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EIGENVECTORS OF ACYCLIC MATRICES

MirosLAv FIEDLER, Praha
(Received September 2, 1974)

It is shown that for acyclic matrices, i.e. symmetric matrices the graph of which
does not contain any circuit, close relations exist between the signs of coordinates
of eigenvectors and the position of the corresponding eigenvalues in the natural
ordering according to magnitude.

1. Notation and preliminaries. In the whole paper, n will be an integer, n > 2.
The set {1,2, ..., n} will be denoted by N. All numbets, vectors and matrices will
be real. We shall be using terminology of the graph theory (see e.g. [1]) and certain
elementary facts about trees, such as:

(1,1) A tree is a connected graph not containing any circuit.

(1,2) Every tree with n = 2 vertices has at least one end-vertex (i.e. a vertex
adjacent to a single edge).

(1,3) There is exactly one path between any two vertices of a tree.

(1,4) A tree with n vertices has n — 1 edges.

We shall be denoting vertices of a graph by numbers, usually 1, 2, ..., n. We shall
also speak about “‘removing” edges or vertices and the adjacent edges from a graph,
in the obvious sense. So the following assertions hold:

(1,5) If we remove from a tree one edge the resulting graph will have exactly
two components (both are trees, maybe with a single vertex).

(1,6) If we remove from a tree a vertex of degree s and all adjacent edges, the
resulting graph will have s components.

(1,7) If we remove from a tree with n = 2 vertices, an end-vertex and the adjacent
edge, a tree with n — 1 vertices will result.

(1,8) Let T be a tree with the set of vertices N = {1,2,...,n}. Then the n — 1
linear forms x; — x, where (i, k), i < k, are edges of T, are linearly independent.

Proof. Assume
Z aik(xi - xk) =0

(i,k)eT
i<k
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where not all a;, are equal to zero. Let T; be the subgraph of T with the set of
vertices N but those edges (i, k) only for which ay + 0. Then T, has at least one
edge and each of its components is a tree by (1, 1); thus its component with at least
. one edge has at least one end-vertex by (1, 2). If this vertex is n and the single adjacent
edge (n — 1, n) then x, is contained in the sum above in the only term

an—l,n(xn—l - xn)

where a,_; , # 0, in contradiction with the assumption that this sum is zero.

Let us turn now to the main definition. An n x n matrix 4 = (a;) will be called
acyclic if it is symmetric and if for any mutually distinct indices ky, k, ..., k; (s = 3)
in N the equality

Ay Aty -+ Ay = 0
is fulfilled. .

This has clearly the following graph-theoretical meaning. Let us assign to any
symmetric n x n matrix A = (a;) a (non-directed) graph G(4) with the vertex set N
and exactly those edges (i, k), i = k, for which a;, # 0. It is well known that A4 is
irreducible iff G(4) is connected. Let us recall that an n x n matrix A = (ay) is
irreducible if no decomposition N = N, UN,, N; = 0 £+ N,, N; n N, = 0, exists
such that a; = 0 whenever i e N, and ke N,.

More generally, to the decomposition of G(A4) into components corresponds then
the expressing the matrix 4 or a matrix obtained from A4 by permutation of rows
and columns in the block-diagonal form

Ay 0 0
0 Ay ... 0
0 0 Ay

where the principal submatrices A4;; are already irreducible. The number s is then
uniquely determined and the number s — 1 will be called degree of reducibility of A.
This degree is zero iff A is irreducible.

From the above definition if follows immediately that A is acyclic iff G(A) contains
no circuit. By (1,1), 4 is irreducible and acyclic iff G(A4) is a tree.

In the conclusion of this section, we shall recall two notions. We say as in [2]
that a matrix 4 = (ay,) is essentially nonnegative if a; = 0 for all i, k, i = k.

By inertia of a symmetric matrix A, written In 4, we mean as in [3] a row vector
(p, g, z) where p denotes the number of positive eigenvalues of 4, g the number
of negative eigenvalues and z the number of zero eigenvalues of 4 (including multi-
plicity). As usual, we shall denote by yT the transpose vector to the vector y, by ST
the transpose matrix to the matrix S. The identity matrix will be denoted by I, I, I,
etc.
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We shall use the following well known facts about inertia:
(1,9) If A is symmetric and S nonsingular then In SAST = In A.
(1,10) If A is symmetric block-diagonal,

A=[4,0 ...07,
0 A, ... 0
0 0 A,

then
InA4=)1InA4,.
=

k

(1,11) Let A be symmetric and let A, be a principal submatrix of A.If InA =
=(p.q,z) and In A, = (py, 4y, z,) then

plép; Q1§q‘

Let us conclude this section with a lemma which we shall need in the sequel:

