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UNORIENTED GRAPHS OF MODULAR LATTICES 

JÂN JAKUBIK, Kosice 

(Received December 4, 1973) 

A lattice L is called discrete if each bounded chain of L is finite. All lattices dealt 
with in this note are assumed to be discrete. For a,beL,a^b, the interval [a, b] 
is the set {x eL: a ^ x ^ b}. If a < b and [a, fe] ̂  {a, b}, then [a, b] is said to 
be a prime interval; this situation is also described by saying that b covers a or that a 
is covered by b. 

To each lattice L there corresponds in a natural way an unoriented graph (an 
unoriented diagram) G(L). The vertices of G(L) are the elements of L; two vertices a, b 
are connected by an edge if and only if either a is covered by Ь or Ь is covered by a. 

G. BiRKHOFF ([1], Problem 8) proposed the question to find necessary and suf­
ficient conditions on a lattice L, in order that every lattice M whose unoriented 
graph is isomorphic with the graph of L be lattice-isomorphic with L. For the case 
when the lattices L and M are supposed to be distributive (or modular, respectively), 
this problem was solved in [3] (resp. [4]). Isomorphisms of unoriented diagrams of 
modular lattices were investigated also in [5]. 

The purpose of the present note is to show that if Land M are lattices whose 
unoriented graphs are isomorphic and if L is modular, then M is modular as well 
(Thm. 1.) (For finite lattices Lthis was proved in [4].) An analogous statement is 
valid for distributive lattices (Thm. 3). This enables one to generalize some results of 
[4], [5] (Thms. 2, 4). 

For the basic notions concerning lattices cf. Birkhoff [1] and GRÄTZER [2]. The 
lattice operations will be denoted by л and v. A discrete lattice Lis modular if and 
only if it fulfils the following "covering" condition (1) and the condition (Г) dual 
to (1): 

(1) If a, b are elements of L such that a and b cover a A b, then a v b covers both 
elements a and fe. 

Let L be a modular lattice and let L' be a lattice such that there exists an iso­
morphism (p of G(L) onto G(L!). Let a, b,u be distinct elements of L such that a, и 
are connected by an edge in G(L) and b, и are connected by an edge in G(L), Then 
(p(a), (p(u) are connected by an edge in G(L'), and similarly for (p(b% (p{u). 
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Let us remark that if x, y, z are elements of a discrete lattice X and if x is covered 
by y, z (or X covers y, z), then x = y A z (resp. x = y v z). 

Lemma 1. Let 
и < a , и < b , a V b = V, 

(p(u) < ф), ф) < ф) < ф). 

Then (р{а) v (p(b) = ф) and ф) covers both elements (p{ä) and ф). 
Proof. According to (1), v covers a and fe. Hence (p{à), ф) are connected by an 

edge in G{l!) and similarly for (p{b), ф). Hence (p{b) is covered by ф). Suppose 
that Ф) is covered by (p{a). Then we would have 

(p(ii) < Ф) < Ф) < Ф) 

and this is a contradiction, because ф) is covered by (p(a). Thus (p(a) is covered 
by Ф). Therefore (p(a) v (p{b) = ф). 

Lemma 2. Let 
и < a , и < b , a V b = V , 

(p{u) < Ф), (p(u) < (p{b) . 

Then (p(a) v (p{b) = ф) and ф) covers both elements (p(a) and (p(b). 
Proof. Analogously as in the proof of Lemma 1 we conclude that (p(à), ф) are 

connected by an edge in G(L') and similarly for (p(b), ф). Obviously (p(a) л (p{b) = 
= Ф), If 

Ф) > Ф) and Ф) > Ф), 
then Ф) A Ф) = Ф) Ф Ф), which is a contradiction. Hence either ф) < ф) 
or Ф) < Ф), For completing the proof it suffices to apply Lemma L 

The proof of the following lemma is analogous to that of Lemma 2. 

Lemma 2\ Let 
и > a , и > b , a A b = V , 

Ф) < Ф) , Ф) < Ф) . 
Then Ф) V Ф) = Ф) and ф) covers ф) and ф). 

Lemma 3. Let 
и < a , и < b , a V b = V, 

Ф) < Ф) < Ф). 
Then Ф) is covered by ф) and ф) is covered by ф). 
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Proof. The elements (p(a), (p(v) are connected by an edge in <J(L'), hence (p(ci), (p{v) 
are comparable, and similarly for cp{b), (p(v). If (p(v) < (p(a), then 

(p(v) < (p{d) < Ф) < (p(b), 

hence neither (p(v) is covered by ç{b) nor (p(b) is covered by (p{v), which is a con­
tradiction. Thus (p{a) < (p(v). Analogously, if (p{b) < (p(v), then 

(p(a) < (p(u) < (p{b) < (p(v), 

which is impossible, because (p{a) and (p(v) are connected by edge in G(L')- Thus 
(p(v) < q)(b). Therefore (p(a) is covered by (p(v) and (p(v) is covered by (p(b). 

