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1. INTRODUCTION

Let I' be a root system (i.e., a po-set such that for each yeTI, {uel |x = y}
is a chain), and let V = V(I', A) be the group of all functions from I' into the o-
group A whose support satisfies ACC. A component v, of v € Vis maximal ifv, # 0
and v, = 0 for all « > y. We define v € V to be positive if each maximal component
is positive. Then Vis a lattice ordered group (I-group) and X(I', A) = {v e V' support
of vis ﬁnite} is an [-subgroup of V. A maximal chain in I' is called a root, and
KT, A) = {v € V[ support of v lies on only finitely many roots} is also an [-subgroup
of V. Throughout, Z, Q, R will always denote the additive groups of integers, rationals
and reals, respectively.

If G is an I-group, a convex [-subgroup M of G is called regular if it is maximal
without some element ge G. M is a value of g . G is called finite valued if each
g € G has only a finite number of values. The set {G), ] y € I'} of all regular subgroups
of Gis a root system with respect to inclusion. If G is abelian, then there is an
l-isomorphism of G into V(I', R) [1]. Throughout this paper, I' will denote the
index set for the set of regular subgroups of G. For the rest of this section, all groups
are assumed to be abelian.

For each yer, let G” denote the convex I-subgroup of G which covers G,. An
I-group G is generalized discrete if each G?/G, is cyclic, and has rank one components
if each G’/G, has rank one. RiBeENBOIM [10] proved that a generalized discrete o-group
can be embedded in V(I', Z). In [7], HiLL and MoOTT give a counter-example to
Ribenboim’s theorem and then show that if G is a countable generalized discrete
o-group, it can be embedded in X(I', Z). We extend this and other results of Hill
and Mott from o-groups to I-groups. If G is a countable generalized discrete I-group
with a finite basis, then G can be embedded in X(I', Z). If G is generalized discrete,
finite valued and I satisfies the DCC, then G =~ X(I', Z).

An o-group is hereditary discrete if each subgroup is discrete. In [11]. SANKAREN
and VENKATARAMAN prove that an hereditary discrete o-group is generalized discrete,
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but we show by a counter-example that this is false. This example is also a counter-
example to some other theorems in [11]. For instance; the authors claim that if I’
satisfies the DDC, then an o-group G is isomorphic to X(I', Z), if and only if G is
hereditary discrete. Hill and Mott supply the correct theorem. An o-group is w-
discrete if every I-homomorphic image is discrete. Then an o-group G is w-discrete
if and only if G =~ X(I', Z) where I satisfies the DCC [7].

An element 0 < s in an I-group G is called basic if the convex I-subgroup G(s)
that is generated by s is an o-group. A basis for G is a maximal pairwise disjoint
subset that consists of basic elements. Let us define an I-group G to be w-discrete
if each I-homomorphic image has a basis of atoms. We show that G is w-discrete and
finite valued if and only if G =~ X(I', Z) and I satisfies the DCC.

From the theory developed by MARTINEZ in [8] we deduce that a representable
lI-group G contains a convex I-subgroup O(G) (¥(G)) with rank one (cyclic) com-
ponents that contains every other such convex I-subgroup, and is invariant under alls
l-automorphisms of G. We compute O(G) and ¥(G) for various well known [-groups.

Final notation: if {4, | § € 4} is a set of I-groups then X,4; and IT,4; will denote
the cardinal sum and product, respectively, of the A;. For I-groups A and B, A H B
denotes their cardinal sum.

2. THE CLASSES ¢ AND ¢

Let O (resp. €) denote the class of all the normal valued I-groups with rank one
(resp. cyclic) components. Thus if G € O (resp. G € %), then for each yeTI', G, < G”
and G?/G, has rank one (resp. is cyclic). Hill and Mott [7] investigate the abelian
o-groups in ¥ and Mott [9] examines the abelian I-groups in . Using their termino-
logy, we call a group in € generalized discrete.

Proposition 2.1. O and € are closed with respect to l-subgroups, I-homomorphic
images and cardinal sums, but not cardinal products.

Proof. Mott [9] shows that the proposition holds for abelian generalized discrete
I-groups. If H is an l-subgroup of Ge (%) and N is a value in H of 0 < he H,
then there exists a value M of h in G with M n H = N. Let M* be the convex I-
subgroup of G which covers M. Then if N* = M* n H, N* covers N and N*/N =
= (M* A H)/((M 0 H) = (M* n H)J(M n M* A H) @ (M + (M* n H)|/M <
< M*/M. Thus, since M*/M is of rank one (cyclic), so is N*/N, and so H € O(%).

