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1. INTRODUCTION

If A is an m x n matrix over the complex field, then the Moore-Penrose inverse
of A, denoted A™, is an n x m matrix such that

(1.1) A44%4 = 4
(12) A*44* = 4*
(1.3) (AA*)* = A4*
(1.4) (A" A)* = A*A.

Any matrix which satisfies equation (1.i) is called an (i)-inverse of A. A generalized
inverse of 4 will indicate a matrix X satisfying some of the conditions (1.1) through

(1.4).
If
u=(5¢)

and M is invertible, then M ™! is lower block triangular. It is natural then to ask the
following question: For an m X n partitioned matrix

(L5) M= <g g)

when is the Moore-Penrose inverse also lower block triangular? C. MEYER has given
necessary and sufficient conditions for this question in [2].

We first give a formula for computing M™*, and then we obtain Meyer’s result as
a corollary to this general expansion. We also examine some other cases which occur
rather naturally.
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In [3], Meyer considers square matrices which are upper triangular and he deter-
mines conditions for a generalized inverse to be upper triangular. Moreover, he gives
explicit formulas for determining these inverses in some special cases.

Throughout our paper, we shall restrict our attention (except for a fleeting reference
to i—inverses) to the Moore-Penrose inverse. We shall use the following well-known
facts in our work [e.g., sec 4].

(1.6) A* = A*(AA®)" = (A*A)* A*

(1.7) (44%)* = (A*)* A*

(1.8) If N(A4) denotes the null column space of A, then N(4) = N(B) if and only
if B=BA"A.

II. TWO LEMMAS
In order to prove our theorem, we shall need the following lemmas.

Lemma 1. For M partitioned as in (1.5), we have

A+ B;{:L+
+ o
M= <0 c*U)’

L= BB* + CC*, if and only if AB* = 0.

Proof. Assume

A*Y B*L*
+
MT = <0 c*U)‘
Then by (1.1), we obtain
(2.1) BA*A + LL*B = B.

By the definition of L, we have N(L) = N(B*), so LL*B = B by (1.8). Then (2.1)
implies BA™A4 = 0, and hence BA™ = 0. But BA* = 0 is equivalent to AB* = 0,
so the necessity is complete.

For the sufficiency, we will use relation (1.6). We have M* = M*(MM*)*, so

A0\t (A% B¥\ (A4 o\ .
<B c) = (0 c*) (0 BB* + cc*) since AB* = 0.

Mt = A*(44*)*  B*L*
- 0 cxLY )’

Thus

which gives the desired result.
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Lemma 2. If M is partitioned as in (1.5), then

K*4* K*B*
M =<0 c* >

where K = A*A + B*B if and only if B¥C = 0.

Proof. For the necessity, use (1.1) to obtain BK*K 4+ CC*B = B, which implies
B*C = 0. For the sufficiency, again we employ (1.6).

A0
III. THE MOORE-PENROSE INVERSE OF M = (B C)

\

We first determine the Moore-Penrose inverse of M given in (1.5).

(3

Mt = (K*A* — K*B*CF K*B* — K"B*CH)
= F H b

Theorem. Let

Then

where

K = A*A + B*B,

D = —AK*B*C,

E= C- BK'B*C,

T = D*D + E*E,

S = K'B*C(I-T*T),

F= T'D*+(I—T*T)(I + S*S)~! C*BK*(K*A* — K*B*CT*D¥),

and
H= TYE*+ (I - T*T)(I + S*S)~! C*BK*(K*B* — K*B*CT"E*).
Proof. CLINE [1] has shown that if UV* = 0, then
U+ V)" =U" +(I = U"V)[G* + (I — G*G) QV*U*)* U*(I — VG*)],

where G =V —-UU'V, Q =[I+(I - G*G) V¥U")* U*V(I — G*G)]™*. Now,

let
A0 00
v=(50) = v=(¢):
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Then

40
(BC)—U+V

and UV* = 0. Hence, Cline’s theorem is applicable.

By Lemma 2,
u+ — (K'A* K'B*
0 0o )’

where K = A*4 + B*B. Thus,

G- 0 —AK*B*C
“\0 C-BK*B*C)"

Let D = —AK*B*C and E = C — BK*B*C; then we have
0D
o-(12).
Therefore, by Lemma 1 and the fact G* = (G**)*, we get

0 0
¢ = (T*D* T+E*>’

where T = D*D + E*E. Hence,
1 0
— + F—3
=676 (0 I—T+T>'

0 K*B*C(I — T*T)
0 0

Thus,
UV(I - G*G) = (

and

Q= ((1) (I + g*s)-l)’

where S = K*B*C(I — T*T), and

I 0
— + =
r=ve (—-CT*D* I - CT*E*)'
Now '
K*A* — K*B*CT*D* K*B* — K*B*CT*E*
+ +) _
Ut - VG )—< 0 0 )
SO

Gt +(I —G*G)QVXU**U*(I — VG*) = <2 13)
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where