Dually, we can prove 

Lemma 3'. Let 

и > a , u > b , a A b = V, 

(p(b) < (p(u) < (p(a). 

Then (p{b) is covered by (p(v) and (p{v) is covered by (p(a). 

Lemma 4. Let GQ, a^,..., a„eL^ b eL, 

ao < b , flf < « i+i (i = 1 , . . . , w - 1 ) , 

(p(ao) < (p{b) , (p{a-) > (p{ai+^) (/ = 1, . . . , n - 1) . 

Assume that all intervals [«o? ^1'[^i? ^ Ï + I ] (I = 1, . . . , W — 1) are prime^ Put 
ti = ai y b (i = 0 , . . . , /t). Then ç{a^ is covered by (p{t^ for i = 0 , . . . , и and (p{t^ 
covers (p(ti+i)for Ï = 0 , . . . , n — 1. 

Proof. We proceed by induction on w. For n = 1 the assertion is valid according 
to Lemma 3. Let n > 1 and assume that the assertion is vaUd for n — L By Lemma 
3, the element (p(aj is covered by cpit^) and (p(t^) is covered by (p(b) = (p{to). Now 
consider the elements ^ i , . . . , a„, t^. The element ai is covered by t^ and cpiaj < 
< (p{ti). Moreover, for i = 1, . . . , n we have 

t. =: Qi V b = («1 V ai) V b = (öj V Ь) V (ai v Ь) = 

= ti V â  V Ь = ai V 1̂ . 

Therefore, according to the assumption, ф(а^) is covered by q){ti) for i = ! , . . . , « 
and (p{ti) covers cp(ti+i) for f = 1 , . . . , n ~ L The proof is complete. 

Lemma 5. Let a^, a^,..., a„, fco? ̂ ь ...,b^eL, ao = bo, a„ = b^. Suppose that 

(i) ai is covered by a^+i and (pi^d is covered by <?>(«£+1) for i = 1 , . . . , n - ^ 1 ; 
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(ii) (p{bj) is covered by (p{bj+i)forj = 1 , . . . , m - 1. Then m = n and bj < by+i 
holds for j = 1 , . . . , m - 1. 

Proof. We proceed by induction on и. If n = 1. then the assertion is obviously 
valid. Assume that n > 1 and that the assertion holds for n — 1. Clearly m > 1. 
Let us distinguish two cases. 

(a) Let bo < b^. Denote a^ v b^ = C2. Then C2 covers both elements a^, b^ and 
according to Lemma 1, 9(^2) covers both elements (piaj, (рф^); moreover, (p(c2) й 
S 9(0«)- By the assumption there are elements C3,..., c^e L such that c„ = a,,, ĉ  
is covered by c^+i and <р(с̂ ) is covered by (p(Ci+i) for i = 1, . . . , n — L Because 
{bi, C2, C3,..., c„} is a maximal chain in L, by the assumption we have n — I — 
= m — 1 and bj < bj+i for j = 1, ..., m — L 

There are elements C3, C4, ...,c^eL such that C/̂  = a„ and (р{с^ is covered by 
(p(Cf+i) for i = 3 , . . . , /c — L By using the induction assumption for the elements 
^ 1 , «2, . . . , a„; C2, C3,..., q , we obtain that к = n and that ĉ  is covered by c, + i 
for i = 3, 4, ..., /c — L Now we use the induction assumption for the elements 
bi, C2, C3,..., c„; ^2 , . . . , b^ and we infer that m — n and that b,- is covered by b^+i 
for i = 1, . . . , n — L 

(b) Suppose that bo > ^i- If ^j > 7̂ + 1 for j = 0 , . . . , m - 1, then «o = bo > 
> fc^ = a„, which contradicts (i). Thus there exists a minimal j , 1 < j < m, with 
bj < bj.+i; we denote thisj byjo- Denote x = bo v bŷ  + i, î = by^+i v b^. Accord­
ing to lemma 4, 

X covers «0 and (p{x) covers (р{ао), 

X covers ti and ф(х) is covered by (p{ti), 

(p{h)^(p{bjo^ù-

If X = fli, then we consider the chain C^ = {(p{ai\ ..., Ф(О„)} in L'. There exists 
a maximal chain C2 in [<p(«i), <P(Ö„)] such that (p(ti), ^(b .̂̂  + i ) , . . . , ^ ( b j e C2. 
Since card C^ < n + 1, by the induction assumption (by considering the chains C^ 
and С2) we obtain that the element a^ = x is covered by the element t^, which is 
a contradiction. 