Let C be an l-ideal of G € O(%¥) and let T be a regular subgroup of G/C. Then
T = T/C where T is regular in G. If T* covers T, T* = T*/C where T* covers T
and hence T*/T = T*/T has rank one (is cyclic). Thus G/C € O(%).

Let {G; [ i eI} be a set of non-zero l-groups. If M is a regular subgroup of %,G;,
then M is of the form K [ Z,.G;, I' = I \{j}, where K is regular in G;. Clearly then
Z,G; € 0(%) if and only if each G, € 0(%).
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Finally, [] Z ¢ 0 since it contains a copy of the free abelian I-group on two
i=1

generators, F,, and Z @ Z{ with the natural order is an I-homomorphic image of F,

(¢ any transcendental element of R). Thus F,, and hence [] Z, does not belong to
o(%). =1
Suppose that the I-group G satisfies:

(F) Each disjoint bounded subset of G is finite.

Then G is normal valued and has a basis {s; | A€ 4}. Let s} = {ge G| |g| A 5, =
=0}.If o : G > =, G/s} is defined by (g0), = s} + g, then ¢ is an isomorphism. Thus

Corollary. If G satisfies (F), then G € 0 if and only if each G/s; €0 and Ge ¥
if and only if each G[s, €.

Now if we consider the class of totally ordered groups with rank one components
(cyclic components) and consider the corresponding “hyper-kernels” that Martinez
introduces in [8], then from his Theorem 1.5 we get the following:

Theorem 2.2. A representable I-group G contains a convex l-subgroup 0(G)(%(G))
with rank one (cyclic) components that contains every other such convex l-subgroup.
Moreover, O(G) (4(G)) is left invariant by the l-automorphisms of G.

Actually, the set of all convex I-subgroups with rank one (cyclic) componentsis a
complete sublattice of the lattice of all convex I-subgroups of G with O(G) (¢(G)) as
the largest element. In section 4 we compute O(G) and %(G) for various well-known
l-groups.

Proposition 2.3. G € 0 if and only if G(g) € O for each g € G, and G € € if and only
if G(g) € € for each g €G.

Proof. If G € 0, then G(g) € 0 for each g € G by Proposition 2.1. For the converse,
let G, be a value of 0 < g€ G and G’ the convex I-subgroup covering G,. Then G(g)
covers G, N G(g) and G, n G(g) is a value of g in G(g). Thus

Gg) _ G@®nG G +(GnG()
G NG, GG NG G,

< G'/G,.

If 0 <xeG’ then G, + x < G, + ng, some n > 0 and hence G, + x =
=G,+x Ang. Thus x=h + x A ngeG, + (G'n G(g), and so G' =G, +
+ (G" n G(g)).

The proof for ¥ is similar.

Proposition 2.4. For a finite valued I-group G, the following are equivalent.
(@) Geo.

(b) Each archimedean o-subgroup is of rank one.
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(c) Each l-subgroup of G that is generated as a group by two elements belongs
to 0.

(d) Each finitely generated l-subgroup of G belongs to 0.

Proof. By Proposition 2.1, (a) implies (b), (c) and (d). Suppose that G?/G, is not
of rank one. Then there exist x, y € G \ G, such that y is their only value and G, + x
and G, + y are independent in G?/G,. If m* + n*> # 0, then mx + nye G'\G,
and, in fact, y is the only value of mx + ny. Thus mx + ny must be positive or
negative and hence [x] + [y] is an archimedean o-group that is not of rank one and
a two generated [-subgroup of G that is not in 0.

The next Proposition shows that [] Z; satisfies (b), but as we have seen [[ Z; ¢ 0.

i=1 i=1
Thus the hypothesis of finite valued can not be discarded. In section 4 we show that
the corresponding proposition with % instead of 0 is not valid.

An element 0 < s€ G is singular if 0 < g < s implies g A (s — g) = 0.

Proposition 2.5. If G is an archimedean I-group and each positive element of G
exceeds a singular element, then each o-subgroup of G is cyclic.