A=|B ¢
T d

be an n x n partitioned symmetric matrix, let

(1,12) Lemma. Let

Bu=0, cTu +0.
Then
In4d=InB+ (1,1, —1).
Proof. Clearly u + 0. Without loss of generality, we can assume that its first

coordinate u; % 0 so that
u=\u |, u *+0.
i

If B and c are partitioned conformally,
B=1b, b},
b}, B
C=1C11>
¢

B=cTu

we have for
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and

P={u, @0
010
0 01
PAPT =[00 8
0B ¢&f.
BT d
Let
o=[ 1 00]
e 10}.
—(2p)7'd 01
Then -
(oP) A(QP)" = [0 0 B]-
0Bo
B0 O

It follows that, for a nonsingular matrix R,

RART = [0 B0
BOO
00B

By (1,9) and (1,10),
InAd=InB+In[0 g
B O

so that

(1) InA=1InB+(1,1,0).
On the other hand,
if

we have

Thus (1,10) implies

) InB=InB+(0,0,1).
Combining (1) and (2), we obtain the desired result.
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2. Results. We shall prove first:

(2,1) Theorem. Let A be an acyclic matrix. Then there exists a diagonal matrix D
for which D* = I and such that DAD is essentially nonnegative.

Proof. It suffices clearly to prove this theorem in the case that A is irreducible.
Then we shall define the diagonal entries d; of the matrix D as follows: We put
d, = 1;if k % 1, we define d, by

d, = sgn(a,;,a;,;, ... a;4)

where (1, j, j3, .- Js k) is the path from 1 to k (which is unique by (1,3)).
We have to show that

3) agdid, 20 forall i,k i+k.

This is clear if a;, = 0. If a; =+ 0, i.e. if (i, k) is an edge in G(A4), let G’ be the graph
obtained from G(A) by removing the edge (i, k). By (1,5), G’ has two components,
one containing the vertex i, the other the vertex k. If the vertex 1 belongs to the
component containing i, we have

d, = sgn(ayj,a;,;,...a;,ay) = d;sgna, .
Consequently,
did, = sgnay

and (3) is true. An analogous argument applies in the second case that 1 belongs to
the component containing k. The proof is complete.

(2,2) Theorem. Let C = (c;) be an n x n acyclic matrix such that Ce =0
for e = (1,1,...,1)". Then the inertia of C is equal to (p, g, n — p — q) where 2p
is the total number of negative and 2q the total number of positive off-diagonal
entries in C. The number n — p — q — 1 is equal to the degree of reducibility
of C.

Proof. By (1,10), it suffices to prove the first assertion for the case that C is
irreducible. In this case, the graph of the matrix C is a tree T. The corresponding
quadratic form is then

Y oeulxi — x)?.
(i,k)eT
i<k
Since the linear forms x; — x, (i < k) are linearly independent by (1,8), we obtain
by the Sylvester’s law of inertia that the number of squares with positive coefficients

is p, with negative coefficients is g. The rest is obvious.
We are now able to prove the main theorems.
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(2,3) Theorem. Let A = (a;) be an n x n acyclic matrix. Let y = (y;) be an
eigenvector of A corresponding to an eigenvalue 1. Denote by w* and o™, respec-
tively, the number of eigenvalues of A greater than and smaller than 2, and let ®®
be the multiplicity of A.

Let there be first no “isolated” zero coordinate of y, i.e. coordinate y, =0
such that ay;y; = 0 for all j. Then

(4) ot =a"4+m, oo =a +m, 0®=n-0" -0

where m is the number of zero coordinates of y,a”*

ordered) pairs (i, k), i * k, for which

is the number of those (un-

agyiye <0

and a” is the number of such pairs (i, k), i %+ k, for which
agyiyx > 0.

If there are isolated zero coordinates of y, if M is the set of indices corresponding
to such coordinates and A the matrix obtained from A by deleting all rows and
columns with indices from M then the numbers o*, 0~ and o' satisfy

(5) ot =0 +c¢;, 0 =0 +cy, 0= + ¢,

where @& are corresponding numbers of A and c,, ¢, ¢, nonnegative integers such
‘that

(©) 00+cl+c2=|M|a
the number of elements in M.

Proof. We shall prove (5) by induction with respect to the number v of zero
coordinates of y. Let first v = 0. Then the diagonal matrix Y = diag {vy, ..., y,} is
nonsingular. It follows from (1,9) that the matrix

B=Y(A-A)Y

has the same inertia as the matrix 4 — AI and satisfies Be = 0. By Theorem (2,2),
InB = (p,q,n — p — q) where p is the number of those (unordered) pairs (i, k),
i + k, for which a;);y, <0, g the number of the pairs (i, k), i + k, for which
ayyyx > 0. Thus p = a*, ¢ = a~ and (4) is true. If, in addition, 4, and thus B,
is irreducible, we have n — p — ¢ — 1 = 0, by Th. (2,2). Consequently, n — p —
— g = 1 which means that 4 is a simple eigenvalue of A. Since y is a solution of any
n — 1 equations of the system (4 — AI) x = 0, it follows that all (n — 1) x (n — 1)
submatrices of 4 — AI are nonsingular. Let us formulate this as
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Proposition 1. If A is n X n acyclic irreducible and all coordinates of an eigen-
vector of A are different from zero then the corresponding eigenvalue 1 is simple.
Moreover, all submatrices of order n — 1 of the matrix A — AI are nonsingular.