If X Ф «1, then we put X V fli = y. By Lemma 1, (p{y) covers q){a^) and (p(x). 
Clearly (p(>̂ ) ^ ф(а„). By considering the chain C^ we infer (by the induction as­
sumption) that there are elements ĵ 2» •••̂  J« = ^n ^^ L, У2 = у such that C3 = 
= {<P(«i)' 9(3^2). •••' <Р(Уи)} is a maximal chain in l(p{ai), (p{aj] and yi is covered 
by Ji+i for f = 2 , . . . , 7t - L Thus C4 = {(p(x), с(у2), •••J ф(Уи)} is a maximal chain 
in [<p(x), (р(а„)']. Because card C4 < n + 1, and (p(x) < (p(ti) ^ (p(bj^+i) ^ (p{a„), 
by the induction assumption we must have x < t^, which is a contradiction. 

Analogously we can prove 

Lemma 5'. Let QQ, ..., a„, bo, --^b^ be as in Lemma 5 with the distinction that â  
covers ai+ifor f = 0 , . . . , n — 1. Then m = n and bj > bj+^for j = 1 , . . . , m — 1. 
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Lemma 6. Let a,u, b,ve L and assume that a is covered by и and и is covered 
by b, (p(u) is covered by (p(a) and q>{b)\ cp{v) covers (p(a) and (p{b). Then a is co­
vered by V and V is covered by b. 

Proof. The elements v and a are comparable, lï v < a, then v < a < и < b, 
hence v is not covered by b and b is not covered by a, a contradiction. Thus a < v 
and hence a is covered by v. The remaining part of the proof is analogous. 

Lemma 7. Let ao,bo,UQ, a^, b^^u^, Vi e L such that x^ covers XQ for each x e 
e {a, b, w}, (p(xi) covers (P(XQ) for each x e {a, b, u}; 

a I is covered by и i and и i is covered by bifor i = 0, 1; 

cp{ui) is covered by (p{a^ and (p{b^for i = 0, 1; 

ç{v^ covers (p(ai) and (pib^). 

Then there is VQ E Lsuch that (p{vo) covers <p(̂ o) <^^d (р(Ьо). 

Proof. By Lemma 6, a^ is covered by v^ and Ü^ is covered by b^. Put VQ = bo A i?i. 
According to Lemma 3', <p(bo) î  covered by (p(vo) and cp{vo) is covered by (p{vi). 
We have ao < v^, ao < bo> thus aQ g VQ, Because L is modular and {̂ o? ^ ь ^i} 
is a maximal chain in [ÖQ, V{], we obtain that {aQ, VQ, V^] must be a maximal chain 
in [«0, I'll, hence ao is covered by VQ. If (p(vo) < <Pi^o)^ then (p(vo) is not covered 
by (p(vi), which is a contradiction. Thus (p(vo) > (pi^o) and hence cpipo) covers 
</)(ao)- The proof is complete. 

An element pELwill be said to have the property (a) with respect to elements 
q,r E L if 

(i) r^q; 

(ii) (p(p) is covered by both elements (p{r) and (piq)', 

(iii) either (p(r) or q){q) is not covered by (p{r) v (p{q). 

Lemma 8. Suppose that UEL has the property (a) with respect to elements 
a,b EL. Then there are elements u^, a^, b^ E L such that и^ has the property (a) 
with respect to a^, b j , the element (p(u) is covered by (piu^) and 

<p(ui) < Ф) V (p(b) = фх) V ф^). 

Proof. If a and b cover и then according to Lemma 2, и cannot have the property 
(a) with respect to a and b. If both a and b are covered by и then the same holds 
by Lemma 2'. Hence we may suppose that a is covered by м, and и is covered by b. 

