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ON A GENERALIZED HEAT POTENTIAL

Jiki VESELY, Praha
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In this article a special heat potential is introduced and its properties are investi-
gated. Similar questions were studied in [3] for the Newtonian potential and in [6]
for the heat potential. Methods, notation and some results from those papers and
especially from [4] are used. The regions studied in [4], [6] were of a special shape
(generalized cylinders). In this article we shall prove similar results for more general
regions with time-dependent boundaries. The acquaintance with the above mentioned
articles is not generally supposed except the proof of Lemma 1.3. Similar proofs in
those articles are sometimes reminded of.

‘Let R* be the Euclidean k-space where k = m or k = m + 1 and m = 3 (for the
case m = 1 see [1], [2]). To distinguish the notation in R™ and R™*! we shall use
the following convention (see [6]). For example, we put for a € R™ o > 0,

(1.1) Qa,0) = {beR" |b—a| <o},

where |...| denotes the Euclidean norm. Let us denote by I' the boundary 29Q(0, 1).

Now the symbols Q(0, 1) and I' denote the ball and the sphere in R™*! and Q*(0, 1),

I'* have the same meaning in R™ For z = [zq, ..., Z,4{] € R"*! we write z =

= [2, zw+1] =[x, 1] where xe R™, te R'. The same convention is applied to

differential operators V, A, for example V = [d;, ..., 0,,+1] and V = [4,, ..., 3,.]-
Let us define for z € R™+!

(1.2) 9(z) = z,, 7% exp (—|2)*/4zps1) for zpiq >0,
9(z)=0 for z,.; =0,

Thus %(z — w) is for any we R™*1 ap infinitely differentiable function of z on
R™*1 — {w} which is caloric on this set, i.e.,

(13) Agz-w)y— 0 gz —w=o.

Zm+1
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For te R' we put RI'"' = {[x,f]e R"*"; t < 7}. Let D be an open set in Rm+1
and 0D = B. We denote

(1.4) D,=DnR"', B,=BnR"T,
The initial assumptions about D are the following:

(A) B, is compact for all e R' and
B, =0 for t = 0.

We denote the spaces of all bounded Baire functions or bounded continuous functions
on B by # or %, respectively. 9 is the space of all infinitely differentiable functions ¢
with compact support spt ¢ in R™*'. We shall use the symbol |...|| for the norm
defined in all those spaces in the usual way by means of supremum. :

If D is a region with “sufficiently smooth” boundary one can introduce heat poten-
tials in the following way: Let us denote by H, the k-dimensional Hausdorff measure
and by n(w) the exterior normal to D at the point w € B. We put for all f € % and
ze R™*' — B (we denote by o the scalar product)

(1) Vi) = j ) (e ) A (o),
W(z) = f ) () 99z — ) o).

The function Wf is the heat potential of the double distribution while the function Vf
is the heat potential of the single distribution. Both functions are studied in connection
with the boundary value problems for the heat equation (see for example [5]) etc.
The following approach is motivated by the fact that sometimes it is useful to study
the sum of those potentials.

We denote
(1.6) 9(z) = {peD; z¢spto}
and supposing (A) for D we define for z e R™*!, ¢ € 9(z) the linear functional T
over 9(z) by

(L7)  To() = - j (950 =)< Do) + 9z — ) () v

The integral is finite for all ¢ € 9(z); one can see it easily from estimates (10) and (11)
in [4]. It was shown in [6] for time-independent regions (generalized cylinders)
that To reduces in this case to the heat potential of the double distribution provided
the boundary of the region is sufficiently smooth. So we shall start now to study rela-
tions between T and potentials Vo, Wo.
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For a moment we assume not only (A) but also that the boundary B is a C*-surface.
Let us write z = [x, ], w = [y, u]. We replace 4(z — w) in (1.7) by a function
% € 9 for which 9(z — w) = %(w) in some neighborhood of spt ¢. Using the fact
that

AG(w) + 0,,41%(w) = 0
holds in a neighborhood of spt ¢ and applying the Fubini theorem we obtain
To(z) = To(x, 1) =

== [ ([ (F a0 0200010 + o000 ) 8y au -

0 \JbDw i=1

-[( (o) 23000) + 2o )30 ) dy) au

0

where D(u) = {y e R™; [y, u] e D}. Let us write

n(w) = [A(w), nw)],

i.e., n, is the last coordinate of n. Making use of the Gauss integral theorem we get
after a simple calculation

(1.8) To(z) = — J () A(w) 0 99(z — w) dH, ()

= [ o)) 9tz — w) ..