Proof. In [2] it is shown that G is [-isomorphic to a subdirect product of discrete
o-groups, T;. So without loss of generality G < I1,T,, where each T is a lexico-
graphic extension of the integers by an abelian o-group, and each singular element
in G is a characteristic function on a subset of A. If 0 < ge G, then g > s > 0,
where s is singular and since ns « g for some n > 0, ns, > g, > 0, some 1. But
s; = 1 and so g; is an integer.

Let U # 0 be an o-subgroup of G. If 0 < a, b € U, then na > b and nb > a for
some n > 0, so a and b have the same support in A. Pick 0 < u € U and let u; be
a nonzero integral component of u. In fact, we may choose u so that no other positive
element in U has a smaller A-th component. Then u is the least positive element in U.
Indeed, if # € U with 4 < u, then &, = u, and since u and u — # have the same sup-
portifu > u, we get u = u. Thus U = [u]; for if 0 < b € U, then there exists n > 0
such that b < (n + 1) u. If n is the smallest such and b # nu,then 0 < b — nu < u.

Corollary. Each o-subgroup of T1,Z; is cyclic.

Question. If G is archimedean and each o-subgroup is cyclic, then does each positive
element in G exceed a singular element?*)

*) Added in proof. J. Jakubik has sent us an example that shows that the answer is no.
Another example is the following. From the proof of Proposition 2.5 it follows that each
o-subgroup of a subdirect product of integers is cyclic. Let G be a free abelian /-group on two
or more generators. Then G is a subdirect sum of integers so each o-subgroup is cyclic, but G'
contains no singular elements in fact no bounded elements.
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3. ABELIAN /-GROUPS IN ¢ AND ¥

Throughout this section G will denote an abelian I-goup. We first extend Hill
and Mott’s Proposition 4.5 to I-groups.

Proposition 3.1. If G e ¥ is finite valued and T satisfies the DCC, then G =
~ X(I', Z). In particular, 2(I', Q) is the divisible hull of G.

Proof. For each y € I' pick an element 0 < g’ € G such that G, is the only value
of g” and G’/G, = [G, + g”]. Let 7 be the map of {g ‘ y € I'} into X(I', Z) such that
g’t is the characteristic function on y. Then t can be extended to an [-isomorphism o
of the divisible hull G* of G onto X(I', Q) (see [3], Theorem 4.9). Now clearly Go =
2 X(I', Z), so we need only show Go < 2(I', Z). Consider 0 < g € G with value G;.
Then G; + g = G; + ng® for some n > 0 and hence (go); = (ng’s); = n. Now
the support of (g — ng’) o is properly contained in the support of ga which is finite.
Then, by induction, go € X(I', Z).

Corollary L. If G € € has a finite basis and I satisfies the DCC, then G = X(I', Z) =
= W(I, Z).

Corollary Il. For an abelian I-group G, the following are equivalent.
(1) G = X(I', Z) with T finite.
(2) Ge¥ and I is finite.

(3) G €% and has finite rank as an abelian group.

Proof. Clearly (1) implies (2) and (3), and (2) implies (1) by the Proposition.
Assume then that (3) is satisfied. Since disjoint elements are independent, G has
a finite basis and so each element is the sum of a finite number of disjoint special
elements (i.e., elements with only one value). Since special elements with distinct
values are independent, it follows that I” is finite.

Let G be the divisible hull of G. It follows that if G has finite rank, then G ~
=~ X(I', T,), where I is finite and each T, is a finite dimensional rational subspace of R
with the natural order. If, in addition, G € @, then G* = X(I, Q).

It is well known and easy to prove that I" satisfies the DCC if and only if each prime
subgroup of G is regular. If G € % is finite valued and I satisfies the DCC, then we
have shown that G =~ X(I', Z) = X(I', G’/G,) and G = X(I', Q). If Ge 0 is finite
valued and I satisfies the DCC then G* =~ X(I', Q), but Example 9 of Section 4 shows
that G need not be embeddable in X(I', G*/G,).

Recall that G is w-discrete if each [-homomorphic image has a basis of atoms. If G
is w-discrete and M is a prime subgroup, then G/M has a least positive element.
Thus M must be regular and hence G € ¥ and I’ satisfies the DCC. We next extend
Hill and Mott’s Proposition 4.6 to [-groups.
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Proposition 3.2. G is w-discrete and finite valued if and only if G = X(I', Z)
and T satisfies the DCC.