Assume now that v > 0 and that the assertion is true for all acyclic matrices and
an eigenvector y the number of zero coordinates of which does not exceed v — 1.

Denote, for a moment, by M, the subset of N corresponding to nonvanishing
coordinates of y. Thus, M, = N\(M u M,) where M was defined above as the
set corresponding to isolated zero coordinates, contains exactly those indices k such
that y, = 0 and there exists an i  k for which a;y; + 0. Moreover,

v=|M|+ |M,|>0.

Let first A be reducible. We can assume that

A=[4,0 ... 0
0 4, ... 0
0 0 A

where s > 2 and A4, are square irreducible matrices. Thus G(4) is disconnected and
contains s components G, k = 1, ..., s, corresponding to the matrices 4,.

If there are zero coordinates of y corresponding to indices in at least two distinct
components of G(4) then none of the components G, has more than v — 1 indices

in M U M,. If the vector y is partitioned conformally with A,

y = y(l)
y(2)
y(s)
then A_V = }_y imp]ies

Aky(k) = ly(k) , k=1,..5s.

Let K be the subset of S = {1, ..., s} consisting of all indices k such that y® % 0.
If je S\NK, we have y¥) = 0 and all indices corresponding to vertices in G; belong
clearly to M. For the inertiae of 4,,

In4, = (w,’", w, , a)fo)) ,

we have by (1,10)
Ind = (0" 0 ,0%) =YInA4,.
teS

By the induction hypothesis, (5) is true for all G, k e K:

v _ o+ - 0) _ ~(0
of =&f ey, of =@ + e, 0 =2 + e,
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aj» j = 0, 1,2, being nonnegative integers satisfying
Cho + Chy + Cpa = Iy
the number of vertices in G, belonging to M. Since clearly

~+ SNt w N a= ~0) _ Y (0
ot =Ya&, o =Ya, &=,
keK keK keK

(5) is true for
=20+ Y o,

keK teSN\K
=Y+ Yy o ,

keK teS\K
o= Co+ Y &{?.

keK teS\K

Thus it remains to prove (5) for the case that either A is irreducible or 4 contains
only one block, say A4,, the set of indices of which has a non-void intersection with
M u M,. A similar argument as above shows it suffices to consider the case only
that A is irreducible.

With this assumption, we shall prove two more propositions:

Proposition 2. Each vertex of G(A) belonging to M, possesses at least two vertices
in M, joined to it by an edge.

Proof. Let k e M, and let there exist only one index i + k such that a;y; + 0.
-Since Ay = Ay, we have
(akk - l) e = — Z Ayt 5
t+k

however, the left-hand side is zero while the right-hand side is not, a contradiction.

Remark. This implies that no end-vertex of G(4) belongs to M,.

Proposition 3. Let M, + N. Then there exists in G(A) a vertex p € M, such that
at least one component, say C, of the graph G’ obtained from G(A) by deleting the
vertex p and all to p adjacent edges, contains only vertices belonging to M.

Proof. Since M, = N and y = 0, there is a vertex u € M, and a vertex v ¢ M,.
Since G(A) is a tree, there is a path from u to v in G(A4). Let w be the first vertex of
this path which does not belong to M,. Clearly, we M,. If w is the only vertex
in M,, the assertion is true. Thus, let M, contain at least two vertices. Let d be the
maximum distance between any two vertices in M, where by the distance of two
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vertices the number of edges in the unique path in G(A4) between these vertices is
understood. Let this (positive) distance d be realized by two vertices p € M,, g € M.
By Proposition 2, there exists a vertex r such that a,,y, #+ 0 and that r does not belong
to the path from p to g in G(A). Let C be that component of G’ obtained from G(A)
by deleting p and to p adjacent edges, which contains r. Let us show that all vertices
in C belong to M. From the maximality of d, C cannot contain a vertex in M,.
Assume C contains a vertex in M, say u. Then the first vertex in the path in C from u
to r which does not belong to M (and such a vertex exists) necessarily belongs to M,
a contradiction.