Comparing (1.8) and (1.5) one can see that To is the sum of potentials where the
single-layer potential has the density ¢n,.

In case spt ¢ N B, = 0 there isa D = D with smooth boundary B and the process
described leads us to T ¢(z) = 0. Thus T ¢(z) depends only on the values of ¢ in
a neighbourhood of B (or, more precisely, B, where z = [x, {]). If ze R"*! — B,
we can use this fact and extend T ¢(z) from 2(z) to 2 defining

(1.9) To(z) < T ¢(z)

where @ € 9(z) coincides with the given ¢ € 2 in a neighborhood of B. One can see
that T ¢(z) may be considered a distribution over 2 and the following simple lemma
holds:

1.1 Lemma. Define T ¢(z) by (1.7) and (1.9) provided D has properties (A).
Then for any z = [x, {] € R"*' — B the support of the distribution T ¢(z) over 9

is contained in B,. For fixed ¢ € D the function T ¢(z) of the variable z is a caloric
function on Rm*+1 _ B
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We shall say that T¢(z) is a measure provided there exists a measure v, (Borel
signed measure with a finite variation |v,| (B,)) with the property

(1.10) To(z) = J l(p dv,

for every ¢ € 9(z). Then we can easily extend T ¢(z) from 2(z) to # — it is sufficient
to put for all fe B

(1.11) Tf(2) =-[ fdv,.

The first natural question of representability may be formulated as follows: what

necessary and sufficient conditions are to be imposed on D to secure that T ¢(z)
is a measure?

For this purpose we shall find similarly as in [4] (see Lemma 1.6) and [6] (see
Lemma 2.2) another representation of T ¢(z). First we shall introduce a useful
notation. For z € R™*! we define the mapping S, on (0, 00) x (0, ) x I'* by

. 2
(112) SZ(Q: Vs 0*) = [2 + QH*’ Zm+1 %‘:I
Y

where ¢, y € (0, ), 6* € I'*. Instead of ¢ * S, we shall write S,¢.

1.2 Lemma. Suppose that a fixed D € R"*' has the properties (A). Let z€ R™*",
¢ € 9(z). We put

(1.13) B(y, 0%) = {o > 0; S,(¢, 7, 0%)e D}.

Then T ¢(z) is represented in the integral form

(1.14) To(z) = 2m~1 J de_l(H*)j e Tym/2 =1 dyJ~ 9,5.¢(0, 7, 0%)de .
0 B

r* (7,6%)
Proof: In (1.7) we put z = [x, ], w = [y, u]. In virtue of (1.2) we obtain
T(p(z) = T(p(x, t) =

L)

+(t —u) 2 exp( L’Etiy |)> O, u)] dy du =

Al
. [(x — ) o Vo(y, u) + 2(t — u) aigyu—”)] dydu .

Il

Il
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Now we apply the Fubini theorem and use the substitution
y=x+Q0*, u=t-——,

which may be considered the composition of substitutions I, IT

I. y=x+ro, II: & = 06*,
u=nuv, r=o0,

v =1t—04y.

This is useful in order to determine the value of the Jacobian. For the terms under
the integral sign we have

m+1
dy du " "~ 1 dH,,_,(®) dv -1 -@47 dH,,_,(6*) dy do .

After a short calculation we get

To0 =~ | (@—)’p (-9).

2 4y
[_ 9S.9(0.7,0%) _, <92> 35.9(0, v, 6%) <2v>]
. Q —_—l . —_— —_— L. . .
de 4y de 0
Qm+1

dH,,_ 1(0*) dy do

492
and then

To(z) = 2" f exp (—=7) y"*7* 9,S.0(¢, v, 0*) dH,,_(6%) dy do
A

where A = D(y, 6*) x (0, 0) x I'*. Lemma is proved.
Let us denote for any r, 0 < r < o0

(1.15) 8(y) = min (r, 2 /rv)
and let &,(r) stand for the system of all parabolas which are described by
(1.16) S.(+5 7, 0%): (0, 8(y)) - R™*!

where (y, 0%) € (0, ) x I'*. An element of the set &,(r) is called an r-ray from z
(a ray from z in case r = o). Let A = R™*! be an open set. A point b e S where
S e &,(r) will be called a hit of S on A4 provided

(1.17) H (b, 0)nSnA)>0, H,((bo)nS)—4)>0
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for any ¢ > 0. If we compare this notion with that from [6] we see that arcs of
parabolas are used now instead of open segments or half-lines.

