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UNIVERSALITY PROPERTY OF FREE GROUPOID EXTENSIONS
OF HALFGROUPOIDS AND ITS GEOMETRICAL MEANING

VAcLAv HAVEL, Brno
(Received April 18, 1974)

In his work [1], G. E. BATEs presented a theory of free net extensipns of halfnets
and interpreted it algebraically as the theory of loop extensions of halfloops (for
the notion of a hafloop, cf. also [2], p. 15). In [3] and [4], using suitable algebraic
modifications, T. EVANs and W. PEREMANS suggested to generalize the algebraic part
of Bates’ theory to a theory of free groupoid extensions of hilfgroupoids. These
suggestions were worked out by R. H. BRuck in [2], pp. 1-8.

In the present article we deduce the known theorem on universality property of
free groupoid extensions of halfgroupoids by a modification of a procedure of Pickert
from [5], pp. 15—16. As we hope this concept achieves the result more quickly than
the investigations in [2], pp, 2—6. Afterwards we outline a geometric counterpart
of this theorem in terms of generalized nets and halftnets.

_ 1. ALGEBRAIC PART

A binary halfoperation - over a set G # ( is defined as a mapping of a non-void
set Dom + € G x G into G. If particularly Dom - = G x G then - is said to be
a binary operation over G.

By a halfgroupoid we mean a couple (G, *) where G is a non-void set and - a binary
halfoperation over G. When - is a binary operation, we get a groupoid.

Let (G, -),(G’, .") be halfgroupoids. Then a mapping (a surjective mapping)
6:G — G’ is said to be a homomorphism of (G, *) into (onto) (G, ') if (x, y) €
e Dom - = (x% y?)e Dom - & (x - y)’ = x% " ).

We shall use two important special cases of a homomorphism . Firstly, if 6 is
bijective and (x, y) € Dom - <> (x% y°) € Dom -’ for all x, ye G then it is called
isomorphism'). Secondly, if G = G’ and x” = x Vx € G (i.e. 0 = idg), then we write
(G, *) = (G, -') and call (G, *) a subhalfgroupoid of (G’, -').

1y In this case 0! is necessarily a homomorphism of (G’, .”) onto (G, .) which can
be easily verified.
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Let be given a non-void set ® of halfgroupoids G = (G, -) or a family (A
I + 0 of halfgroupoids G, = (G,, *.) *) such that for any (G, -), (G, ") € ® it holds
(x,y)eDom - nDom "= x -y =x-"yor(x,y)eDom -, " Dom *y = X oy =
= X *p y Vo, B l. Then we speak of a compatible set or family of halfgroupoids.
If ® or (6,),, is a compatible set or family of halfgroupoids then we define its
union )G or UG, as a halfgroupoid (UG, U -) or, respectively, (U G., U ")

Ge© tel Ge®  (G,)e® tel tel
where Dom {J - = U Dom: and x( U -)y =x -y with (x, y)eDom - for
(G,)®  (G,)eB (G,)e®

some (G, -)e® or, respectively, Dom{) -, = UDom -,, x(U *,)y = x - y with
el tel el

(x, y) e Dom -, for some tel. If ® or (G,),, is a compatible set or family of half-

groupoids with (Y G #+ 0 or ) G, + 0 then we define its intersection (G or N G,
G:=@ el Ge® tel
as a halfgroupoid ( N G, N *) or (NG, N ) where Dom N - = | Dom -,
(G,)e® (G,)e® el tel (G,)e® (G,)e®
x( N ")y =x-y independently of (G,-)e® or, respectively, Dom([) -, =
(G,)e® . el
=N Dom -, x( *,)y = x - y independently of te.
tel tel

Let (G, -) be a groupoid and (G*, -*) its subhalfgroupoid. Denote by G the set of

just all the groupoids X, 5) of the form (G*, -*) < (X,.) < (G, ). Then N (X, o)
(X,0)®
is a groupoid belonging also to ®. It will be denoted by G((G, -), (G*, -*)) and said

to be generated by (G*, -*) in (G, -). ®) We give now its recursive construction:
First, let (Gy, +;) := (G*, -*). Further assume that a halfgroupoid (G, -;) is given
for some ie{l,2,...} so that (G* -*) = (G, ;) = (G, ). Then put Gy =
= Giu{x . y|x,yeG,~}, Dom *;,; =G; X G, x ;41 ¥ = X * ypVx,ye G;. Then
(Gis1s *i+1) is a halfgroupoid satisfying (G*, -*) S (Givq, *i+1) € (G, *). Thus,
by induction, a sequence ((G;, -;))i>; is defined. It is compatible and its union

