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ON A GLOBAL VERSION OF THE GAUSS-BONNET THEOREM

Avrors Svec, Praha
(Received November 18, 1974)

Let M™ = E™*! be a hypersurface; the induced fundamental tensors be a;;, b;;.
On M™, consider a tensor bj; such that the couple (a,;, b};) satisfies the Gauss and
Codazzi equations. Is there a hypersurface M’ = E™*! such that its induced funda-
mental tensors are exactly a;;, b;;? In what follows, T give a partial answer to this
question. Tt is usefull to consult my paper [1].

1. A cohomology theory. Let M be an orientable Riemannian manifold with the
metric tensor a. Let us restrict ourselves to its coordinate neighborhood U <« M
possessing the coordinates (x, ..., x"); as always, define the Christoffel symbols
and the operator of covariant derivation by means of

(1) ri; = a™.a; + 0,a, — d,a)),
a

) Vi il = o Ttle — % Tl Tide i +
p=1

8
v 3 gy
=1
with 0; = 9/0x’, the summation convention being used throughout. Recall the formula

(3) (V,Vk — VkV,) T{:::{: = Z rle“ Jo—l"ja+1--~iﬁ _

o=1
@

J1.
Z 1gle lQ 1"9*1 g

4 Rij = Oy — 0,y + Ti,F' - I“’kl'
being the curvature tensor.
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Definition. An abstract hypersurface is an orientable Riemannian manifold
endowed with a symmetric 2-covariant tensor b satisfying

(5) ijik = Vibjk >
(6) Rij = a"(bisby — byby,) .

Definition. Let M be an abstract hypersurface. For each domain U < M, let E};
a =0,...,dim M; be the set of couples (¢, ¥/), ¢ and ¥ being an exterior a-form
and an exterior vector a-form over U respectively; let E* be the associated sheaf. The
operator
@) D= D*:E — E**!

be defined as follows. Let U be a coordinate neighbourhood,

(8') ¢ =R, . dx® A ... A dx™, R;, ;. skew-symmetric,
S0 . ; ; .
=S5 . P ®dx" A ...oAdx™, S skew-symmetric ,
X
then
(9) D(p, y) = (D’(p, D)
with
(10) D*¢ = (ViR i, + b,Sh, ) dx' A dx't A ... A dx'=,
. . i . ; .
DY = (ViSi,.., — a”briRin...ia)a—} ® dx' A dx A L..oAdx® .
X

The following two propositions are proved just on the level o = 0, this being
sufficient for our use.

Proposition 1. We have
(11) D*=0 ie, D*''D*=0 for a=0,...,dimM — 1.

Proof. Suppose & = 0, (¢, ¥) € E,
(12) ¢=R, ¢y =5—.
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Then

(13) D% = (ViR + b,S')dx', D% = (VS — a"b, R) 5"’7 ® dx' ;
X
D'D% = U;;dx* A dx/ = {V(V,R + b,S") + b,(V;S" — a”b,;R)} dx A dx’,

D'D% = V¥ 567 ®dx' A dx! =
X

= {V(V,S* = a™b,;R) — a™b,(V,R + b;;S*)} — ® dx' A dx’.

LA
ox*
We are going to show that U;; = Uy, V§; = V. Indeed,
Uj—U; =V, —VV)R + (V,.b,, - V;by) ST =0,
VE — VE = (VV; = V,V) S* — a*(V;b,; — V;b,) R —
—a™*(byibjy — byjbi) S = 0
because of (3), (5) and (6).
Proposition 2. (Poincaré lemma) Let (&, ¥) e E5*', and suppose D**'(®, ¥) =

= (0, 0); be given a point m € U. Then there is a neighbourhood U, < U of m and
a (¢, ¥) € Eg, such that (P, ¥) = Do, ¥).

Proof. Suppose « = 0. For
R . . 0 .
¢ =M;dx', ¥ =N]— ®dx',
ox’
we have
DIQ = (Vle + b".N;) dxi A dx" .

D'¥ = (V:N¥ — a™*b,:M,) ai;k ® dxi A dx/.

From D'(®, ¥) = (0, 0),
» i = 5, = N7 b
N~ U = a0, — 5,0,
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The element (¢, ¥) being (12), we have — according to (13) — to prove the local
existence of R, S’ such that

(15) ViR =M;—b,S", V.S =N+ a’b,R.
The integrability conditions of (15) being exactly (14), we are done.

Theorem 1. Let ¥~ < E® be the sheaf of solutions (¢, )€ E® of the system
D%, ) = (0, 0). Then

Do Dt

(16) 0% -E° — E' —» ..
is a resolution of the sheaf ¥ .

Definition. Let &* be the additive group (over reals) of global sections of E®.
Fora =0,...,dim M — 1,let Z* = &* be the subgroup of the global sections (<15, lI’)
satisfying D%(®, ¥) = (0, 0); for a = 1,...,dim M, let Z* < &* be the subgroup
of global sections of the form D*~'(¢, ) with (¢, ¥)e &* . The cohomology
groups of our abstract hypersurface are then given by

17) H* =X B a=1,..,dmM-—1.