The number of all hits of an S e #,(r) described by (1.16) on D will be denoted
by n,(z, y, 0%). We put for all ze R"*!, r e (0, )

(1.18) v(2) =J de_l(G*)j e "2 n(z,y, 6%)dy .
Ir* 1]

The function v, defined on R™*! in this way will be called the parabolic variation with
the radius r or the parabolic r-variation. We shall use this notation very often for the
special case r = o0. In this case we shall omit the index r in all symbols just in-
troduced and we shall write only &, n(z, y, 0%), v(z) etc.

The definition of the parabolic r-variation by the formula (1.18) is not quite
correct. To remove the gap we shall prove the measurability of the “hit-function”
n(z, y, 0*) — we shall do it in the course of proof of the following

1.3 Lemma. For fixed z = [x,t{]e R™*' and 0 < r < o0 put

(119) 2" ={pe?; |o| <1, spto = (Q*(x,r) — {x}) x (t — r, 1)} .

Then
(1.20) sup {To(z); pe2'}=2"""0(z).

1.4 Remark. As it was mentioned above the proof depends on Lemma 1.3 from
[4] which is too long to be presented here. We remind the reader also of the similar
proof of Proposition 1.8 in [4]. The author tried to find a proof which would not
depend on the mentioned lemma but in vain. It should not be difficult to understand
all other proofs without knowledge of [4].

Proof. We apply the lemma mentioned in Remark 1.4 and define

du(y) = 2" e y™2" 1 dH(y) .

For this measure we put A = p x H,,_; we consider this measure 1 on the g-algebra
of all Borel subsets of Z = (0, ) x I'*. The mapping S, defined in (1.12) maps
(0, 0) x (0, ) x I'* = (0, ©) x Z homeomorphically onto

(R" = {x}) x (=0, 1).
Further, we define for y > 0

r(y) = min {r, {/2ry}

E = (2*%x,r) - {x}) x (1t = r,1).

and put
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We have
G=S"E)={[e.7]; v>0,0< o <r(y)} x I'*.

Now we choose a decreasing sequence of positive numbers ¢, where &; < r/2, & \ 0
and define

Gy ={[o.7]; v>afr & <o <r(y) — &) x I'*.
Let ¥, stand for the class of all functions ¥ defined on X = R' x Z for which there
is a ¢ € 2! with the properties
Yy =S, on G, Y(X —G)= {0}, spty = G,.

The class of all point-wise limits of sequences of elements of ¥, is just the class of all
functions g of the first class of Baire on X such that

lo] £1. X~ G=g7'(0).

So the conditions (Ps), (Ps) from the above mentioned lemma are satisfied and we
pass to (P,). We fix an infinitely differentiable function @ on R' such that

spta)c(—],l), a)(t):w(—t), teR!, J

R

o(t) dH, (1) = 1.

We define for y € ¥, (this operator does not change too much the supports of
functions)

@

A,,t,b(g, Vs 9*) = nJ‘ lﬁ(g — a,v, 0*) co(na) da .

Let us fix n, > ¢ ' and consider n = n,. For these n A,/ has compact support
contained in G. Let € @' be the function for which we have = S, on G. The
value of the function A, * S; ! at the point [y, u] € (R™ — {x}) x (—oo, 1) is given
by the integral

(1.20) nf l(p(x + (v = x) h(a, x), t — (t — u) h*(a, x)) w(na) da

where

' —x|—a
h(a, x) = |—y~———|y *I;r— .

Now define ¢(y, u) for any [y, u] e E by (1.20) and let $(R"*' — E) = {0}. Then
we have ¢ € 2,
AW =¢*S, =S, on G.