N (G, +;)is the groupoid G((G, -), (G*, -*)) as can be verified briefly. The preceding
i=1 .

construction can be somewhat modified: Let (Gj, -1) := (G*, -*) and y, := idg..
Further, let be given a halfgroupoid (G, -;) and let there exists for some i € {1, 2, ...}
an isomorphism 7; of (G,, -;) onto (G}, -}) fixing G* element-wise. Then determine
another halfgroupoid (Gjiy, *i41), (G5 *}) S (Gj+ys +}+y) in such a manner that
for a decomposition 9; on the set G; x G;\ Dom -} (described as follows) it is
Giyy =G, UD;, Dom -}, =G} x G} and x;., 'y =x-;y for all (x,y)e
€ Dom -}, while (x, y)ex i,y €2, for all (x,y)e(G; x G))\Dom -; such that
x""" .+ 7" is equal to the same element of G. Now define the mapping 9,4, : Gi+q —
— G}, which prolongs y; and associates for every x, y € G; to x * y the element
X iy y. This 7,4, is an isomorphism of (G4, *;41) onto (Gj4 1, “i+1)- Then, by

2) This notation will be used frequently in the sequel.

3) In the following we adopt G. Pickert’s methodical point of view (used in [5], pp. 12—26,
for the explanation of the theory of free planar extensions of incidence structures).
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o
induction, a compatible sequence ((Gj, -});i>, is defined and its union, U (Gj, D
i=1

0
is a groupoid which is isomorphic to U (G;, +;) under the isomorphism which pro-
i=1

longs all y;’s.

This latter construction gives rise to a general recursion scheme which leads to all
groupoids generated by a given halfgroupoid G*, -* with respect to all possible
groupoids (G, *) such that (G*, -*) < (G, ). Let (G*, -*) be a given halfgroupoid.
Firstly put (G, * (1)) := (G*, - *). Secondly suppose we have a halfgroupoid (Gi;), * ;)
for some ie{l,2,...}. Then choose a decomposition 9 of the set G; x
X G \Dom -(; onto mutually disjoint nonvoid subsets and define G.qy:=
=Gy UD;, Dom -y =Gy X Gy, X iy =x-Gy for al (x,y)e
e Dom ;) and (x, )€ x *(141) ¥ €Dy, for all (x, y) € (G x Gpy)\Dom - ;).

Thus by induction, a compatible sequence ((G;), *())i%; (called generating chain)

0 0 @

is defined and for its union U (Ggy, * i), it results U (G =) = G(U (G * i)
i=1 i=1 i=1

(G*, -*)). The “freest” case occurs if each 9 is trivial (consists only of one-element
blocks). Then we shall have in the above construction for all ie{l1,2,...}:

(X tgen ¥ = (x,9) (we drop {(x,»)}) for all (x,y)e(Gy x Gg)\Dom -,
and the corresponding U (G, *y) Will be called the free groupoid extension
i=1 :

of (G*, -*) and denoted by (G*f, -*f).

Theorem 1. Let (G*, -*) be a halfgroupoid and (G, -) a groupoid such that
(G, ©) = G((G, *), (G*, *)). Then there exists an isomorphism of (G, *) onto
(G*f, -*f) leaving each element of G* fixed, if and only if to every groupoid(G’, ") =
= G((G, *"), (G*, -*)) there exists a homomorphism of (G, ) onto (G’, ') leaving
each element of G* fixed.