Let Xo, Xi, . . . , x„ e L with XQ = w, x^ = a such that {(p(xo), (p(xtX ф(х2),..., <p(x„)} 
is a maximal chain in [<p(w), (р(а) v (p(b)']. If x^ covers x^+i for i = 0 , . . . , n — 1, 
then by Lemma 5' we would have и > b, which is a contradiction. Hence there is 
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JQ > О such that x^ is covered by x^^+i. Let ÎQ be the first index with this property, 
put ti = Xi V Xf̂ +i for г = 0, . . . , /*о- According to Lemma 4, 

ti covers Xi and (p(ti) covers (p{xi) for f = 0 , . . . , ÎQ; 

ti covers ti+i and (p(ti) is covered by </>(̂ 4-i) for / = 0 , . . . , /Q — L 

If fo = ^' th^^ <P(̂ i) = (Pi^i) V ф(^о) = <p(öf) V (p(b) and because (pĈ O covers 
(p(xi) = (р(а) and (p(to), we have a contradiction. Thus to Ф b. Denote t^ = Wj, 
/j = «1, ?o "̂  ^ = bv Then bi covers both b and м .̂ By Lemma 2 we have 9(bi) = 
= </>(̂ o) V (p(b). Hence ц>{Ь^ covers both f/)(b) and (p(u^. Moreover, 

(p{d) S Ф1) = Фх) ^ ... ^ <P(^o+i) = Ф1о + 1) й Фп) = Ф(а) V (p{b) , 

(p(to) й (p{tù = Фд ^ 

hence (p(fo) ^ ф(«) v <р(Ь) and therefore 

Ф(Ь) < (p(foi) = ф(Го) V <??(Ь) g (р{а) V ф(Ь), 

ç>(fli) V ф^) = ç(a) V (p(b). 

The elements ^(ai) , ^(bi) are uncomparable, thus (p{a^) < ç(a) v (p(b) and <p(bi) < 
< (p{a) V ф(Ь). Suppose that the element (p(a) v (p(b) covers both elements (p{ai) 
and (p(bi). Then according to Lemma 7 (applied to the elements a, XQ, b; t^ = 
= üi, to, foi, and Î;I = (p~^((p(a) v <p(b)) there is t^o^^ such that (p{vo) covers 
(p(à) and (p(b). Obviously (p(vo) = (p{a) v (p(b), hence <?)(ÖI) V (p{b) covers both 
(p(a) and (p{b), which is a contradiction. Therefore either (pia^) or (pib^) is not 
covered by (p{a) v ф(Ь) = (p(ai) v (p{bj. Thus ŵ  has the property (a) with respect 
to «1, bi and <P(MI) < (p(a) v (p(b). 

Lemma 9. There does not exist elements u, a, b e Lsuch that и has the property (a) 
with respect to a, b (i.e., the covering condition (1) i^ valid for L'). 

Proof- Suppose that there are elements u, a, b e L such that и has the property (a) 
with respect to a, b. From Lemma 8 it follows by induction, that there are elements 
u„, a„, b„e L(n = 1,2,...) such that 

(i) Un has the property (a) with respect to a„, b„, 

(ii) (p(u) < (p(ui) < (p(u2) < . . . < (p{a) V (p{b). 

The relation (ii) cannot hold because L' is discrete. Hence we have a contradiction. 

By a dual argument we can verify 

Lemma 10. Let a,b,ue Lsuch that (p{u) covers (p{a) and (p(b). Then (p{a) л (p{b) 
is covered by (p{a) and (p{b). 
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From Lemma 9 and Lemma 10 we obtain: 

Theorem 1. Let L and L' be discrete lattices such that the unoriented graphs 
G{L) and G(L') are isomorphic. If Lis modular, then L' is modular as well. 

For any lattice A, we denote by A^ the lattice dual to A. 
The following theorem generalizes Thm. 7.8, [3] and Thm. 1, [4]. 

Theorem 2. Let Lbe a discrete modular lattice. Let L' he a discrete lattice such 
that G(L) is isomorphic to G(L). Then there are lattices A, В such that L is iso­
morphic with the direct product A x В and L' is isomorphic with A^ x B. 

The proof follows from Thm. 1, and Thm. 1, [4]. 

Theorem 3. Let Lbe a discrete distributive lattice and let L' be a discrete lattice 
such that G(L) is isomorphic with G{L'). Then L is distributive. 

Proof. Let A, В be as in Thm. 2. Since Lis distributive, the lattices A, В must 
be distributive and hence A^ is distributive. By Thm. 2, L' is distributive. 

Let us remark that if L and L' are discrete lattices such that G{L) is isomorphic 
with G{L!) and Lis semimodular, then L' need not be semimodular. 

Theorem 4. Let Lbe a discrete modular lattice. Then the following conditions 
are equivalent: 

(a) If L' is a discrete lattice such that G{L!) is isomorphic to G(L), then ll is 
isomorphic to L. 

(^) Each direct factor of Lis self'dual. 
(c) Each undecomposable direct factor of Lis self'dual. 

The p r o o f follows from Thm. 1 and [5], Thm. 3.7. 
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