Proof. If G is w-discrete and finite valued then by Proposition 3.1 and the above
remarks, G =~ X(I', Z) and I satisfies the DCC. Conversely, it is clear that £ = X(I', Z)
is finite valued. Now let C be a convex [-subgroup of X, and let 4 = {y el | some
¢ € C has maximal component c,}. Then C = {veX |support of v < A}. Thus
2|C =~ X(I' \ A, Z), which has a basis of atoms.

Corollary. If G is finite valued then the following are equivalent.
(1) G €% and I satisfies the DCC.
(2) G is w-discrete.

Suppose that G € 0, is countable and finite valued. Then in [5] it is shown that
G =~ X(I, Q).

Question. If G € ¥ is countable and finite valued, can G be embedded in X(I, Z)?
Hill and Mott have shown that the answer is yes if G is an o-group. One can use the
fact that G? 2 X(I', Q) to recover the Hill-Mott result and also to obtain an af-
firmative answer to the above question, but the proof is long and quite complicated
so we only give the following.

Proposition 3.3. Let G € € be countable and have a finite basis. Then G can be
embedded in 2X(I', Z).

Proof. We use induction on the number of elements in a basis for G (or equiva-
lently the number of maximal chains in I'). Now G is a lexicographic extension of its
lex kernel, A H B, by an o-group. If A @ B = 0, then G is an o-group and the
proposition is true by Theorem 5.1 in [7]. If AH B # 0, then 4 # 0 # B so by
induction 4 and B can be embedded into X(I'(4), Z) and X(I'(B), Z) respectively.
Now G/(A H B)e ¥, is ordered and countable and hence free [7]. Thus G =
= A B ® C, a direct lexicographic extension. C can be embedded into Z(I'(C), Z)
and it follows that G can be embedded into X(I', Z).

4. EXAMPLES

1. An [-subgroup G of H Z; that is epi-archimedean (i.e., each regular subgroup is
maximal), but G ¢ %. Let H be the I-subgroup of all the functions in HRi with
finite range and let o be the l-automorphism of H R; obtained by multlphcatlon by
the element x = (x;) where x; = i. Let G be thé_ll-subgroup of Ho consisting of all
the integer valued functions. It is shown in [4] that G has the desired properties.
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2. If K = T1,Z;, then 4(K) is the I-group of all bounded functions.

Proof. Let B be the [-subgroup of all bounded functions. Then B is epi-archi-
medean and so if C is a prime subgroup of B, B/C is an archimedean o-group with
a singular element C + a, where a is the characteristic function on 4. Hence B/C
is cyclic and Be®. If 0 < ge K\ B, then g is unbounded and it follows, as in
example 1, that K(g) contains an I-subgroup that does not belong to %. Hence B
is the largest convex I-subgroup of G that belongs to ¥ and hence B = %/(K).

We next generalize (2). Let G be an abelian I-group and let X = {xe G* ‘ X
exceeds only a finite number of disjoint elements}. Then [X], the group generated
by X, is the largest I-ideal of G that satisfies property (F) and [X]* = X. [X] is
called the F-ideal of G and is denoted by F(G). (See [3], p. 3.30).

3.If V=V, Z), then €(V) = F(V) + B, where B is the group of all the
bounded functions that live on the minimal elements of I

Proof. Bis an [-ideal of V and by (2), Be ¥ so B = %(V). Let us call an element
yeT finite if {5 €I'| 6 <y} contains only a finite number of roots, and let I',
denote the set of all the finite elements in I'. For each y € I' let ¢(y) be the characteris-
tic function on y. ThenV{(c(y)) € ¥(V) and so (V) = V V(c(y)) = F(V). Now con-
sider 0 < v e %(V) with value y. Then y e I';, for otherwise y exceeds an infinite

disjoint subset &, d,, ... of I' and hence %(V) contains a copy of [] Z; which is
i=1

impossible by (2). Similarly all but a finite number of the values of v must be minimal
elements in I'. Finally, by (2) there must be a bound for all the maximal components
of v. Therefore ve F(V) + B.

4. If V= V(I, Q), then O(V) = F(V). In particular, 0(I1,Q;5) = Z,0;.

Proof. As above O(V) 2 \VV(c(y)) = F(V). Suppose (by way of contradiction)
that 0 < v € O(V) \ F(V). Then v must exceed an infinite number of disjoint special
elements a,, a,, ... with maximal components y, y,, .... Thus since O(V) is invariant
under all l-automorphisms of V, it must contain the group of all functions that live

on y,,7,, .... But this group contains a copy of || Z; and so does not belong to 0.
i=1

5. An [-group G € ¥ for which I satisfies the DDC, but G is not o-discrete. Let G
be the group of all periodic sequences of integers. Then by (2), G € € and. since G
is epi-archimedean, I satisfies the DCC, but G has no basis.

