ( < ) 5 is not true. To prove that a relation defined in this manner 
is an order on the set I extending those on S and T*, we need only show that it is 
transitive; i.e., a{<)b and Ь ( < ) с imply a ( < ) с. Moreover, since < is transitive 
in 5 and in T*, it suffices to consider the six cases when exactly two of the elements 
a, b, с belong to S or to T*. This list of cases can be further reduced by observing 
that the three cases that occur when two of the elements belong to S are equivalent. 
Similarly, the three cases that occur when two of the elements belong to Г* are 
equivalent. We summarize the foregoing remarks in Lemma 2.9. 



2.9 Lemma. A relation ( < ) defined on I as in the above remark is transitive if 
and only if these two conditions are satisfied: (i) s^ < S2 and S2 ( < ) t imply s^ ( < ) t; 
(ii) /j < 2̂ and 2̂ ( < ) 5 imply t^ ( < ) 5. 

2.10 Lemma. Let ф be order preserving. If t^ e T~ n M and t2sT^ гл M, 
then t^cp ̂  t2(p. 

Proof. Since M Ç T^, t^ = a^b^ and 2̂ = ^2^2 ^^^^ «1 < сц and b^ < 62-
Since Ф is order preserving, a^cp -^ ^2^ and b^cp ^ 62^. Applying Lemma 2.1, 
we get a^cpb^cp ^ a2(pb2<p and a2(pb^(p ^ a2(pb^(p\ hence ^̂ ĉ  ^ 2̂<Р-

2.11 Lemma. L^^ ^ b^ orJ^r preserving and let [X, У] Ьг an l!,G'-decomposition 
of Г*. / / t^ e Y, t2^X and t^ < 2̂? ^^ '̂̂  ^i^ < h^- If^ ^^ addition, either t^$M 
or /2 Ф ^, then t^cp < ^2^-

Proof. Suppose 2̂ ̂ X\M and let t2t e X. Since X satisfies (L'2), the conditions cp 
is order preserving and t^ < 2̂ imply that either t^ip < ^2^ or t^t G X. Since the latter 
implies t^eX (Lemma 1.1), we conclude that t^cp < ^2^- Similarly, since У satisfies 
(G'2), if t^ фМ, then t^cp < ^2^. To complete the proof of this lemma we need 
only show that if both t^ and 2̂ are annihilators, then t^^cp < t2(p. 

By Theorem 1.2, 7 = 7 " and X = T^. Since M ç T^ if r̂  e M and 2̂ e M, 
then /1 = a^b^ and 2̂ = ^2^2 with a^, b^ e Г~\М and «2» ^2 ^ T'^\M. Applying 
the results of the preceding paragraph, we see that a^^cp < a2(p and b^cp < b2(p. 
Since X satisfies (L'l), the conjunction of a^cp < «2^ and ^2^2 ^ ^ implies a^cpb2(p < 
< a2cpb2(p. Y satisfies (G'l) ; hence bicp < ^2^ and a^b^ e Y imply a^cpb^q) < 
< ay(pb2(p. Therefore t^cp = {а^Ь^)^ < (^2^2)^ = h^-

2.12 Lemma. / / cp is order preserving and [_X, У] is an llG'-decomposition 
of T*, then the following hold: 

(1) / / tf eX\M [t'teXXMl and s < tip, then s{t'(p) < {tt') ф \t'(p)s < {t't)cp'\. 

(2) / / tt' G Y\M [t't e Y\M'\ and s > tip, then s{t'cp) > {tt') ф \{^ф) s > {t'i) ф\ 

(3) / / t^ < ^2, then 

{a) Л„ 3 A,^', 
(b) if t^eX n M and t2eYn M, then 5\ß,, ç A^^; 

(c) if t^eYn M and 2̂ e X n M, then A,^ ç S\Bt^; 

(d) Б,, ^ b,,. 

Proof. As before we despose of both (l) and (2) by proving the "right half" 
of (1) and appeahng to duality for the remaining parts of the proof. We shall make 
frequent use of Lemma 2.1 and the fact that X satisfies (L'l). 

