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SOME REMARKS ON SURFACES IN THE 4-DIMENSIONAL
EUCLIDEAN SPACE

JAroLiM BURES, Praha
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In the present paper isometric immersions of the 2-dimensional connected oriented
Riemannian manifold into the 4-dimensional Euclidean space E* by means of
invariants of the second order (e.g. Gaussian and mean curvature) are studied.
A characterization of surfaces contained in a hyperplane, compact surfaces with con-
stant mean curvature and non-negative Gaussian curvature and surfaces in the
3-dimensional sphere S* in E* is given.

The author is indebted to Professor A. Svec for valuable advice.

1. PRELIMINARIES

Let M? be a 2-dimensional connected oriented Riemannian C® — manifold with
an isometric immersion

x: M?* - E*

of M? into the 4-dimensional Euclidean space E*. Let #(M?) and #(E*) be the
bundles of orthonormal frames of M? and E*, respectively. Let 4 be the set of elements
b = (p, ey, e, 3, e,) such that (p, e, e;) € F(M?) and (x(p), ey, e,, €3, es) € F(E*),
whose orientations are coherent with the canonical one of E* with the identification
e; = dx(e), i =1,2.

2% — M?* may be considered a principal bundle with the fiber 0(2) x SO(2). Let

%: 8 —» F(E*)

be the mapping defined naturally by %(b) = (x(p), ey, e,, e3, €,).
By means of the immersion x we get on & the differential forms o', »?, w?, w3,
o3, o}, w3, o induced from the basic forms and the connection forms on (E*).
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On % we have

(1) dx = o'e; + w?e,,
de, = whey, A,B=1,213,4,

0F = —op.

The system (1) being completely integrable, we have

(2 do' = 03 A 0?, do®= -0 A o',
do? = —0} A 03 — of A 0},
doj = —0} A 0 — 0} A 0F,
do} = olroj+oiao), i,j=1,2, i+j, rnt=34, r+t,

o'A 0l + P A0l=0, o' A0+ 0’ A0i=0.

From the last two equations of (2) and from Cartan’s lemma (' and w? are indepen-
dent forms on M?) we get

3
(3 o} = a,0' + a,0*, o} =Dbw' + b,w?,

0} = a,0' + a;0?, 0} = b,o' + byo?.

Further, we have

(4) da, — 20,07 — b,0f = q,0' + 0,07,
da, + (a; — a;) @] — b0 = @' + az0?,
da; + 24,07 — b0} = w0 + a,0?,
db, — 2b,0? + a,05 = p,0' + f,0?,
db, + (by — b3) 0] + a,0% = Br0" + 307,
dbs + 2b,0] + a303 = fi0' + B0

and

4) doy — 30,07 — py0f = 40" + (4, — azxf) w?,
do, + (o — 203) @] — Brw§ =
= (A, + a4 + byh) o' + (45 + a A + byh) 0,
doy + (20, — 04) ©F — Baw§ = (45 + a3 ) ' + (A4 + a, ) 0?,
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do, + 3us0F — B0 = (A4 — a, " + bsh) 0' + 4507,
df; = 3B,0} + y,0% = B,w' + (B, — byX) w?,
dB, + (By — 2B;) 0F + 0% =
= (B, + by’ — ath) ' + (Bs + by A" — a,h) o?,
dBs + (28, — Bs) o + w305 = (Bs + b)) o' + (By + b)) 0*,
dB, + 3Bs0] + 0,05 = (By — byt — ash) o' + Bsw?*.

If (p, &, &, €3, e4) is another frame defined by

6) & = cos@.e +sing.e,,

&, = —sing.e +cosq.e,

we have the transformation laws:

(6) d; = a; cos? ¢ + 2a, sin ¢ cos ¢ + a; sin® @,
d, = a, cos 2¢ + 4(as — ay)sin2¢p,

a, sin2 ¢ — 2a, sin ¢ cos ¢ + a; cos® ¢,

xN
w
Il

b; = by cos? ¢ + 2b, sin ¢ cos ¢ + by sin® ¢,
b, = b, cos2¢ + i(bs — by)sin2¢,
b; = by sin® ¢ — 2b, sin ¢ cos ¢ + by cos? ¢ .