6. An [-group G which is w discrete, but G is not finite valued. Let G < [] Z; be the
i=1

group of all eventually constant sequences, and for each i =1,2,...,1letG; =
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= {ge G| g = 0}. Then the G, together with ) Z; are all the regular subgroups of
i=1

G and since each [-ideal C of G is the intersection of regular subgroups, it follows
that G/C has a basis of atoms.

7. a) F(I'y Z) € ¢ and hence so does X(I', Z).
b) V(I', Z) € € if and only if I contains only a finite number of roots.

Proof. a) Since F is finite valued, then
F,={veF|v,=0forall « 2y} (yeI)

are all the regular subgroups of F and clearly F’/F, =~ Z.

b) If I' has only a finite number of roots, then F(I', Z) = V(I', Z). Conversely,
if I' has an infinite number of roots then there exists an infinite disjoint subset

{7:|iel}in T. Then V contains a copy [] Z;andso V¢ &.
i=1

8. An hereditary discrete o-group that is not generalized discrete. Let H =

= (Y, Z;)) ® Q, lexicographically ordered from the right, and let G be the subgroup
i=1

of H generated by (1,0,0,...;%), (0,1,0,...;%), (0,0,1,0,...5%),.... Let O # S
be a subgroup of G and consider 0 # s e S with a minimal value v(s) (note that
r=1{1,23,..;00}). If o(s) = n, then s = (sy,.... 5, 0,...;0), with s, % 0. The
set of all such elements in S together with 0 is a subgroup of S — in fact, it is a convex
cyclic subgroup of S and so S is discrete. If v(s) = oo, then the map (x4, ...; y) = y
is an o-isomorphism of S into U = {m/2" | m, n e Z}. Now a straightforward com-
putation shows that a non-cyclic subgroup of U is of the form U - m where m is
a fixed odd positive integer. Thus, if S is not cyclic, it contains elements (x; tm),

(x534m), ..., where the x; € ) Z,. Since m =% 0, x; # 0. Also it follows that 2x, =
i=1

= Xy, 4x3 = Xy, .... Thus x, is divisible by all powers of 2; which is impossible.

9. An hereditary discrete o-group of rank 2 that is not generalized discrete. Let G
be the subgroup of Q @ Q that is generated by {(n/p,, 1/p,) l p, is the n-th prime}.
Then a rather complicated computation shows that each rank one subgroup is
cyclic. In particular, G is indecomposable, for otherwise G =~ Z @ Z. Define (a, b) e G
to be positive if b > 0, or b = 0 and a > 0. Then G is an o-group and Z x 0 is the
only proper convex I[-subgroup. Note V(I', G'/G,) = Z ® S, where S is the group
of all rationals with square-free denominators. Now any rank two subgroupof Z ® S
is decomposable, so G can’t be embedded in V(I', G’/G,) (See [3] for another proof
of this).
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Finally, each archimedean subgroup of G is rank one and hence cyclic. If T is
a non-archimedean subgroup, then it must contain an element of the form (¢, 0)
with ¢ # 0 and so have a cyclic convex subgroup. Thus G is hereditary discrete.

10. A lexicographic extension of Z by Q that is hereditary discrete. In [6] FucHs
and LOONSTRA describe how to construct a torsion free group G of rank two such
that each subgroup of rank one is cylic and each torsion free quotient group of rank
one is divisible. Pick 0 & g € G and let C be the pure subgroup of G that is generated
by g. Then C is cyclic and G/C ~ Q. Now G is indecomposable and so cannot be
embedded into Z @ Q. If we order G so that C is the proper convex subgroup of G,
then G is herediatary discrete, but not generalized discrete.

Note also that this is a counterexample to a theorem of Ribenboim [10] that
asserts that G can be embedded in V(I', G’/G,) = Z @ Q.

Hill and Mott [7] show that Ext (Q, Z) = R and hence there exists a non-splitting
extension of Z by Q. This also contradicts Ribenboim’s theorem. The example by
Fuchs and Loonstra is more constructive: they also show that Z is the endomorphism
ring of G and G/nG is cyclic of order n for each positive integer n.
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