If tt' EX\M, then for some a in Г* either tt'aeX or att' eX. If tt'a e Z , then 
s < tф implies that s(f(p) (acp) = s{t'a) cp < (tfa) cp = (tt') (p{acp\ which in turn 



implies that s{t'(p) < (tf) cp. If, one the other hand, att' EX, then either a^teX 
or n't' eX. The latter case is handled as above. If we assume that a^teX, we may 
conclude that {acp) s < {at) cp by using the left dual of the previous arument. 
Since {at) t' eX, this implies that {acp) s{t'(p) = {(^acp) s] (t'cp) < [(аг) ^'] ç = 
= {acp) {tt') (p. Thus, s{t'cp) < {tt') cp. This concludes the proof of parts (l) and (2). 

Now for part (3). (a) and (d) are true by definition of A^ and B^, respectively. 
By Lemma 2.10 if the conditions in (b) hold, then t^^cp S tiÇ- If 5 ̂  B^^, then t2(p < s. 
Since t^eX and t^cp < s, s e A^^, which proves (b). The conditions in (c) and Lemma 
2.11 imply that yep < xcp for sdl y e Y and x eX, (Note that from the conditions 
given we have X = T^ and Y= T~,) Thus, if x e X , 2̂ ^ ^ and xcp ^ 5, then 
yep < s; i.e., s ф B,^, 

We are now prepared to state and prove our first main theorem. 

2.13 First Main Theorem. I admits an extending order if and only if (p is order 
preserving and T* admits an LG'-decomposition. 

If cp is order preserving, then there is a one-to-one correspondence between the 
set of LG'-decomposition of T* and the set of close extending orders on I such 
that if \_X, y ] and {<) correspond, then \X, У] is that decomposition of T* given 
in Lemma 1.3 and {<) is given by (2.6). 

R e m a r k . By Theorem 1.2, X may admit at most four close extending orders. 

Proof. First, assume that I admits an extending order ( < ) , and let [X, У] be its 
null decomposition (Lemma 1.3). Then cp is order preserving (Lemma 2.2) and [X, У] 
is an L'G'-decomposition of T* (Lemma 2.7). 

Conversely, let cp be order preserving, let [X, У] be an L'G'-decomposition and 
let ( < ) be defined by (2.6). To prove that ( < ) is transitive we follow Lemma 2.9. 
Let s I < 52 and 52 ( < ) ^ Then s^ ^ 2̂ and S2 S tcp. If strict inequality holds in 
either place, then s^ < tip. By definition of ( < ) , s^ {<) t. Suppose s^ = S2 and 
52 = tcp. By (2.6), teYu M.If tG Y\M, then 5i = tcp implies s^ {<) t.lf t eX n M, 
then 52 Ф Af. Since y4f is an upper class in 5', 5̂  ^ Л^; hence 5̂  ( < ) .̂ Suppose t e Yn M 
so that 52 E Bf. Then, because B^ is a lower class in 5, 5̂  E Bf. Again 5̂  ( < ) ^ by 
(2.6). 

To complete the proof that ( < ) is transitive, we must show that if t^ < t2 and 
h (<)^> then ti {<)s. Since cp is order preserving, t^cp ^ ^2^- Also, by definition 
of ( < ) , t2(p й s. If ticp < Г2Ф or if t2cp < 5, then t^ {<) s. Hence we may assume 
that t^cp = ?2ф and ^2^ = '̂ • 

The conditions t2{<) s and t2cp = s imply t2EX и M, which in turn imphes 
that tiEX и M (Lemma 2.11). If ^̂  EX\M, then r̂  ( < ) 5, by definition. Suppose 
ti E M. We consider several cases. Let t^EXnM. If t2EXnM, then SE At^, ̂  A^^ 
(Lemma 2.12 (a)). If Г2 G У n M, then 5 G S\B^^ Ç A^^ (Lemma 2.12 (b)). Let t^ e Yr\ 
n M. If t2EX пМ, then sEAt^^ 8\В^^ (Lemma 2.12 (c)). If 2̂ e У n M, then 
5 G S\Bf^ ^ S\Bf^ (Lemma 2.12 (d)). In either of the above we conclude that ti{<) s. 



