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A lattice ordered group will be said to have the property (s) if each I-subgroup
of G is a cardinal sum of linearly ordered groups. MARTINEZ [ 5] proposed the problem
whether each cardinal product of linearly ordered groups has the property (s).

In this note the following theorem will be proved:

Theorem. Let G = XA; (i €l) be a cardinal sum of linearly ordered groups A;.

(i) If at most one l-group A; is non-archimedean, then G has the property (s).

(ii) If there exist two distinct elements j, k € I such that A; and A, are not archi-
medean, then there exists an infinite set {H,} of l-subgroups of G such that no H,
is a cardinal sum of linearly ordered groups; thus G has not the property (s)

For the terminology, cf. BIRKHOFF [1], Chap. XIV, and Fuchs [2]. The group
operation in a lattice ordered group will be written additively, though it is not
assumed to be commutative. Let us recall the following notions.

Let {4;} (i €I) be a system of I-subgroups of a lattice ordered group G such that

(i) the group G is a direct sum of its subgroups 4;;

(i) if 0<g€eG, g =a;q)+ ... + aimy aijy € Aijy With i(j) # i(k) for j + k
(jsk=1,...,n), then a;;, 20 for j =1,...,n.

Under these assumptions G is said to be a cardinal sum of its I-subgroups 4, (i € I)
and in such case we write

n G =34, (iel).

Each I-subgroup 4, will be called a cardinal summand of G. If I = {1, ..., n}, then
we write also G = 4, @ ... @ A4,.

Let (1) be valid and let 0 & g € G. Then there are uniquelly determined distinct
elements i(1), ..., i(n) € I and uniquelly determined elements a; € Ay, ..., 4, € Ay
such that a; + 0 for j = 1,..., n and

(2) g=a,+...+a,.
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The element a; is said to be the projection of g into Ay and it will be denoted by
g(Ay;); if i el and i = i(j) for j = 1, ..., n, then we put g(4;) = 0.

Let G be a lattice ordered group. If 4 is a cardinal summand of Gand 0 < g € G,
then g(A) is the greatest element of the set {a e 4:0 £ a < g}. If 4, B are cardinal
summands of G with A £ B and g € G, then g(4) = (9(B)) (4).

Let X = G. We put

X°={yeG:|y| A |x| =0 for each xeX}.

The set X? is called a polar of G; each polar of G is a closed convex I-subgroup of G.
(Cf. Sik [6].) I 4 is a cardinal summand of G, then

G=A@ A°.

G is said to be archimedean if there does not exist any pair of strictly positive
elements x, y € G such that nx < y for each positive integer n.

Let (1) be valid and suppose that each A; is linearly ordered and 4; + {0}. For
ge G weput S(g) = {iel:g(4;) + 0}. Let H be an I-subgroup of G and let M be
the set of all 0 < g € H such that S(g,) = S(g) for each 0 < g; < g, g, € H. Ob-
viously g;, g€ H, 0 < g, < g implies S(g,) < S(g). Thus for each 0 < geH
there exists g; € H with 0 < g; < g such that g, € M.

For a,be H, a < b we denote by [a, b] the set {he H:a < h < b}.

Lemma 1. Let g € M. Then [0, g] is a chain.
Proof. Suppose that [0, g] fails to be a chain. Then there are elements gy, g, €
€[0, g] such that g, > 0, g, > 0 and

©) g1 A gy =0.
From (3) it follows
4) S(g1) N S(g2) = 0.

Because 0 + S(g;) < S(g) (i = 1,2), both S(g,) and S(g,) are proper subsets of
S(g), which is a contradiction.
For X = H we denote by X the polar of X with respect. to the lattice ordered
group H; ie.,
X ={yeH:|y| A |x| =0 for each xe X} .
If ge M, we put '

B(g) = {9} -

Each B(g) is a convex Il-subgroup of H. Let M, be the set of all [-subgroups B(g)
(g e M). '

569



Lemma 2. Each l-subgroup B(g) € M, is linearly ordered.

