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In this paper, we shall consider reflexive Banach space S and its dual space S,
with the norm ||u| and ||f]||, respectively, and with the pairing (u, f> (u € S, f€ S').
Throughout the paper, we shall denote the weak convergence in these spaces by
w-lim v, = v, or v, — v,; if the sequence {v,,} tends to v, in the norm we shall write
v = lim v, or v, > v,.

Let us now introduce the notion of convergence of subspaces; cf. e.g. [3].

Definition 1. Let H, = S, n = 0, 1, 2, ... be closed linear subspaces of the space S.
We say that lim H, = Hg or H, - H, if the following conditions are fulfilled:

(1,1) (nx < Mgs1, ve€H,, v = vy) =o€ Hy,

(1, i) Vwoe Ho3{w,}, w,€H,, w,— wo.

Lemma 1. Let Hy = N\ [ U H;]. Then (1, i) holds. (By [M] we denote the minimal

n

linear space which contains M.)

Proof. Let v, € H,,, v — vo. Then there exists a constant K such that [y, < K,

n=0,1,2,.. The set B, = {xe [.U H]||x| £ K}is a convex closed set and

hence it is weakly closed, too. This implies that v, € B, for arbitrary n, which proves

the lemma.

Example 1. Let @ = R, be a bounded domain with infinitely differentiable
boundary, and let S = W*?(Q) be the Sobolev space. Let I', be a relatively open

475



subset of the boundary dQ with infinitely differentiable relative boundary; let
I', = 09Q be a sequence of relatively open sets such that
. © ©
(i) Fo=U1.ﬂF,-=ﬂl_UFi;
(i) for any neighbourhood U of I'y there exists n, such that for n = no, I', = U.
Letusput H, = {ueS|u=0onT,},n=0,1,2,...
Then H, — H, in the sense of Definition 1 (see [1]).

Theorem 1. Let S be a reflexive Banach space. Let the sequence of functionals &,
over S, n =0, 1,2, ... be given with the following properties:
(i) (differenciability): @, have Gateaux differentials T,(x) at every point x € S;
(ii) (Strong monotonicity):

Vx,yeS:{x—y, Tx —Ty>=2C|x —y|’, C>0, p>1;

(iii) (boundedness): Operators T,.are bounded uniformly with respect to n, i.e.,
for any K, there exists K, such that ”u” <K= H[T,,(u)”! < K,;
(iv) for any ues

- Tou .

Let H,n =0,1,2,... be a sequence of closed subspaces of S; let w,€ S, f,€ S’
be given, w, = wy, f, = fo, H, = H,.
Then the problem

(2) Vve Hn<vs 7—;!(60" + W)> = <Uafn> , WE Hn
has a unique solution w, for any n and
(3) W, > W .

Proof. Conditions (i), (ii), (iii) quarantee coercivity of T,, boundedness, continuity
and convexity of @,; of course, it is sufficient to consider the relation

4 | ?,(x) — 9,(») ‘= J:<x -y, T(tx + (1 — 1) y)dr,

which holds for arbitrary x, y € S. Hence the existence and unicity of solutions w,
of the problem (2) follows from the general theory, and

(5) Wy = U, — @,
where
(6) x = ¢n(vn) - <Un’fn> = minH ((p"(l]) - <l7, fn>) 5

see [2] or [4].
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We shall show that all the points v, lie in some ball. Of course, putting y = 0
we obtain from (ii)

LD 5 cpxper - |
<]
Putting, in the case of necessity, &, = &, — ®,(0), we can suppose ®,(0) = 0and
using the equality (4) we obtain

2,(x) 2 Cix[” = Caflx] -

We have w, — w,, f, = fo, and thus we obtain that there exist two constants M, R
such that '

17

Thus we have

<M, O] <M, Jo] <R and (o] <R =[0,0)] < m).

@,(0,) — <, f,» < M(1 + R),
P, (x) —<nfwy z2 Cix|? = (M + C) [x] -
It follows that for Q sufficiently large
Ix] 2 @ = &,(x) — 6, £> Z B(w,) — <@, /)

and hence |v,]| £ Q,n=0,1,2,....