If we have (p, ey, e,, &, &,) with

(7 &= cosO.e;+sinb®.e,,
&, = —sin®.e3; +cosO.e,,

we obtain

(3) G, = aycos@ + b sin0,
d, = a,cos0O + b,sin@,
4y, = a3cos© + bysinO,
b, = —a;sin® + b, cos O,
b, = —a,sin® + b,cos O,
by = —aysin @ + bycos O .

482



We obtain the following functions on M? depending only on the immersion
x:M?* - E*: :

) H = (a; + a;)* + (by + bs)? (mean curvature),
A = ajay — a3 + byby — b3 (Gauss curvature),
h = asb, — asby + a,b; — asb, (torsion),
k = (ayb, — ayby)(aybs — asb,) — i(agh; — asby)*.

The Riemannian metric is given by
I= (o) + (2.
For A and h we have the relations
(10) dol = —AH o' A ©?, doj= —ho! A ©?.
The functions h and k are connected with the invariant form
(11) @ = (asb, — ayby) (0')* + (ayhs — asby) ©'@w* + (ayb; — asb,) (w?)?

it is easy to see that @ = 0 yields the conjugate net of x(M?).
The mean curvature vector is given by

(12) & =(ay + as)es + (by + bsy)e,

with [¢]? = o#.
If # =% 0 on M? we can choose (locally) moving frames (the mean curvature frame)
(e1, e, €3, €,) so that
P
el

In this case we have by + b; = 0 and # = (a; + a;)>.
Example 1. Standard sphere S? in E*. S? can be represented by
(13) X, =asinucosv, x,=asinusinv, x;3=acosu,
X =0, 0fu=sn, 0Zv=2n.
Putting
(14) e; = (cos u cos v, cosu sinv, —sinu, 0),
e, = (sinv, cosv, 0,0),
e; = (sinu cos v, sin u sin v, cosu, 0),

e, =(0,0,0,1)
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we have

(15) dx = adue +asinudve,,
o'= adu, o'=asinudy,
3 1 1 3 1 2 2 2
W)= ——0, 0W,=——-0°, 0] =-cotguw,
a a a
2 1
o= w;=0;=0, al=a3=—~;, a, =0, by =b, =b;
Hence
1 4
HN=—, #=—, h=0, k=0, # =44
a? a®

Example 2. The standard flat torus T2 in E*. We have
(16) Xy =acosu, X, =asinu, x;=>bcosv, x,=bsinv,
a,b>0, 0Zu=s2n, 0Zv<2n.
We take the following frames over T2
(17) e; = (—sinu, cosu, 0,0),

e; = (0,0, —sin v, cos v),

= i/_(zl_bz) (acosu, asinu, bcosv, bsinv),
a” +
e, = o (bcosu, bsinu, —acosv, —asinv),

NCEYD

obtaining thus

(18) o' =adu, 0 =bdv, o}=0=0,
(,Oi = ’—b“—— o' . w‘: = ———1 a)l s
V(@ +b?) J(@* + b?)
3 a 2 4 1 2
Wy = — ——— W, Wy =—"T"-0".
V@) T @ )
Hence
1 1 1
H =0, #£=—+—, h=0, k=—-——
a*  b? 4a%b?

on T2.

The geometrical meaning of the functions h, k is expressed by the following
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Theorem 1. Let x : M2 — E* be an isometric imbedding of a connected oriented
Riemannian 2-dimensional manifold M?* into the Euclidean space E*. If there
is a hyperplane E of E* such that x(M?*) < E then h = k = 0 on M>.

Ifh=0,k=0and & >0 (or & < 0)on M?, there is a hyperplane E of E*
such that x(M*) < E.