Proof. Let g € M. For each 0 < z € B(g) we have g A z > 0. Suppose that B(g)
is not a chain. Hence there are elements x, y € B(g) withx>0,y>0,x A y=0.
Then x Ag=x,>0, y A g =y, >0 and according to Lemma 1, x;, A y, =
= min {x,, y,;} > 0. Thus x A y > 0, which is a contradiction.

Assume that at most one lattice ordered group A; fails to be archimedean; if
such 4; does exist, then it will be denoted by 4;,.

Lemma 3. Let g € M. Then B(g) is not upper bounded in H.

Proof. Let 0 < h e H. It suffices to show that there is g’ € B(g) such that
g'non £ h.

At first suppose that B(g) is not a subset of A;,. Then there is g, € B(g) and i e,
i # iy such that gl(Ai) #+ 0. Since 4; is archimedean, there exists a positive integer n
with )
n(g(4;)) non < h(4;)

and hence g’ = ng, € H, g’ non < h.

Assume that B(g) < A,,. Thus, in particular, g € 4;,. Hence g,(4;,) = 0 for each
g, € {g}°. The element h can be expressed as

h = h(4;) + h(Aiyy) + - + H(Aiw) »
where i, i(1), ..., i(n) are distinct elements of I, n = 0, h(4;;) > 0forj = 1,...,n.
Suppose that h is an upper bound for B(g) and let n be the least non-negative integer
with this property.
We have g € B(g), hence B(g) + {0} and thus B(g) has no maximal element. There-
fore h ¢ B(g). This implies that h A g, = x > 0 for some g, € {g}°. Then x € {g}",

hence x(4;,) = 0. Since 0 < x < h, we get 0 < x(4;) < h(4;) for each i € I. There-
fore without loss of generality we can suppose that

X = x(Ai(l)) + ... + x(Ai(k)) 5>

1 <k < n, x(Ay;) >0 for j =1,..., k. Because Ay - A, are archimedean,
there is a positive integer n such that

n xX(Aip) > h{Ay)
is valid forj = 1, ..., k. Thus h; = h A nxe H and
hy = h(Aiz) + - + h(Aiw)
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Then h, = h — h; e H and
hy = h(Ay) + W(Aigsn) + - + B(Aim) -

Let g’ € B(g). Since g’ < h and B(g) < 4, we infer that ¢’ < h(4,,) and hence
g’ < h,. Since the number of elements h(A;q41))s - - F(Am) is less then n we have
a contradiction.

Lemma 4. The l-subgroup B(g) is a cardinal summand of H for each g€ M.
If 9,92 € M, B(g,) + B(g,), then B(g,) n B(g,) = {0}.

This follows from Lemma 3 and [3], 17.1.

Proof of the Theorem:

(i) Let at most one A; be non-archimedean and let H be an I-subgroup of G.
By Lemma 4, each I-subgroup B(g) (g € M) is a cardinal summand of H. Let 0 <
< he H and let M, be the set of all B(g) e M, such that

B(g) n [0, h] * {0} .
This is equivalent with

h(B(g)) = max {g, € B(g): 0 < g, £ h} >0.

The set M, is nonempty, because there is g € M with g < h and then B(g) belongs
to M,.

Let B(g) € M,. Because h(B(g)) + 0, we have S(h(B(g))) + 0. Let i e S(h(B(g))).
From h(B(g)) < h we get

() h(A;) = (h(B(g))) (4;) > 0.

If B(g,), B(9,) € M, and B(g,) #+ B(g,), then according to Lemma 4,
©) h(B(91)) A h(B(g2)) = 0

and hence

) S(h(B(91))) ~ S(h(B(g))) = 0 .