It remains to prove that ( < ) is monotone. We need show only that ( < ) is right 
monotone. Let s(<)t and tfeX. Since tfeX implies teX\M s (<) t implies 
s < t'cp by (2.6). Since X satisfies (L'l), s{t'cp) < tcpfcp if tt' ф M, and 8{1'(р)ф A^' 
otherwise. In either case s(t'(p) {<) tf by definition of ( < ) . Dually, if s ( > ) f and 
tf E Y, then s{f(p)(>) tt'. Applying Lemma 2.8, we conclude that ( < ) satisfies the 
right monotone condition. 

The remainder of the theorem follows immediately. 
Although a given close extending order is uniquely determined by its null decom­

position, it maybe that a given L'G'-decomposition of Г* is associated with more than 
one extending order. 

E x a m p l e 3. Let Г be the cyclic semigroup ^ < r̂  < 0, let S be the commutative 
semigroup s < a < 5̂  < 0 with ax = s^x = Ox = 0 for all x in 5; and let Up = s, 
t^cp = s^. Then [Г*, 0] is the null decomposition for both of the following extending 
orders, the first of which is the close order determined by [T*, 0] : 

(3a) t{<)s < a{<)t^{<)s^ < 0; 

(3b) t{<)s{<)t^{<)a < 5̂  < 0. 

Note that the {)-classes of S are {5} and {a, s^, 0}. 
As we saw earlier (Lemma 2.3), if ( < ) is an extending order on I and if [X, У] 

is its null decomposition of T*, then, thinking in terms of placing the elements of T* 
among those of S, each t in X must be placed immediately below the ^-class tip or 
else in tcp (below A^). Dual remarks hold for elements of Y. We thus see that among 
all possible extending orders there are two extreme cases: 

(1) each element t of T* is placed next to tcp (relative to S, allowing for other 
elements of T* to be placed between t and tcp); 

(2) each element t of T* is placed as far away from tcp as possible; namely, adjacent 
to tcp. Examples (3a) and (3b) illustrate these two extremes; (3a) corresponds to (1); 
while (3b) corresponds to (2). In the next two sections we consider these special orders. 

3. (^-Admissible extending orders on I and LG-decompositions of T*. An extending 
order ( < ) on I will be called cp-admissible if t (<) s implies tcp ̂  s and t(>)s 
implies tcp ̂  s. If [<) is such an order and if \_X, У] is its null decomposition, it is 
clear that ( < ) is given by 

Ucp < s , or 
t {<) s if and only if < _ 

Evidenlty, a ^-admissible extending order is close 

3 . 1 . . X - / - ^, — V . ^'^^y . / 

3.2 Lemma. / / I admits a cp-admissible extending order, then cp is order 
preserving. 

Proof. Let ( < ) be (/)-admissible with null decomposition [X, У]. Let t^ < 2̂-
In view of Theorem 2.13 and Lemmas 2.10 and 2.11 it remains to show that t^cp ^ 



s tjcp when all of the following conditions hold: t^ eX, ti^Y, t^ ф M or (2 ф M, 
and t^cp = t2(p. By Corollary 2.4; the conjunction of t^ip = Г2Ф ^^^ h e Y\M 
implies t^cp ( < ) t2', similarly, if t^ e X\M, then r̂  ( < ) t2(p. In either case, since ( < ) 
is cp-admissible, t^cp ^ ^2^-

Let [X, y ] be a null decomposition of T*. The ordered pair [X, У] will be called 
an LG-decomposition of Г* if X satisfies Condition L given below; and Y satisfies 
its order dual, Condition G. 

Condition L. 

(LI) If tt' eX [t'teX] and s < tcp, then s{t'(p) < tcpfcp \{t'cp)s < t'cptcp]. 

(L2) If tt' eX \t'teX\ t^ < t and t^cp = tcp, then t^t' eX {t't^eXl. 

3.3 Lemma. / / cp is order preserving, then Condition L[G] implies Condition 
L'lG'l 

Proof. Assume that X satisfies Condition L. Let tt' eX. If s < tcp, then s < tcp. 
By (LI), s^t'cp) < tcpt'cp. Since cp is order preserving [tt') cp is the least element in Ajf'. 
Thus X satisfies (the right half of) (L'l). Next, if t^ < t and t^cp = tcp, then t^cp = tcp; 
otherwise, t^cp < tcp and t^cpt'cp < tcpt'cp by (Li), contradicting t^cp = tcp. From 
(L2) we get t^t' eX. 