We are now able to complete the proof of the theorem. Without loss of generality,
we can assume that n is the vertex denoted by p in Proposition 3 and that {1, 2, ..., m}
is the set of vertices of C. Thus

™ A=[4,, 0 a®
0 A,, a?®

nr 2)T
aT g@T 4

where A4, is an irreducible m x m matrix.
Let

y=[y?
y(Z)
0

be the corresponding partitioning of y. From the properties of C it follows that all
coordinates of y) are different from zero. On the other hand, Ay = 1y yields

®) (A4 = Ay yP =0,
9) (A3, — ML) y® =0
where I, I, are identity matrices,

aOTyM) 4 @T,2) = g,

Since a*) contains a single coordinate different from zero and all coordinates
of y are different from zero,
a®TyM & 0

A—AM=|B ¢
T d

B=[A, -, 0
0 Ay, — A,

Consequently, the matrix

where
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satisfies assumption of (1,12) together with the vector

u=[ym].
0

In(A—-2)=InB+ (1,1, —1)

By (1,12)
or,
(10) In(A — Al)=1In(A;, — A,) + In(dy, — AL,) + (1, 1, —-1).

Now, the graph C is equal to G(4,,) and all coordinates of y(*’ were shown to be
different from zero. Consequently, the already proved case implies

(11) In(4,, — Al,) = (af, a7, 1).

Further, G(4,,) is the graph obtained from G(A) by deleting the vertex n, the
adjacent edges and the whole component C. Since y® =+ 0, (9) implies y® is an
eigenvector of 4,, corresponding to A which has already less zero components than v.
By the induction hypothesis, the assertion of the theorem is true for 4,,: thus, the
inertia

(12) In(Ay, — AL,) = (&5 + ¢}, @5 + ¢, O + ¢p)

where @3, @;, @3 are given by formulae (5) for the matrix A, obtained from A4,,
by deleting all rows and columns with indices from M (and all elements from M are
in the index set of 4,,) and ¢}, ¢} ¢, are nonnegative integers satisfying

c(’)+c’,+c;=lMl.

The assertion then follows easily from (10), (11), (12) and (4). The proof is com-
plete.

(2,4) Theorem. Let A = (ay) be an n x n acyclic matrix, let y = (y;) be an
eigenvector of A. If there are not two indices i, k such that ay, = 0and y; = y, =0
then the multiplicity of the coriesponding eigenvalue is

n—1
p+1+Y(k—2)s
k=3
where p is the degree of reducibility of A and s, (k =3,..., n — 1) is the number

of those indices j for which y; = 0 and a; + 0 for exactly k indices I +j. In
other words, s, is the number of vertices of G(A) corresponding to zero coordinates

of y and having degree k.
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Proof. Denote by M, the set of vertices of G(A) corresponding to non-zero co-
ordinates of y, by M, the set corresponding to zero coordinates of y. Let e, denote
the number of edges of G(A4) with both vertices in M, e, the number of edges with
one vertex in M; and the other in M,. By (1,4), the total number of edges G(4) is
n — p — 1 where pis the degree reducibility and thus p + 1 the number of compo-
nents of G(4). Since there is no edge in G(A4) with both vertices in M,, we have

(13) e, +te,=n—p—1.
From the preceding theorem,
ey=a"+a", o =a" +|M,], 0 =a +|M,)],

@ =n—(a* +a")—2M,|.
Since

n—1 n—1
[M2|=Zsk, e, =Y ks,
k=1 k=1

where 5, (k = 1,...,n — 1) is the number of vertices in M, of degree k in G(A4),
we obtain, by (13),

0@ =n—e —2AM| = p+1+e —2AM,| =

n—1

=p+1+Y(k-2)s.
k=1

However, s; = 0 since G(A) can have (as in Proposition 2 of the proof of the
preceding theorem) no end-vertex in M,. The proof is complete.

In the conclusion, we shall formulate three corollaries which follow easily from
both preceding theorems.

(2,5) Corollary. Let A = (ay) be an n x n irreducible acyclic matrix with
eigenvalues Ay = Ay = ... = A,. If 4, corresponds to an eigenvector y = (y;) with
all coordinates different from zero then A, is simple and there are exactly r — 1
(unordered) pairs (i, k), i *+ k, for which

ayyiye <0.

Remark. Since 4 can be brought to an essentially nonnegative matrix by a diago-
nal orthogonal similarity by Theorem (2,1), this corollary is a generalization of the
Perron-Frobenius theorem (for this particular case).

(2,6) Corollary. Any eigenvector corresponding to a multiple eigenvalue of an
acyclic irreducible matrix has at least one vanishing coordinate.
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Remark. There exists even such a vanishing coordinate which corresponds to
a vertex of degree at least three in the graph of the matrix. This implies that an ir-
reducible symmetric tridiagonal matrix can have only simple eigenvalues.

(2,7) Corollary. Let A be a simple eigenvalue of an acyclic irreducible matrix A
and y = (y;) a corresponding eigenvalue of A.

If there are no two indices i, k such that ay + 0 and y; = y, = 0 then y; can
vanish only if i is of degree two in G(A).
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