Because the set S(h) is finite, from (5) and (7) it follows that the set M iS finite 45
well. Put .

hy = Vh(B(g)) (B(g) € M) .
We have 0 < h; < h. Denote h, = h — h,. According to (6),

) hy = h(B(g.)) + ... + h(B(g,)),
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where M, = {B(g). ... B(g,)}. If B(4:)B(9) are distinct elements of M, then
by (6). :

(h(B(g,)) (B(9:)) = 0,
(h(B(g,))) (B(9)) = h(B(g})) .

and clearly

Thus we get from (8)
©) hy(B(9;)) = h(B(g;))

for each B(g;) e M.
Suppose that h, =% 0. Then h, > 0 and hence there exists g € M such that g < h,.
Therefore

(16) ha(B@) 2 g > 0.

Since h = h,,
h(B(9)) 2 hy(B(g)) > 0

and thus B(g) e M,. But then it follows from (9) that

h,(B(g)) = 0

and this is a contradiction. Hence h, = 0 and therefore by (8),

(11) h = h(B(gy)) + ... + h(B(g,)) -

Because for each h' € H there are h", h” e H with h" 2 0, K" =0, h' = h" — h",
it follows from (11) that the group H is generated by the set UB(g;) (B(g;) € M,).

Let B(g;) be a fixed element of M, and let H, be the subgroup of H generated
by the union of all B(g;) € M,, B(g;) # B(g;). By Lemma 4 we have

B(g;) < (Blg:))

and since (B(g;))” is a subgroup of H, H; < (B(g;))’. Hence B(g;) n H, = {0}.
Because B(g;) is a cardinal summand of H, it is a normal subgroup of the group H.
Therefore the group G is a direct sum of its subgroups B(g;) € M.

For each 0 3 h € H the representation of h as a sum of elements 0 % a; € B(gi)
is unique; thus from (11) it follows that if h > 0, then a; > 0. Hence the lattice
ordered group H is a cardinal sum of its linearly ordered [-subgroups B(g;) € M.

(ii) Assume that i, j are distinct elements of I, and that 4; and A; are not archi-
medean. There exist elements a,, a, € 4;, by, b, € A; such that

O0<na, <a,, 0<nb; £bh,

holds for each positive integer n. Let C be the set of all elements x € 4; such that
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n[x] < a, for each positive integer n. Then C is an I-subgroup of A;. Analogously
we define the set D with B; and b, instead of 4; and a,. For x € C we have

n(—a, + x + a;) = —a, + nx + a, < a,

for each positive integer n, hence —a, + x + a, € C. From this it follows that the
set C, consisting of all elements of A4; that can be written as

¢ + nka,

where ¢ runs over the set C, n is any integer and k is a fixed positive integer, is a sub-
group of A;. Because A; is linearly ordered, C, is an I-subgroup of A;. Similarly, the
set D, consisting of all elements

d+ mkb, (m=0,+1, £2,...)

with d € D is an I-subgroup of A;. Hence the set E, of all elements
¢+ d + nk(a, + by)

is a subgroup of the group G. We shall show that E, is an I-subgroup of G. It suf-
fices to verify that, for each e € E,, the element e v 0 belongs to E,. Let e = ¢ +
+ d + nk(a, + b,). Obviously e = (¢ + nka,) + (d + nkb,) and

e v 0= ((c+ nkay) v 0) + ((d + nkb,) v 0).

If n+0,then evO=eforn>0and ev 0 =0 for n <0. Let n = 0; then
cvO0e{e,0 cC, dvO0e{dO0} <D Therefore evO=(c+d)vO=
=(cvd)vOo=(cvOv(dvO0)=(cv0)+(dvO0)eE,.

If e=c+ d+ nk(a, + b,)€E, and n > 0, then e > ¢, and e > d, for each
¢, € C and each d, € D, thus the interval [0, e] of the I-group E, fails to be a chain.

Suppose that E, is a direct sum of linearly ordered groups. Then each 0 < e€ E,
can be written as

e=¢e + ...+ e,

such that each 0 < e; and the interval [0, ;] of E, is a chain for i = 1, ..., m. Hence

e; = C; + di (C,-GC, die D)
and therefore ‘
e=c+d (ceC, deD).