@
Consequently, A, € ¥ = U ¥, and (P,) is verified. The remaining conditions (P,),
k=1
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(Pz), (P3) are readily verified and so we can apply Lemma 1.3 from [4] to the charac-
teristic function f of G. We use Lemma 2.2 and obtain

sup {T¢(z); ¢ € 2'} = sup {ff@ﬂ// d(H; x 1); Q/IE"F} =del
x

z

where for a fixed (y, 0*) € Z we have
% * o * .
F(V’0)=Sup f(Q,)’,O)g;(Q:%o)dH1(Q)’ WE‘P .
R1

F is a non-negative A-measurable function. For (y, 6*) € Z the system of all functions
{l//(', 7, 0%);y € Y’}coincides with the system of all infinitely differentiable functions 7
on R* with compact support with the property

Inl =1, sptn = (0,7().
Taking into account that the function f(, «, 0*) is the characteristic function of
B(y, %) o (0, 7())
(compare (1.13)) we apply 1.9 from [3] and obtain the equality
(1.21) F(y, 0%) = n(z, 7, 0%).

Now the above mentioned gap is removed and the definition of v, is correct. From
the definition of the measure A and (1.21) we obtain easily (1.20) and the lemma is
proved.

1.5 Proposition. Let us denote for z € R"*!

2'(a) = {p e 2); o] =1}

Then we have
(1.22) sup {To(z); ¢ € 2'(z)} = 2" 1(z).

Proof. Put r = + oo in the preceding lemma. The rest follows from the relation
between 2 from Lemma 1.3 and 2'(z).
Using some ideas from Krdl’s papers we obtain the solution of our problem.

1.6 Proposition. Suppose that D fulfils (A) and let z e R"*1, Then for all uni-
formly convergent sequences {p,}, ¢, €9 (z) converging to ¢ e 9(z) the equality

(1.23) kl_{lolol T oi(z) = To(z)
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holds if and only if
(1.24) v(z) < o
is valid.

Proof. Supposing (1.24) we can obtain from (1.22) the estimate
(125) Tou(z) = To(2)| £ 277" olz) [ — o] -

If o(z) = oo it is possible to find a sequence of functions ¢, € 2'(z) such that
lim T ¢,(z) = co. From this sequence we can easily construct another sequence con-

k—

verging uniformly to 0 for which lim T ¢,(z) = oo and so (1.23) does not hold for it.

k=
The well-known theorem about integral representation of linear functionals and
Proposition 1.5 yield the following '

1.7 Theorem. Let 9 be as above, z€ R"*'. Then the linear functional T ¢(z)
over 9(z) is a measure v, if and only if (1.24) holds. The equality (1.10) for all
¢ € 9(z) together with any of the following conditions

v({z}) =0, | (B) = 277" o(z)

determine v, uniquely.

1.8 Remark. Now we can define Tf(z) for all f € 2 by
(1.26) Tf(z) = j fdv,
Rm+1

provided (1.24) is valid. We shall give another formula for Tf(z) which will be useful
in the sequel.

1.9 Lemma. Suppose D = R™*' has properties (A), z € R™*!, 1(z) < co. For
any (7,0¥)e Z = (0, ) x I'* we define the function sA*, 7, 0%) of the variable
0> 0 by

Sz(g,'y, 0*) =0, 0e{-1,1}
provided there is 6 > 0 such that for Hq-almost every u € (0, 5)
S.e + ou,y,0%)e R™*' — D, S0 — ou,y,0¥) e D
hold (for the notation see (1.12)). In all other cases we put
s, y,0%) = 0.
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Given f € # we introduce the function X; by
(127) 22,7, 0%) = L. S.f(e. 7. 0%) se. 1. 0%)
o>

provided n(z,y, 0*) < oo (it is easily seen that we deal with all ¢ > 0 related to
hits of the ray on D). If n(z,y, 0%) = oo we put X (z, v, 0*) = 0.
Then we have for any f€ %

(1.28) Tf(z) = 27 f ey 5 (2, 9, 6%) dH (7, 0%))

z

Proof. Suppose (1.24). If f € 9(z) we obtain from (1.14)

TH() = 2"._1J

Z

e "2t dH,,((v, 0*))f 0,5./(2, 7, 0*) do .
D(7,6%)

Note that for H,,-almost every (y, 0*) we have n(z, y, 0*) < oo which implies for those
(. 0%)
J' 0,S.1(0, v, 0%) do = Z((z, v, 0%).
B(y,0%)

The rest is obvious and (1.28) for f € 9(z) is proved.
Let {f,} be a (pointwise) convergent sequence of functions on B such that (1.28)
holds for all f, and f;, k = 1, 2, ... are uniformly bounded by K > 0. Than we have

127z 7, 0%)] < K. n(z, v, 0%)

H,-almost everywhere on Z. By the Lebesgue dominated convergence theorem,
(1.28) holds for f = lim f, as well. We obtained that (1.28) is valid for every bounded

k-0

Baire function f vanishing at z. As a consequence of 1.7 we get that (1.28) holds for _
every fe 4.