F =T"'D* + (I — T*T)(I + S*S)™* C*BK*(K*A* — K*B*CT"* D*¥)
=TYE* + (I — T*T)(I + S*S)™! C*BK*(K*B* — K*B*CT"E¥),
and
ey (I —K*B*C
I-UYV = (0 ; .
Therefore

(I-=U"W)[G" +(I - G*G)Qv*U**U*(I - VG")] =
_ (—=K*B*CF —K'B*CH
h F 4 H ’

and finally we get

A0\* . K*4*¥ — KYB*CF K'YB* — KYB*CH
(BC> —-(U+V)—< k k .

In [2, p. 748, Theorem 6], C. Meyer has given a formula for (1)-inverses of partitioned
upper block triangular matrices. Qur theorem also accomplishes this task, since the
Moore-Penrose inverse is clearly a (1)-inverse. However, since (1)-inverses are not
unique, our results are, in general, different from those of Meyer. For example, if

M= (%]
—\00)’

then Meyer’s theorem yields a (1)-inverse,

- (20
= (50)

while our theorem yields

At this point, we note the following identities, whose proofs are straightforward.
(3.1) T=C*E

(3.2) If R =1 + §*S, then T*TR™* = R™'T*T

(3.3) D*A + E*B =0

(3.4) F = T*D* + R™'S*(K* A* — K*B*CT"* D¥)

(3.5) H = T*E* + R™'S*(K*B* — K*B*CT*E¥).
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We shall assume throughout the remainder of the paper that M is partitioned as
in (1.5). Moreover, we now consider necessary and sufficient conditions for M*
to be upper block triangular, lower block triangular, and list at the end of the paper

some special forms.

XY
Coroltary 1. M = <0 Z) if and only if S*K™ A* = 0 and D* = C, where S, K,
and D are as defined in the theorem.

Proof. From the Theorem, we can see that

M* =<§ ;/)@F:O.

But from (3.4), we have
(3.6) RF = RT*D* + S*K*A* — S*K*B*CT* D*.
By the definition of F, we have
TF = TT*D* = D* since N(T) = N(D).

Thus F = 0 implies D* = 0.
From (3.6), we get
S*K*A* =0 and D*=0<F =0.

This completes the proof.

Note.
F=0=T=EE=T"E*=E"=H=E" + R™'S¥K"B* — K*B*CE").

Corollary 2 [2, p. 746, Theorem 4].
X0
+
w=(72)
if and only if N(4) = N(B) and N(C*) = N(B*). In this case, we have
A* 0\
+
M™ = (—C*BA* c+>'
Proof. From the theorem, we see that
X0
+
v =(52)
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if and only if K*B* = K*B*CH.If K*B* = K*B*CH, then KK B* = KK"B*CH,
and we have B* = B*CH. Now TH = TT*E* = E* implies C*EH = E*. Thus
C*CH = C*, and using (1.6) we get C*CH = C*, and CH = CC*. Hence B* =
= B*CH = B*CC", and N(C*) = N(B*).

It can be shown that H = T*E* and F = T* D* if K*p* = K" B*CH. Thus

FA + HB = T*D*A + T*E*B = T*(D*A 4 E*B) =0
by (3.3), and we get
(3.7) FA = —HB.
Note next that BK* A*4 — BK*B*CFA = BK* A*A — BK*B*C(—HB) by (3.7).
This last term is the same as BK*K = B. Finally, (BK* A4*4 — BK"B*CFA) A" 4 =

= BA* A yields B = BA™ A, which is equivalent to N(4) < N(B)-
On the other hand, it is straightforward to verify that when N(4) = N(B) and

N(C*) = N(B*), then
AT 0
+
M™ = (-C+BA+ c+)‘

We note that if M is invertible (i.e. A4 and C are invertible), then

A7! 0
-1 _
M= (—C“‘BA" c—l)‘

Suppose 4 = 0. Then M* is lowerblock triangular. if and only if B = 0. There are
many special cases which can be derived from corollary 2.

In conclusion, the following special results can be obtained.
(3.8) If K*B* = K*B*CH, then K*4* — K*B*CF = A*,

F=—C*'BA", HC=T*T, H=C", and S = 0.

A* BF
(39) M* = (0 C*) if and only if B¥*C = 0 and AB* = (.

4+ b+
(3.10) M* = (0 ct C*BD*)’ where D =B — CC*B if and only if

AB* =0 and C*B = C*BD'B.

11 = A* pct here P = Q™ !(C* B)*
(3' ) M = 0 C+ _ C+BPC+ where - Q ( ) and

Q =1 + (C*B)*(C*B) if and only if AB* = 0 and N(C*) = N(B¥).
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