If we choose e € E; such that e = nk(a, + b,), n > 0, then we have ¢ + d < e
for each c € C and each d € D, which is a contradiction. Hence E; is not a direct
sum of linearly ordered groups.
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If k, k' are positive integers with k < k', then k(a, + b,) € E, and k(a, + b,)none
€ E;, thus E; # E,.. The proof is complete.

An [-subgroup H of a lattice ordered group G is said to be convex if from he H,
geG, 0 =g =< h it follows g e H. By investigating cardinal summands of G it
suffices to consider only convex I-subgroups of G, since each cardinal summand is
convex. A lattice ordered group B will be called stricly cyclic, if, for each 0 & b € B,
the convex [-subgroup of B generated by the element b equals B. A lattice ordered
group will be called cyclic if it is generated by one element. The following two state-
ments are analogous to the well-known KuULIKOV’s theorem on subgroups of direct
sums cyclic groups (cf. [3], Thm. 18.1).

Proposition 1. Each l-subgroup of a cardinal sum of strictly cyclic l-groups is
again a cardinal sum of strictly cyclic l-groups.

Proof. Let B be a strictly cyclic I-group, B # {0}. For each b € B we denote by [b]
the convex I-subgroup of B generated by b. Suppose that B is not linearly ordered.
Then there are by, b, € B with 0 < by, 0 < b,, by A b, = 0. Hence [b,] * [b,],
which is,a contradiction. Thus B is linearly ordered. If B is not archimedean, then
there are b;, b, € B with 0 < nb; < b, for each positive integer n; in this case we
would have b, ¢ [bl], a contradiction. Therefore B is archimedean. Conversely,
each archimedean linearly ordered group is strictly cyclic. Now the assertion im-
mediately follows from the Theorem.

Proposition 2. Let H be an l-subgroup of a cardinal sum of cyclic lattice ordered
groups. Then H is again a cardinal sum of cyclic lattice ordered groups.

Proof. Let us denote by Z and R the additive group of all integers or all reals,
respectively, with the natural linear order. Let G, be the free lattice ordered group
with one free generator. Then G, is isomorphic to Z @ Z (cf. [1], p. 297, Ex. 6).
Each cyclic I-group is a homomorphic image of G,. Hence a lattice ordered group is
cyclic if and only if it is isomorphic to some of the following I-groups: {0}, Z, Z @ Z.
Therefore each I-group G =+ {0} that is a cardinal sum of cyclic groups is a cardinal
sum of I-groups isomorphic to Z.

Let H =+ {0} be an I-subgroup of G. Since Z is linearly ordered and archimedean,
we have

H=YH; (iel)

where each H, is linearly ordered and H; =+ {0} Because G is archimedean, each H;
is archimedean and hence H; is isomorphic to an l-subgroup of R. Obviously G*
fulfils the descending chain condition and thus H;" fulfils the descending chain con-
dition as well. Therefore there exists e; € H; such that e; covers 0 in H;. From this
we immediately obtain (cf. [1], Chap. XIII, Thm. 10) that H; is a cyclic group
generated by e;.

574



References

[1] G. Birkhoff: Lattice theory, Providence 1968.

[2] JI. @yke: Yactuyno ynopsimouennsie anrebpanyeckue cuctemsl, Mocksa 1965,

[31 L. Fuchs: Infinite abelian groups, Vol. I, New York—London 1970.

[4] J. Jakubik: Konvexe Ketten in I-Gruppen. Cas. pé&st. mat. 84 (1959), 53—63.

[5] J. Martinez: Torsion theory for lattice ordered groups. Czechoslovak Math. J. 25(1975),
284—1299.

[6] @. Iluk: K Teopun CTPYKTYPHO YNOPSIOYCHHBIX rpymm, Yex. mart. x. 6 (1956), 1—25.

Author’s address: 040 01 Kosice, Svermova 5, CSSR (Vysoké u&eni technické).

575



		webmaster@dml.cz
	2020-07-03T00:11:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