1.10 Remark. We denote by K. or L, the set of all (y, 6*) e Z for which there is
an ¢ = gy, 6*) > 0 such that

H({S.(¢,7,0%); 0 <o <¢} — D)=0
or
Hl({sz(e’ Vs 0*), 0<po< g} A D) =0

respectively. We supposed v(z) < oo at z = [x, t]; hence we obtain easily
Hy(Z — (K.UL) =0.

Considering f = 1 in (1.28) we obtain that X, is H,-almost everywhere equal to the
characteristic function of one the sets K,, L, (may be up to the sign). Especially,
both of them are measurable sets which shall be used later.
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2.

Given a function f € € we would like to study Tf(z) as the function of z. For this
purpose it is useful to use the notion of perimeter of a set (compare with Kral’s results
from [3]).

We shall start with the notation. Let M < R™*! be a measurable set. We define
its perimeter P(M) by
2.1) P(M) = sup J‘ div o(w) dw

« M

where @ = [y, ..., 0, ] ranges over all vector valued functions with (m + 1)

components w; € & satisfying
m+1

T o) < 1

j=1

for all we R™**. Similarly we define P(M), i = 1,2,...,m + 1 by

M

(2.2) P(M) = sup f 2ip(w) dw
14
where ¢ ranges over all 9 € 7, ||p| < 1. It is easily seen that
. m+1
(23) ¢{M) < P(M) = 3, P{M)
iz
holds foralli =1,2,..., m + 1.

2.1 Proposition. Let D be a set with properties (A) (see Part 1) and let for all z,
0<t<o0

(2.4) P(D,) < o
hold. Then for all ze R™*!' _ B gnd all r > 0
(2:5) v(z) <
is valid.

Proof. It is sufficient to show that v(z) is finite. For a fixed ¢ € 2(z) we obtain
for z = [x, ] easily from (1.7)

(26) To(z) = — jé f (0,9(z — w) 3,0(w) + 29(z — w) @(w)) dw —
- J;) Oms1%(z — w). @(W) + Y(z — W) O 10(W)) dw =
- jéf 9(p(w) 94(z — w)) dw —f On+1(0(w). 9(z — w))dw.
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Supposing that z€ R"*! _ B js fixed we can find ¢ > 0 for which dist (z, B) > ¢.
Since the value of T ¢(z) depends only on the behavior in a certain neighborhood
of B we can suppose ¢o(€(z, ¢)) = {0}. For 9(z — w) as a function of w on R"*1 —
— 9z, ¢) we have the following estimates:

(2.7) : [9(z — w)| < o7™2,

|0,9(z — w)| < 0™ .4 max {texp (—ot)} = 21 o ML,
»00) e

te{0
From (1.22) and (2.6) we obtain immediately

u(z) = 2" "' sup {To(z); 9 e D'(2)} <

< o= L:ilsip J' o= p(0).58(z ~ )i+

~

+ supJ
[

(—o(w).9(z — w)) dw] .

D.

As mentioned above we can restrict our consideration to those ¢ which vanish on
Q(z, o). From the definition of the perimeter and from (2.7) we get

oz) < 2 [2_18 ¢! 3 (D) + 0P ,,,H(D,):l < K(o) P(D,)

and so the proposition is proved.

2.2 Remark. The condition (A) together with
(2.8) P(D)< o, 0<t<

yield the finiteness of »(z) on R™*' — B and so we can define Tf(z) as a function
of z for any function fe€ 4. In the next part we shall study some properties of
functions Tf (with fixed /) defined on Dj for this purpose the condition (2.8) is “quite
natural” as we shall show in the following

2.3 Proposition. Let D = R™*' fulfil (A) and suppose that there exist points
z', ..., 2"*2 in general position (i.e., not situated in a single hyperplane) such that
m+2

Q9 Y o) < o .