Proof. a) If x(M?) < E, the surface M? can be covered by domains {U,} in such
a way that, in each U,, we can choose moving frames (x, ej, e,, s, e,) such that e,

is the constant unit vector field vertical to E. Thus we have de, = 0 on U, and

o} =w}=0t=0,ie.by=b,=b;=0and k=0,h=0onU,

b) Let h = k = 0 on M?, let us have a covering of M? by domains {U,} and in
each U,, a moving frame (x, ey, e,, e, e,) so that (1)—(4) holds.
From h = k = 0 it follows

(19) aib, — a,by + a,by; — azh, =0,
(albz el azbl) (02b3 - a3b2) bl :l,:(aibs - a3b1)2 =0
that is
(20) ajb, — a,b; = azb, — a,b;,
(a;b, — ayby)* + Hasbs — azby)* =0
This implies
(21) ath, = ayb;, ajby =azb;, ayb; =asb,.

We can prove:

(I) There exists a normal frame (3, &,) so that for every tangent frame (, &)
it holds b, = b, = b; = 0 with respect to the frame (X, &;, &, &, &,).

If (x, ey, €5, €3, ,) is an arbitrary frame satisfying (by = 0 similarly for b2 + 0
or by # 0) the equations (21) imply

If a; =0 we set & = ey, & = e;. Assume that a; + 0. For e§ = cos @ . €3 +

+sin@.e,, ey = —sin O . e; + cos O . e, we have
/ . , b, .
by = —a,sin® + by cos O, 2=b—(—alsm@+b1cos@),
1

by = by (—ay sin ® + by cos O)
b,
and taking @ such that —a, sin ® + b; cos ©@ = 0 we obtain the desired result (I)
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Let (x, ey, €,, &, &,) be a moving frame on U, such that

The equations (4) imply
(22) a0 = po' + 0%, a;03 = fio' + B,
a,03 = f,0' + Bi0”.
There is a frame (x, &}, &,, &, &,) on U, with a, = 0. Hence we have for this frame

B = B3 = 0and
a;05 = pio*, aacog = pi0*.

If # = a,a; + 0 on U, then wj = 0, de, = 0 i.e. e, is a constant vector.

Remark. If h = k = 0 on M? we can choose a covering of M? by domains {U,}
in such a way that, in each U,, we can choose moving frames satisfying w3 = 0
or # = 0ateach point peU,.

Theorem 2. Let M? be an oriented 2-dimensional connected Riemannian mani-
fold, x : M* — E* an isometric immersion of M? into the Euclidean space E*
and A, A, h, k functions on M?* defined by (5). Then we have:

(i) # =44, h* = 2k.

(ii) If # =+ 0 and # = 4A then x(M?) is contained in a 2-dimensional sphere
S? < E*.

(iv) if h* = 2k then h = k = 0.

(i) If # =@ —¢e*) A, ¢+ 0 then # = K =0 and x(M?) is contained in
a plane F? — E*.

(v) If # =0 then # < 0.

Proof. (i) It is
H = AAH = (ay — a3)? + 4a% + (by — bs)? + 4b2 = 0,
h? — 2k = (a;b, — ayb()* + (aybs — asb,)* + ¥(a;bs — azby)* 2 0.

(ii) If # # 0, # =44 then we have a; =as, a, =0, by =b, =by; =0
from (i).

(i) From # = (4 — ¢*) & it follows thata, = a, = a3 = 0, by = b, = by =0,
ie. # = A = 0and x(M?) is a submanifold of a plane from E*.

(iv) and (v) follows immediately from (i).

Theorem 3. Let x : M?> — E* be an isometric immersion of a compact connected

oriented 2-dimensional Riemannian manifold into the Euclidean space E* such

that:
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(i) & > 0 and # = const. on M?,

(ii) there exists a covering of M* by domains {U,} such that, in each U,, it
holds w3 = 0 with respect to the mean curvature frame (i.e. the torsioh
form of x is zero).

Then x(M?) is a 2-dimensional sphere in E*.

Proof. From the inequality 2 > 0 on M? it follows immediately that 3 > O
on M? and, for each U,, we may consider the mean curvature frame (x, ey, e,, €3, e4).
In virtue of (i) it is d# = 0, i.e.

