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1. INTRODUCTION
Foran m x nreal matrix A4 of rank n and a real m-vector b, the least squares pro-
blem for the linear system Ax = b is to determine the n-vector ¥ such that
Ib — As]. < |b - x|,
for all n-vectors x. The unique solution is given by
% =(ATA)"* A

where “T” denotes the transpose. The traditional approach to the problem is to solve
the “normal system”

(1.1) ATAx = ATb

by some standard direct procedure such as Gaussian or Cholesky elimination.
However, using the computer this approach is often poor, since the condition
number of A" 4 is the square of the condition number %(4), of 4. (Here we take the
condition number to be the ratio of the largest to the smallest singular value of the
matrix.) In fact, using ¢-digit binary arithmetic one is not able to obtain even an

approximate solution to (1.1) unless »(4) < 2V/2. .
Several authors have suggested alternatives based on the orthogonal decomposition

of A into
A=0"[R
0
where Q is orthogonal and R is n x n upper triangular. Writing

“ el
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where Q4 is n x m, the least squares solution is given by
(1.3) % =R710,b.

One approach of this kind was given by GoLus [5] and BUSINGER and GOLUB [3]
using Householder transformations on A and another employs the Gram-Schmidt
algorithm and its modification as suggested by Biorck [2] and by PetERs and
WILKINSON [9]. Iterative refinements of these methods can be found in [2] and [6].
Further extensions of the Householder method were given by HANSON and LAWSON
[7]. More recently an elimination approach has been suggested by CLINE [4].

In [10] an iterative procedure was suggested for approximating %, based on the
splitting of the coefficient matrix A4 into

(1.4) A=M-N,

where M and A have the same range. This method was developed further and con-
vergence criteria similar to those for the nonsingular case were given in [1]. In this
note the use of (1.4) is suggested as a possible direct approach to avoiding the ill-
conditioned properties of the normal system (1.1).

2. A SPLITTING APPROACH

First notice that in the splitting (1.4), M(M™M)~! M"N = N since the range of N
is contained in the range of M and since M(MTM)~* M is the orthogonal projector
on the range of M. Also, 1 is not an eigenvalue of (M"M)~! M"N since the null
space of A is zero. Thus I — (M"M)~* M"N is nonsingular. In particular

A= M[I—- (M"M)"* M"N]
so that the least squares solution of Ax = b is given by
(2.1) X =[I - M"™M)"* M'TN]* (M™™M)"* M"b,

since the right hand side of (2.1) reduces to (474)" A7b.

One such choice of M is Qf, where the matrix Q, is given in (1.2), for then Qf =
= AR ! and R = Q,4 since 0,07 =1, and so A and QT have the same ranges.
In this case N = Q] — A and (2.1) becomes

X = [1 - (QIQ{)—I Ql(QlT - A)]*1 (Qle)—l le =
= [1 -1+ QIA]‘l 0,b=R71Qb.

Thus the familiar form given for % by (1.3) is a special case of (2.1).
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Quite obviously the value of this splitting approach for a particular ill-conditioned
least squares problem depends upon one’s being able to choose the matrix M in such
a way that its condition number is somewhat less than the condition number of A
and with the property that the matrix I — (M™M)~* M"N is not difficult to invert.
Theoretically the best choice of M is given by M = Q7, as mentioned above. However
in some cases M can be chosen by observation and by taking into account the struc-
ture of 4. An example illustrating this situation is given in the next section.

3. EXAMPLE

Let ¢ be some small positive real number and consider the m x n matrix

A=7111 ... 17,
0.
0g0...0
000 ... ¢

originally due to LAUCHLI [8], with the resulting system Ax = b. The matrix A74
then has the form

ATA=T1+¢*1 A |
1 14+ ...1
1 1 o1+ €

As was pointed out in [5] and in [11, p. 135], if a solution of the normal system
(1.1) is attempted with e < B,, the machine precision, then AT 4 becomes the singular
matrix of all I’s and the resulting least squares problem is rendered unsolvable. In
particular, when ¢ is small and higher powers of ¢ are ignored the condition number
of A is approximated by

x(A)=\l;—l.

Here one would like to choose M with the same range as A such that x(M) does not
involve ¢ in the denominator. Let C* denote the k' column of an arbitrary matrix C.
Then one can construct M with M‘*! independent of ¢ and having two nonzero
entries by setting

M+t =

E(AJ'H _ Aj)
e
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for j = 1,2,...,n — 1. Then taking M* = A*,

0 0...

1 -1 ...

M =1
e —1 0 ...
0
|0 0

0...

1

with (M) ~ /n and with 4 and M having the same range. In this case the matrix M
is much better conditioned than A4 for small ¢ and MTM is the tri-diagonal matrix

(3.1) M™M=]1+¢ —¢ 0... 00].
— 2—-1... 00

0 -1 2... 00
0 0o 0... -1

10 0 0... —12]|

Moreover, I — (MTM)~* MTN is the upper triangular matrix

(3.2) (I — MTM)"IMTN =1111...17
Oege ... ¢
00¢ ... ¢
| 000 ... &

Inversion of (3.1) and (3.2) and then post-multiplication by (MTM)~* M"b yields
the least squares solution X to Ax = b. In practice, one determines % by elimination
and back-substitution so that no matrix inversions are necessary here.

4. REMARKS

(a) It should be mentioned that the example in Section 3 is given only to show
that it is sometimes possible to avoid the ill-conditioned problem associated with the
normal system A"Ax = A"b by a judicious choice of M in the splitting (1.4). In
general the matrix M may not be so easy to obtain.

(b) Whenever A and M are m x n with rank n and have the same ranges, it follows

that
(MTA)"* MT = (AT4)" A"
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Thus % can be found by computing
(MTA)"* M"b.

That this may not always be the best approach is well illustrated by the example
in Section 3. Here 2(M"A) ~ (A A) for this particular choice of M.

(¢) In the case where the spectral radius of (M"M)™' M”N is less than one, the
iteration

XD = (MTM)™* MTNx® + (M™M)™' M"b

converges to % for each x(® [10]. In the example above the iteration converges if
and only if 0 < ¢ < 2. This iterative method may be useful in solving large, sparse
least squares problems.

(d) If the linear system Ax = b is under-determined and 4 has full row rank then
one can compute the solution j of minimum norm in the following manner. The
matrix A4 is split into A = M — N where 4 and M have the same null spaces. Then 7
is given by

j=M'(MM")"'[I — NMT(MM")"*] ' b.
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