=1
For z' =[x, '], i = 1,2,..., m + 2 we denote
to=min {t; i =1,2,...,m + 2}.
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Then
(2.10) P(D)) <
forallt, 0 <1 = ¢,

Proof. To prove the proposition for the nontrivial case we can suppose t, > 0,
D,, + 0. Let us define the vector valued function G (which is “nearly” equal to
V,%(z — w) by the formula

(2.11) Gz —w) = (V,9(z — w), 9(z — w)) =
:(g(z_w)[ ZQLL&_M]
2(Zm+l - Wm+1) 2(Zm+1 - wm+1) Zm+1 — Wi+t

Thus G is a vector valued function of the variables z, w and for a fixed z all its com-
ponents are infinitely differentiable functions on R™*' — {z}. For a z = [x, t]e
€ R™*! and any ¢ € 9(z) we can rewrite (1.7) in the form

(2.12) To(z) = 4J' Vo(w) o G(z — w) dw.

We remember (1.22) which shows the relation between (2.12) and the parabolic
variation. To prove (2.10) we shall show that P(D,) < o or PyD,,) < oo for all
j=1,...,m+ 2 (see (2.3)). We shall prove a little bit more, viz., that for any
ber

(2.13) sup {j 0-Vo(w)dw; ¢ €2,
Dy

<p”§1}<oo

holds. We shall do it similarly as in the proof of Proposition 2.10 in [3]. Let II;,
j=1,2,...,m + 2 stand for the hyperplane determined by z*, k = 1,2, ..., m + 2,
k =+ j. Then

m+2

U (Rm+1 _ H]) — Rm+l
Jj=1

and so there are functions o;, j = 1, 2, ..., m + 2 such that

o, e?, Hynspta; =0, 0=5a; =1,

m+2

a=Yya =1
=1

in a neighborhood of B,,. Now we can write o as a coefficient in the integrand in (2.13)
and thus it is sufficient to prove

(2.14) supU a(w) 0o Vo(w)dw; 9 €2, |o| = 1} <o
Dy
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forallj =1,...,m + 2. Let us fix a j, for example j = 1. For any w € spt «;, the
vectors z — w, ..., z"*% — w are linearly independent. Components of G(z* — w)
are infinitely differentiable functions in a neighborhood of spt a; and we can express 0

in the form
m+2
0= a(w).G(z* —w)
k

=2

with infinitely differentiable coefficients a,, k = 2,..., m + 2 in a neighbourhood
of spt ;. Extending a,, arbitrarily to R™*! we get the integral in (2.14) by replacing 6
by a sum of terms

J;) a;(w) ay(w) Vo(w) o G(z* — w) dw .

o

Instead of proving (2.14) for j = 1 we shall prove

2.15) wp{tfxwaw@Vﬂwa@k—wﬁm;¢69JW”§1}<m>

o

for any k = 2,...,m + 2. Let us fix k and put F(w) = o;(w) a,(w). Then F € 9(z*)
and so it is a bounded function. We have

J:) F(w) Vo(w) o G(z¥ — w) dw =

o

= J‘D V[F(w) p(w)] o G(z* — w) dw — f @(w) VF(w) o G(z* — w)dw .

Dto
The first integral on the right-hand side can be estimated by K v(z*) with a suitable
K > 0 while the other is finite and uniformly bounded on 2'(z*). The proposition is
proved.
2.4 Remark. Denoting by
M = {zeR"*'; 1(z) < oo}

we obtain for any t € R*

R"™' - M =R"*" or RI''-B.cM.

The latter case takes place if and only if P(D,) < o0. In the rest of the paper we sup-
pose that D has properties (A) and the property (B), i.e.,

(2.16) P(D)) < o

for all 7€ R!.
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3.

In what follows we shall study some properties of T f(z) for fixed f and z € R™*+1 —
— B. Thus Tf can be considered for any f € 4 to be a function and we pointed out
in Part 2 of the paper that for this purpose it is natural to suppose (A), (B) for D.

In this part we shall change a little the notation. We denote by n(w) the exterior
normal to D at a point w in the sense of Federer, i.e., n(w) = 0 € I provided the sym-
metric difference of D and the half-space

{zeR™; (z — w)o 0 < 0}

has (m + 1)-dimensional density O at w; in all other cases we put as usual n(w) = 0.
The set of all we R™*! with n(w) = 0 is called the reduced boundary of D and will
be denoted by B. We shall write B, for B, n B. If the classical normal exists it is
equal to Federer’s one. We have

(3.1) H,(B) < «

for any ¢ (compare with [3] and also with other papers mentioned there). The gene-
ralized Gauss theorem helps us to derive another expression for Tf(z). Let us denote

(3.2) n(w) = [A(w), nw)] -

We get an analog of (1.8), i.e.