Proof. 1. Necessity: We have to show that there exists a homomorphism of
(G*f, -*f) onto (G, -’), leaving each element of G* fixed. We shall construct such
a homomorphism inductively using generating chains ((G,", *;"))21, ((Gi» *#))izs
of (G*f, -*f) or of G((G', -'), (G*, +*)), respectively. First put 6{°"? := idg. This
is obviously a homomorphism of (G, *;s) onto (G, *;,) leaving G* element-
wise fixed. Further assume that for some i€ {1,2,...} a homomorphism 6{°""
of (Gs, *1s) onto (G, - ;) is given leaving G* element-wise fixed. We prolong 6{¢""
onto a mapping 057" : Gy = Gusqy as follows: For all (x,y)e G x
x Gu\Dom -, define (x, y)is; " 1 = x04"".7 y0«“? By induction, we get
a sequence ((0{°"?))i, and it may be easily verified that there is just one mapping
0" . G*f — G’ prolonging all 8¢, This mapping 6°"" is then easily shown
to be a homomorphism of (G*f, -*f) onto (G, -') keeping G* element-wise fixed.

2. Sufficiency: Assume that for all (G', ~’) there exists a'homomorphism PG,
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of (G, *) onto (G', ') leaving G* element-wise fixed even though we exploit only
@ 1= Qe and its restrictions @, := ¢|g, Vie {1,2,...}. By part 1 there exists
also a homomorphism 6¢-? of (G*f, -*f) onto (G, -) which will be helpful for our
next reasoning. We shall prove by induction that ¢,0? =idg, Vie {1,2,...}:%)
Obviously ¢, = 0 = id,. so that ¢,0{°” = idg,. Thus suppose that ¢ (" =
= idg, holds for some ie{l,2, ...}. Now turn to elements from G, \G; We
know that every element of G;,(\G; is of the form z = x - y for some (x, y) e
€(G; x G)\Dom ;. Then z = (x - y)* = x® -*f y* and consequently z***” =
= (x? ¥ o) = x - y = 2. Thus ¢, ,0{5 77 = idg,,, and the proof of ¢,0{°) =
=idg, Vie{l,2,...} is complete. This fact implies also @0®? = id;. Thus ¢
and 0 are bijective and both leave G* element-wise fixed. []

8 2. GEOMETRIC PART

By a (generalized) halfnet we shall mean a quadruplet A4 = (2, 2,1, %,,
L,, %3))°) where 2, & are non-void sets, I a binary relation from 2 to & and
£, &,, £, disjoint non-void subsets with & = ¥, 0 L, U L, £ %, = $¥, =
= # %, such that _

(i) for every P € 2 and every i € {1, 2, 3} there is just one [; € £, with PII,
(ii) for all I, € &,, I, € &, there is at most one P € 2 with PIl,, I,
and
(iii) for all I € &5 there is at least one P € 2 with PII.
If, moreover,
(iv) forall I, € £y, I, € &, there is at least one P € 2 with PIl;, [,,
then A" is called a (generalized) net. We shall equip a halfnet 4" with a triple
(o4, 0, 0'3) of mappings ¢,:%; > S, 0,: %, > S, 63: %3~ S where 7,0,
are bijections and o is an injection. Then we say that 4" has binding (o5, 0,, 63).

If &, &' are halfnets then define a homomorphism of A into (onto) N as
a couple (m, ) of mappings (surjective mappings) n: 2 — 2, 1: % — £’ such
that PIl = P"I'I* and for each i€ {1,2,3}, le ;= "€ Z;.

If, moreover, 7, 1 are bijections and (z~',A7!) is a homomorphism of A"~
onto A, then (m, A) is called isomorphism. If, on the other hand, # < #', ¥ < &’
and 7 = idy, A = idg, then A is said to be subhalfnet of A (notation A" = A).

If &', A are halfnets with bindings (¢, 0, 03), (¢}, 63, 6%) then a homomorphism
(7, 4) of W into A is called bound if the mappings &, : 1" + (I*Y*" Vle &,
6, : 1”2+ (I"? Vle %, are equal and the mapping & : I+ (I*)*" Vie &, is
the restriction of &, = 6,. If # € ¥ and SS S, 6, = 0i|g,, 03 = Gh)s,,
Gy = agl «, then A" is called a bound subhalfnet of 4™ (notation A~ < A”).

4 ¢i0§6") = idg, implies that g;, BEG") (as surjective mappings) are injective too.