The theorem will be proved if we show that for arbitrary subsequence of {v,}
we can choose a “subsubsequence”, which tends weakly to v,. For the sake of sim-
plicity of notation, we shall consider the original sequence v, instead of its sub-
sequence.

We have ||v,]| £ Q; thanks to the reflexivity of S we can choose a subsequence v,
which tends weakly to an element &, € S. It follows from (1, i) that &, € H,. Moreover,
a, form a bounded sequence (|a,| < max (|®,(w,)| + MR)) and so we can suppose

n=1,2

that our choice is such that o — a.
Rewriting T(tx + (1 — 7)) = T,(y) + {T,(y + o(x — y)) — T,(y)} we obtain
from (4) and (ii)

(7) B,(x) 2 &,(y) + <x =y, TO) -
So we can write
%, = P (T0) + {Pi(vr,) = Pi(B0) } — (o S 2
2 &, (0o) + v, — To» T (7)) — Vhpo fr -

1t follows from (4), (iii) and (iv) that @,(7,) = ®o(7,) and so & = lim inf o, =
= @) — (B> fop = %. (Remember that we have supposed @,(0) = 0.)
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Let us suppose & > a,. We obtain from (1, ii) that there exists a sequence u, € Hyn
u, = vy — w, and hence z, = u, + w, > v,. We have now

Dy (20) = P (v0) + Pi,(24) — Pi(00) 5

but from (4) and (iii) we have

|®s,(24) — P, (v0)] =

1
J {zy = g, Ti(tz, + (1 — 1) vo)) dr| <
0

IIA

1
|z, — UO”f | Th(zzs + (1 = 7) vo)||| dr > 0,
0
and so
‘I’k,.(zn) - <mek"> - ¢o(1’o) — (0o, fo) = 0g -

On the other hand, @ (z,) — <z, fi,) = o, lim (D, (z,) — {z,, fi,>) = & > o>
which is a contradiction. Thus we have

‘po(ﬁo) — (Do, fo) = <D0(UO) — <o, fo
and thanks to the unicity of the point in which the minimum is attained, 7, = vo

which proves the theorem.

Theorem 2. Let S be a reflexive Banach space and let ®,, f,, ®,, H,, satisfy the
assumptions of Theorem 1. Let us denote by w, the solutions of the problem (2)
for n=0,1,2,....

Then w, — w,.

Proof. Because of strong convergence of w, it is sufficient to prove thatw, + ®, =
= v, = Uy. In virtue of Theorem 1, v, - v, = Wy + ®,. On the other hand, we have

Cllo, = vo||” = <o, = 0o, To(va) — Tolv0)>

and hence, if we show that v, — v,, T(v,) — T,(ve)> — 0, the theorem will be proved.
There exists a sequence {z,}, z, € H, + ®,, z, = v,. We have

<vn — Vo, 7:11'7:: - T;nvo> = <Un = Zp Tnvn> + <Zn — Vo T;,U,,) +
+ <Un — Vo, _T;nvo> = <U,, - szn> + <Zn — Vos Tnvn> + <Un — Do, _’I;:v()> -0
which proves the theorem.

Example 2. Let S, H, be the Banach spaces defined in Example 1. Let the function
P = P(x, & n) be given, defined for xe @, &= (&, &y, ..., Ey)€Ryyy, NERy,
with the following properties:
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(i) P has all derivatives up to the second order continuous and bounded in Q x
X Ryi+1 X Ry.

(i) IC>0VxeQ V{eRy,y VneR, VE€ Ry,
N 9*P(x, ¢, n) N 2
— 2 2z Cy 8.
iZO o¢; o, - ! igo

Let us define

®,(u) = J P(x, u, Vu, o) dx ,
o]

where o, € L,(Q), n = 0,1,2, ..., &, = ato.
Than the assumptions of Theorem 2 are fulfilled and

(v, Tu) = J‘ vgi (x, u, Vu, 0,) dx + ) v 0P (x, u, Vu, o) dx .

o 0& i=1 J o 0x; 0&;

Together with Example 1, we obtain a result concerning the dependence of solution
of a boundary value problem not only on the boundary conditions but on the type
of these conditions, too.
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