(3.2) Tf(z) = — f F08) () 9,9(z = w) it () —

- f ROIORICEELE®

for any fe # and z = [x, ] € R"*! — B. By means of the vector-valued function
G(z — w) we can express Tf(z) similarly in the form

(3.3) Tf(2) = J ) n() Gz = ) T (0).
3.1 Lemma. For every z € [x, {] e R"*!

(3.4) o) = 2 f )Gl — )] ).

If v(z) < o and A < B is a Borel set then

(3.5) v,(4) = n(w) o G(z — w) dH,(w) .

BinA
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Proof is similar to that of Lemma 2.12 from [3]. For fixed z we put I(z) =
=0 (6 Rm+l)’
Iw) = p(w)oG(z —w), z+w

with ¢ € Q(z). Applying the Gauss theorem to D, we obtain after some calculation

To(z) = —J @(w) n(w) o G(z — w) dH,(w) .

B

To prove the rest we use first (1.22) to obtain (3.4). For z with v(z) < oo we continue
similarly as in the proof of Lemma 1.9. Applying the obtained formula for any
S € 2 to the characteristic function of 4 we get (3.5).

Supposing (A), (B) we shall seek for the necessary and sufficient condition for the
extensibility of Tf from D to D u B with any f € ¥. Such a function is caloric on D
and so our question is obviously connected with the Dirichlet boundary value
problem. We shall derive some other properties of the parabolic variation v.

3.2 Lemma. Parabolic variation of D fulfilling (A), (B) is a lower semiconti-
nuous function of z on R™*' which is finite for any ze R"*! — B,

Proof. Let us fix z€ R™"" and choose K < 1(z). Then there is a ¢ € 2'(z) (see
Proposition 1.5) such that T'¢(z) > K. Then we have

lim inf o(w) = lim To(w) = To(z) > K .

woz w—z

The rest follows from Proposition 2.1.

3.3 Remark. The following simple geometrical fact will be used in the proof of
the next lemma. Given ze R™*! and a closed interval I — R™*! the intersection
of S=S.(-,7, 0%) on (0, ) is either empty or it is described by S,(+, 7, 0%) on
some one-dimensional interval.

3.4 Lemma. Let D fulfil (A), (B) and v(z) < o for a fixed z =[x, t]. Then
for any closed interval I = R™*1,

(3.6) v.(B,nD)| <27 ' T (12’3> H, ().

Proof. We denote by f the characteristic function of B, N I. Let us consider (1.27)
for f. We obtain on the right-hand side the sum

Yse v, 0%)
e
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where it is sufficient to consider ¢ from a certain interval. It is easily seen that for the
corresponding expression X, we have

() 5,509 < 1

for all (y, 0*) € Z. The rest is a consequence of (1.28).
3.5 Proposition. Let us denote for fixed t € R

(3-8) V, = sup {v(w); we B,} .

Then for any w = [y, u] with u < t we have

(3.9) ow) <V, + 27 r(%) Hyo(T¥) =V, + 4.

Proof. We suppose V, < oo for given te R', and fix w = [y, u] with u <,
w ¢ B,. Then for an arbitrarily fixed d < v(w) there exists a system of mutually disjoint
closed parallelepipeds K, ..., K, such that

q
Y Iv(B.AK)| >d.
i=1
Let us denote o; = sign v,(B, " K;), j = 1, ..., q and define the function

h(z) =j=il ov (B, " K))

which is caloric on
q

Rm+1“‘UBzﬁKjDRm+l —Bt-
j=1

j=
Fix an arbitrary { € B,. If { ¢_Lq)1Kj, then
j=
lim h(z) = h(z) <[] < Vi
In the opposite case we can suppose for example ¢ € K,. Then we have again
im %80 K) = £ o (B, 0 K) < [ < V.

From Lemma 3.4 we have for any z € Rm+1

(B K,)| < 4
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and so we obtain

limsup h(z) SV, + 4

z—{ z¢Be
for { € B,. According to (A) B, is a compact set. Using (2.7) we conclude that the
function |G(z — w)| of the variable z can be estimated outside Q(0, ¢) with suf-
ficiently large ¢ > 0 uniformly with respect to w € B,. This estimate converges to 0
for ¢ — oo. Condition (B) implies that H,(B,) < co so that we obtain easily (see
(3.4)) that h(z) — 0 for |z| - co. Applying the maximum principle for caloric func-
tions we get

h=sV,+ A

on R"*' — B and, in particular, d < h(w) < V, + A. The proposition is proved.