5) For a halfnet /" we shall use frequently the notation (#, %, L, (¥, £,, %5)); similarly

if #" has an index; e.g. N =: (2, &', I', (<L}, £, £%)), and so on. This convention will
be applied also to the notation of the corresponding bindings (defined in the sequel).
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Let G = (G, -) be a halfgroupoid. Choose disjoint sets G,, G, G; such that
#G = #G, = #G,, #G; = #{x - y|(x,y)eDom -} and bijections y, : G; -
-G, 9,:G, =G, 13:G3—>{x"y|(x,y)eDom }. Further define a binary
relation Ig.(y;.yap =: 1 from Dom - to G, U G, U G; by means of (x, y)Ig if
and only if either X" =geG,or y? = geG, or (x -y’ = g€ G,. Then
R(G, (y1, 72> ¥3)) = (Dom =, G, U G, U Gy, g,y 3090 (G1> G2, G3)) is a bound
halfnet with binding (yl, Y25 y3); it will be called a halfnet over G corresponding to
an admissible triple (7, y2, 73)-

Conversely, let 4" be a halfnet with some binding (¢, 05, 03). Then define a half-
groupoid G&(A, (04, 05, 03)) = (S, ®) such that Dom e = {(I{!, I3?) | JPe 2,
Pll e &,, Pll,€ %,} and for any (I7,[3?)eDome, let (I5' @ I32)*™" be such
a line of .#; which passes through the common point of Iy, I,. &(A", (¢, 05, 03))
is called coordinatizing halfgroupoid of A".

Theorem 2. A. Let G be a halfgroupoid, W(G, (7,, y,, y3)) one of halfnets over G.
Then G(N(G, (vy, 72, 73)s (61, 62, 63)) coincides with G.

B. Let A" be a halfnet with a binding (o, 65, 03). Then each W(G(A, (¢4, 03, 73)),
(84, 63, 63)) is boundly isomorphic to .

Proof. A. Let be given a halfgroupoid G = (G, -). Denote N(G, (7, y2, ¥3))
by (Dom *, G; U G, U G3, Ig (31,7295 (G1> G2, G3)) as in the definition of a halfnet
over G. Finally put &(R(G, (71, 72, 73)) =: (G, ©). Then the mapping ids expresses
an isomorphism of (G, +) onto (G, ©) so that also the binary halfoperations -, ©
coincide.

B. Now let 4 be a halfnet with a binding (¢, ¢, 03). Denote (A, (04, 65, 73))
by (S, @) and choose some admissible triple (61, 65, 63). In this way three disjoint
sets S, S,, S; and three bijections & :S; - S, 6,:S, > S, 6;:S5; >
- {x °y ] (x, y) eDom e} are chosen. Finally we construct the halfnet A~ =
= N((S, ®), (84,6, 6;) with #' := Dome, ¥ :=S uUS,uUS,; I:=
= Lis 0 0n.00.85) L1 1= S1, L5 = S,, £ := S; and define mappings n: # — &',
A: % > L' Forall ie{l,2,3}, le £; we put I* = I°?", For all Pe # let P*
be the intersection point of lines 15% ™", 132%2™" where PlI, € &,, Pll, € &,. Then
(7, 2) can be shown to be a bound isomorphism of 4" onto A, []

The above reasoning permits to formulate Theorem 1 in the terms of the theory of
halfnets with bindings. The notion of a groupoid G(G, G*) generated in a groupoid G
by a given halfgroupoid G* = G corresponds to the notion of a bound net N(A", #™)
generated in a bound in a bound net .4 by a bound halfnet #/* < A",

The notion of a free groupoid extension G*f of a halfgroupoid corresponds to the
notion of a free bound net 4*f of a bound halfnet A4*.

Theorem 1 can be then re-written in the following form: Let A#™* be a bound
subhalfnet of a bound net A" such that &/ = N(./V, ./V’). Then there exists a bound
isomorphism (n, 2) of A" onto N *f with |, = idg, Mg = idg if and only if to every
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bound net /"' suchthat /" X N = N(A/, JV’) there exists a bound homomorphism
(7', X') of N onto N such that |, = idg, X|¢ = idg.
We do not give here the details.
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