(23) (a; + a3)(oy + 23) =0,
(a; + a3) (e + 05) =0

and a; + a; + 0 implies o; + o3 = 0, 0, + o, = 0. From (4) we have
(ay + a3) w} = (B1 + B3) @' + (B2 + By) @*
and by virtue of ®5 = 0 we get
Bi+Bs=0, B, +p,=0.
Using the equations (4') for this case, we obtain

(24) A+ Ay = —as, Ay + A, =0, Ay + As= —a, A,
B, + By = —b,#', By +B, =0, By +Bs = —bA.
Let 7 be the 1-form on M? defined by
T.= — xdA

Then
dv = (H(# — 4H) + 402 + o3 + B2 + B2)dV.

f dr =0
M2

[#(# — 42) + 4a] + oF + BT + B3)]dV =0
MZ

Stokes’ theorem implies

ie.

and from %~ > 0, # 2 4 it follows # = 4 and x(M?) is a 2-dimensional sphere
in E*.
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Remark. If the condition (i) of Theorem 3 is replaced by
(i) A =0 and s = const > 0

while the condition (i) remains unchanged, x(M?) is etiher a sphere or 4 = 0
holds on M?2.

2. SURFACES IN s°

Let x(M?) be a submanifold of the 3-dimensional sphere with the center at the
point S and with diameter 1/r. If {U,} is a covering of M? by domains U, and
(x, ey, e,, €3, e,) are orthogonal frame fields on each U, with x € U, and

X = S el ; €y

then the equations (1)—(4) are satisfied.
Especially
1
dx = — ; de4 5
1 2 -1 4 4 4
wle + w'e, = —= (—ote; — wie, — wies).

Hence
(25) o} =ro', o;=ro?, 0}=0 (by=>by=r, b,=0)

and from (2) we get

0} = a0 + a,0?, )= a0 + a0*.
Thus
2
H = (a; + as)* +4r*, A =aja; — a5+ 1",

h=0, k= —r*a} +4(a; —a3)®), Bp=PB,=Bs=0.
Lemma. A compact surface M* = S° is a flat torus if and only if it holds, on M?
H =const, A =0.
Proof. If #" = 0 on M? then
aja; —ay=—-r*<0

There is a covering of M? by domains {U,} such that, in each there is a field of
tangent frames with a, = 0.
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This implies a, = const, a; = const, a; * as, (a; — a;) @} = 0 implies 0} = 0,
and M? is a flat torus.

Theorem 4. Let x : M*> » E* be an isometric immersion of compact connected
oriented 2-dimensional Riemannian manifold into E* with x(M*) = S*. Further
suppose that A = 0 and A = const on M>.

Then either & = 0 on M? and x(M?) is a flat torus or # = 44 on M? and
x(M?) is a 2-dimensional sphere.

Proof. There is a covering of M2 by domains {U,} with moving frames (x, e,, e,,
e;, ,) in each U, such that (1)—(4) and (25) are satisfied.
Then

w§=0, o] = ro', w;:ra)z, Br=B,=B3=B,=0, h=0.

From # = const it follows
0 =d(a; + a3) = (2 + o3) @' + (2, + o) @?
ooy +o3 =0, o, +a,=0.
For the 1-form 7 on M? defined by

' = —xdX
it is
dt = (A (# — 4A') + 4] + a3))dV

and from Stokes’ theorem
[#(# —4x) + 42} + 03)] dV =0
MZ

we obtain either

(A) 0, =0, 0, =0, # =0

or
(B) % =0, a,=0, # —44 =0.

By Lemma, M? is a flat torus in the case (A) while in the case (B) we have

ay=ay=a, H =4a*>+r?), A =a+r?,

1

3 4 4
0w =a o', 0=a0*, o]=ro', o;=ro.

If a # 0 then d(x + a™'e;) = 0, i.e. x + a~'e; is the center of M? = S* with the
radius a.
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For a = 0. M? is a great sphere in S°.

Remark: If x(M?) = S* with k = 0 on M? then x(M?) is a submanifold of a 2-
dimensional sphere S? < S3.
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