3.4 Lemma. If cp is order preserving and [X, У] is an LG-decomposition, then the 
relations defined by (3.1) and (2.6) are the same. 

Proof. Denote the relation given by (3.1) by <^ and that given by (2.6) by <^. 
Since <^ and <^ agree with < on S and T* and since t (>) s is dual to t (<) s in 
each case, it suffices to show that t <^ s implies t <c s. 

Let t <(pS. Since Y satisfies (Gl), if tcp < s, then either tcp < s or t e X и M. 
If tip < s, then t <c 5: by definition. Hence we may assume that tcp ̂  s and t e X и M. 
If t eX\M, then, because cp is order preserving, tcp < s implies s e A^ if t e X n M 
and s Ф Bf if t e Yn M. In either case, t <^ s. Next, suppose that tcp — s and t GX. 
If teX\M, then t <^ s.lf t e X n M, then 5 e A^. Thus t <^ s. 

3.5 Second Main Theorem. I admits a cp-admissible extending order if and only 
if cp is order preserving and T* admits an LG-decomposition. 

If cp is order preserving, then there is a one-to-one correspondence between the 
set of LG-decompositions of T* and the set of cp-admissible extending orders on I 
such that if [X, У] and ( < ) correspond, then \X, У] /5 that decomposition of T* 
given in Lemma 1.3 and ( < ) is given by (3.1). 

Proof. Let cp be order preserving and let [X, У] be an LG-decomposition of T*. 
Then cp is order preserving and [X, У] is an L'G'-decomposition (Lemma 3.3). 
It follows from Theorem 2.13 that (2.6) defines an extending order on I. However, 
by Lemma 3.4, in this case (2.6) and (3.1) are the same. We conclude that I admits 
a (/)-admissible extending order. 
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Conversely, suppose that ( < ) is ф-admissible. Then (p is order preserving (Lemma 
3.2), and [X, y ] , its null decomposition, is an L'G'-decomposition (Theorem 2.13). 
Clearly, X satisfies (L2), since it satisfies (L'2). To show that X satisfies (the right 
half of) (LI), let ^r'e Z a n d s < Г(̂ . Then, by (3.1), 5 ( < ) ^ ( < ) Гер. Therefore 5 ( г » = 
= s о t' {<) tt' {<) tcpfcp. Dually, У satisfies Condition G. 

The remainder of the theorem follows immediately. 
A semigroup S is weakly reductive ïï Q is the identity relation on 5; i.e., if ax = bx 

and xa = xb for all x in S imply a = fe. In this situation all extending orders on I 
are determined by Theorem 3.5. To prove the first statement in Corollary 3.6, we 
need only replace ip by cp and 5 by 5 in parts (a) and (b) of Lemma 2.3. The remainder 
of the corollary follows from Theorems 3.5 and 1.2. 

3.6 Corollary. / / S is weakly reductive, then every extending order on I is cp-
admissible. In this case I admits an extending order if and only if (p is order 
preserving and T* admits an LG-decomposition; hence I admits at most four 
extending orders. 

If the semigroup S is cancellative, it is weakly reductive. In this case, also, [T~, T"^] 
is an LG-decomposition. In view of these facts, the next corollary is obvious. 

3.7 CoroUary. / / S is cancellative, then I admits an extending order {necessarily 
(p-admissible) if and only if cp is order preserving. 

Remark . Note that in Example 1, S is left cancellative, yet I admits no extending 
order regardless of the conditions imposed on T o r cp. 

4. {^-Separating extending orders on E and LG-decompositions of T*. In this section 
we discuss the second of the two extreme cases among all possible extending orders 
mentioned at the end of Section 2. If the extending order ( < ) on I permits no t 
in T* to "split" a ^-class; i.e., if 5̂  ( < ) t ( < ) 2̂ implies s^ < S2', ( < ) will be called 
Q-separating. If ( < ) is such an order and if [X, У] is its null decomposition, it is 
clear that ( < ) is given by 

Г 
4.1. K ^ ) ^ if and only if < 

I 
tcp < s , or 
tip = s and t e X . 