3.6 Remark. We shall not prove here the other facts concerning properties of the
parabolic variation v. For example by a straightforward but a little bit complicated
computation we could obtain that v is a locally Lipschitzian function on R™*! — B,
We shall not use this fact in the sequel.

3.7 Proposition. Suppose again (A), (B) for D. Let L= D be such a bounded
set that Tf is bounded on it for every f € €. Then v is bounded on L.

Proof. We shall consider the system of linear functionals Tf(z) = (f,v,),
ze Lon . We can consider those functionals on a subspace of all f€ % with the
support spt f contained in a B, with a suitably fixed ¢ > 0. Applying the Banach-
Steinhaus theorem we obtain that those functionals are uniformly bounded on L.
Lower semicontinuity of the function v proved in Lemma 3.2 implies that v is
a bounded function on L.

We can apply the proposition to a special situation obtaining easily
3.8 Proposition. Let D be as above and { = [&,n] € B. If for every fe % there
exists finite limit

(3.10) lim Tf(z)

z—{,zeD

then there is ¢ > 0 such that
(3.11) sup {v(z); ze Bn Q¢ 0)} <

holds.

3.9 Remark. We shall not prove that the condition from the preceding proposition
is not only necessary but also sufficient for the existence of the limit (3.10) for every
f€%. We are interested in the “global condition” only.

421



3.10 Theorem. Let D fulfil (A), (B). Then condition (C), i.e.,

(3.12) sup {v({); {€B,} <

for all te R! is satisfied if and only if Tf can be continuously extended from D
to D U B for any fe €.

Proof. The necessity of (C) results from Proposition 3.8 and (A) guaranteeing
the compactness of B, for any t € R"*1, To complete the proof we shall show that
for arbitrarily chosen { € B and f e % there exists finite limit (3.10). Let us fix { =
=[&n]eBandfe 4.

For a moment let us suppose f = k (const.). Then we obtain from (1.28) easily
that Tf is also a constant function on D and on R™*' — D (its value will be deter-
mined later). Now we shall pass to the general case. The linearity of T permits us to

suppose f({) = 0. We fix ¢ > 5 and define ¥, by (3.8). According to Proposition 3.5
we have

(3.13) W(z) SV, + A<

for any z € R}*" (see the proposition for the notation). Now we shall construct the
decompositions of f in the form f = f, + g, where f, vanish in a fixed neighborhood
of {and |g,| < 1/n. We have Tf = Tf, + Tg,, where all Tf, are continuous functions
at { and |7g,| < (V, + A). 1/n. This implies easily the continuity of Tf at { € B
with respect to D.

3.11 Remark. Now we shall formally simplify our assumptions. Let D; be an open
bounded set in R"*! fulfilling (A), (B), (C), or — which is the same — the condition.

(3.14) sup {v((); (eB} =V < .

We denote D, = R™*! — D,. Following again the whole argument one can find
that this assumption is quite natural (minimal in a sense) provided we want to use
the results obtained to solve the classical Dirichlet boundary value problem for the
heat equation for D; by means of generalized potentials Tf, f € . As a consequence
of (3.14), the function Tf is well-defined in the whole space R™*! for any f continuous
on B = 0D, (or fe #). The function v is finite in R™*! and we can calculate the

value of Tf for f = 1 at any ze€ R™*! by means of (1.28). We shall denote Tf for
f =1 by d. We obtain easily

(3.15) d(w) = 21 r(’g) HuoT*) for wep,,

d(W)-—-O fOr WEDZ;
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we shall write d; = d(w), we D,. Using the notation and some facts from 1.9 and
1.10 we obtain for we B

(3.16) d(w) = 271 f ey dH, (7, 0%).

Ky

In the notation just introduced we can reformulate the Dirichlet boundary value
problem for the heat equation for D; and continuous “boundary condition” g
provided (3.14) holds in the following form: on the space %, solve the equation

(3.17) lim Tf(z) = T/(§) + (d1 — d0) () = 9(¢)
with respect to the unknown function f. This requires the other information on this
equation.
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