Let M be an abstract hypersurface. Over M, consider the bundle V of vector
euclidean spaces such that ¥(m) o T,(M), dim V(m) = dim M + 1 and both the
scalar products coincide on T,(M). In V, consider the euclidean connection I’
given by
(18) 0v; =Tko, + byn, on = —a™b,,

with v; = 9/ox’, n(m) L T, (M), <n, n) = 1. This connection is integrable because
of (5) and (6). Let

(19) w=Av; + An

be a I'-parallel vector field in V. Because of

20 Vw = (V;4 — a”b,;A)v; + (V, A+ b,,AVn =0,
J
we see that
(21) D° (A, A i) =(0,0), ie., (A, A’ —‘1) evr.
ox’ } ox’

641



Proposition 3. 7" is the sheaf of I'-parallel vector fields in V.

2. Realization of abstract hypersurfaces. Let M be a hypersurface of the euclidean
space E™*1; jts fundamental equations be

(22) oM =v;, ;= F,-"jv,, + bjn, on= —a*b,y,.

Let Se E"*! be a fixed point and M = S + w, w being given by (19). Then

(23) (V:A? — a"ibA) v; + (ViA + b A) n = v,
ie.,
(24) (4,4 2)= (0,2 e dxi> ..

ox’ ox'

Let us remark that
1 g i ; g i 1
(25) D' (0, — ®@dx') = (0, 0), ie, (0,— @dx')ez’.
ox' ox'

Definition. Let M be an abstract hypersurface, its bundle ¥ be constructed as above.
The vector field (19) is called I'-central if (24) holds true.

Obviously, we have the following assertion: Let M be an abstract hypersurface,
me M its fixed point. If, for each vector w’ € V(m), there exists a global I'-central
vector field (19) with w(m) = w’, M is realizable as a hypersurface of the euclidean
space.

Definition. Let M be an abstract hypersurface. Its I-deformation M(t) is given
by a tensor

(26) Bif1) = b + b} + 2P + .5 b = by, b = bR

such that the manifold M together with a;;, B;;(t) is an abstract hypersurface for
each t. I am going to restrict myself to the formal theory, the series (26) being a formal

one and the tensors b{? satisfying (x = 1,2, ...)

27) VbR = VbR,
(28) ¥ (66" — bRbE") = 0.
B=0

The connection I'(f) on V associated to the abstract hypersurface M(t) is given
by the equations

(29) o; = F!‘jvk + ﬁ,',-(t) n, on=—a* ﬁu‘(t) U -
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Now, my question is if there exists, in V, a global I' (t)-central formal vector field
(30) w(r) = (4fo) + tdly, + PAy + ..) v + (A + 1Ay + P4y + ..)n

for each ¢ and for each global I'-central vector field Afo,v; + Aoyn of M. Let A(oyv; +
+ Aoyn be a I'-central vector field and (30) a I'(¢)-central vector field. Then (a =

~1,2,..)

a—1
(31) Vid{y — a”b A =ﬂ§0a”bfg—ﬂ)A(ﬁ) s
Vid@ + by Al = — Z [
ie.,
.0 .
(32) D° (A(a)’ Al 5;,) = (Pap ¥@) With
. a—1 X _ a
Ow = — Z b~ ”’A' ydxt, Yy = Y aibliTPA, — ®dx’.
p=0 ) 0x

The following assertion holds true: Let A(io)vi + Ayn be a I'-central vector
field and let the vector fields A(,v; + An (¢ =1, ...,y — 1) satisfy the equations
(31) fora=1,...,y — 1; then

33) DY (¢ Vi) = (0,0).

The proof of this assertion is nothing more than a tiresome exercise; let us therefore
restrict ourselves to the case y = 1. From (23), (27) and (28), we get

Vidly, = a7b, Ay + 85, ViAo, = —b,A%,,
ijﬁ) = Vibﬁ) s b b(” .kbﬁ) + bg})bkl - bgl:)bjl =0
Now,
. 0 i
Py = —b (o) d’C 'p(n = a”bp(-il)A(O) — ® dx';
ox’

Do, = { Vb Ap) + bia™bi A )} dx' A dx* =

= (—A, Vibl)) — b{P)dx' A dx* =0,
d .
DYy = {V{a"bl’A) + a"b,biy Ao} pw ® dx' A dx* =
x
= {a" A, Vb + a7 Ay (b,:bLY — ,sb‘”)} - ® dx* Adx*=0.
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Let Agoyv; + Aiyn be an arbitrary global I'-central vector field. Suppose the
existence of global vector fields A{yv; + Agn; a=1,...,y — 1; satisfying
(32),=1,....,- 1- We are looking for the existence of a global vector field A(,v; + Apyn
satisfying

d
(34) p° (Am, Al ——) = (P Vi) -

ox?

We know that D' (¢, ¥») = (0, 0), ie., (¢ ¥(»)) € Z. The existence of a globg]
solution of (34) implies (¢ V(»)) € #" and we get

Theorem 2. Let E™*! be the euclidean space, V(E"‘“) its vector space, S € Em+1
its fixed point, M™ a manifold and w : M™ — V(E™*') a map for which p(M™), ,
being the map p(m) = S + w(m), is a hypersurface. On M™, consider the induced
structure of an abstract hypersurface. Let M"‘(_t) be a formal I-deformation of M™,
If #1 = 0, there are maps wy,y : M™ — V(E™*1); & = 1,2, ...; such that the hyper-
surface p(M™),

(35) w(m) = S + w(m) + tw(m) + ..., meM™,

has the induced structure a;j, P;(1).
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