It follows from this and from Theorem 1.2 that I admits at most four ^-separating 
extending orders. 

Since ^ is a partial homomorphism from T* to S, we can consider the extension 
Ï = S и T* of S by T determined by ф. An LG-decomposition of Г* relative to ф 
and S will be called an LG-decomposition of Г*. Thus, Condition L may be obtained 
from Condition L by replacing cp and 5 in the latter by ip and 5, respectively. Note 
that (L2) coincides with (L'2); the same holds true for (G2) and (G'2). 

4.2. Third Main Theorem. / / ф is order preserving, then I admits a Q-separating 
extending order if and only if T* admits an LG-decomposition. 
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In this case, there is a one-to-one correspondence between the set of LG-decom-
positions of Г* and the set of Q-separating extending orders on I such that if 
[X, y ] and ( < ) correspond, then [X, У] is that decomposition of T* given in Lemma 
13 and (<) is given by (4.1). 

Proof. Let Ф be order preserving and let [^X, У] be an LG-decomposition of Г*. 
Let ( < ) be defined by (4.1). To show that ( < ) is transitive we consider two cases: 

(i) s I < s 2 and s 2 {<) t- If Si < S2 or 2̂ < tcp, then s^(<) t. If s 2 = tcp then 
t e У by definition of ( < ) . If ŝ  = ^2, also, then s^ ( < ) t. 

(ii) t^ < 2̂ and 2̂ ( < ) s. If ^2^ < ^-> then t^ ( < ) 5. By definition of ( < ) , if ^2^ = ^^ 
then t2eX, Applying Theorem 3.5, we see that [Z , У] determines an extending 
order on Г. In this situation Lemma 2.11 implies t^ip < t2(p or t^ eX. In either case 
ti ( < ) 5 . To prove that ( < ) is right monotone we follow Lemma 2.8. (Clearly, 
EG - implies L'G' - . ) (i) Let s ( < ) ^ and tt' e X. Then Г e Z , so that s < tcp. By (El), 
sfcp < tipt'cp; thus s{f (p) {<) tt\ (ii) is dual to (i). We conclude that ( < ) is an 
extending order on I. 

Conversely, let ( < ) be ^-separating with null decomposition [X, У]. Then X 
satisfies (E2) = (L'2). If tfeX and s < tip, then s{<)t{<)t(p. It follows that 
s{f(p) (<) tf {<) tipt'cp. Since ( < ) is ^-separating, the latter implies s{t'cp) < txpt'cp. 
The case t't eXh similar to the above. Dually, У satisfies Condition G .The remainder 
of the theorem is immediate. 

Two extending orders ( < ) and [ < ] on I and I, respectively, are Q-equivalent 
if t{<)sot [ < ] s. 

4.3 Corollary. There is a one-to-one correspondence between the set of Q-separating 
extending orders on S and the set of cp-admissible extending orders on I such that 
( < ) on I and [ < ] on Ï correspond if and only if they are Q-equivalent. 

Proof. This is an immediate consequence of Theorem 4.2 and Theorem 3.5 
applied to the extension Ï. 

By part (c) of Lemma 2.3, if M = 0, then every extending order on I is ^-separating. 
Thus Corollary 4.4 holds. 

4.4 CoroUary. / / T is without annihilators, then every extending order on I is 
Q-separating. In this case, I admits an extending order if and only if T* admits 
an LG-decomposition; hence S admits at most four such orders. 

References 

[1] A. H. Clifford 3.né G. В. Preston: The algebraic theory of semigroups, vol I, Mathematical 
Surveys No. 7, Amer. Math. Soc. (1961). 

[2] L. Fuchs: Partially ordered algebraic systems, Pergamon Press (1963). 
[3] A. J. Hulin: Extensions of ordered semigroups, Semigroup Forum, vol. 2 (1971), 336—342. 

(research announcement) 

Author's address: University of New Orleans, New Orleans, Louisiana 70122, U.S.A. 

12 


		webmaster@dml.cz
	2020-07-03T00:15:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




