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1. THE FREDHOLM RADIUS OF ONE OPERATOR

The acquaintance with the paper ,,On a heat potential” (see [17]) is necessary for
the understanding of the present paper. We will use most of the definitions and
assertions from that article, especially those concerning properties of the parabolic
variation Vy (see Def. 1.1 in [17]) and of the special type of the heat potential Tf
(see Def. 2.1 in [17]).

Let <a, b) be a compact interval in R*(a < b), ¢ a continuous function of bounded
variation on <{a, b),

K = {[¢(1), t]; te<a, b)}.
Throughout this section we shall suppose
(1.1) sup {Vi(o(1), 1); te<a, b)} < o0 .

Let %o(<a, b)) be the space of all continuous functions f on {a, b) such that
f(a) = 0 endowed with the supremum norm (this space may be considered a space
%o(Ca, b)) — see the definition at the beginning of Section 2 in [17] — where Q is
a function on <a, b) for which Q(a) = 0 and Q() = 1 for € (a, b)).

Let us define operators T, and T_ on %o(<a, b)) by the following equalities:

(1.2) T, f(t) = lim Tf(x', 1),
[x",t"]1=[o(1),1]
t'eCa,b),x" > ¢(1)

(13) T_f(t) = lim Tf(, )

[x’,t'1=[o(1),1]
t'ela,b) ,x’ < o(1)

for f € €(<a, b)), t € (a, b). These limits exist according to Theorem 2.1 in [17].
It is easily seen that the functions T, f, T_ f belong to %o(<a, b)) and hence one may
consider T, T_ linear operators on %,(<a, b)) which map %,(<a, b)) into %,(<a, b)).
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We can slightly modify Remark 2.4 from [17] to get the following two equalities
which hold for each f e %,(<a, b)) and each t € (a, b):

(1:4) T, 1) = Tf(e(0). 1) + £(1) <2 - :/2; G(%m,z(t))> ;

(1.5) T 1) = TS(o(t), 1) - j—nf(t) G(tgi0, (1) -

(For o), and G see respectively (1.1) and (1.15) in [17].) (It holds, of course,
T, f(a) = T_ f(a) = 0 for any f e %,(<a, b)).)
Let us further put

(1.6) Tf(t) = T/(o(e). 1)

for f e €o(<a, b)), te<a, by. For fe %,(a, b)) the function Tf need not be
continuous on <a, b). We look for a condition of continuity of Tf for each f e

€ %o((a, bY).

Lemma 1.1. The set of all t € {a, b) for which a,, (t) = 0 is dense in <a, b).

Proof. We shall show that even «a,, (t) = 0 for almost all ¢ € (a, b). It is well
known that a function of bounded variation has finite derivative almost everywhere.
Consider ¢ € (a, b) and suppose ¢'(t) € R'. Then

o) = tim SO —im A2 (o) = 9.0 =0,
The assertion is proved.

Lemma 1.1, the equality (1.4) (or (1.5)) and the fact that T, (or T_) maps
%o(Ca, b)) into %y(<a, b)) imply that T maps %,(<a, b)) into €({a, b)) if and
only if @, (t) = 0 for each t € (a, b). If this condition is fulfilled and if I stands for
the identity operator on %,(<a, b)) then

T, =T+1, T_-=T-1

as follows from (1.4) and (1.5).

As we shall not suppose o, (t) = 0 for each t € (a, b) let us define an operator T,
on %,(<a, b)) by

(1.7) . To=T, —1.
Considering (1.4) and (1.5) one can easily verify that

(1.8) To,=T +1I
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and
(1.9) To f(t) = Tf(t) + f(t) (1 - 2771_ G(“w(:),t(t)))

for each f € 4,({a, b)) and each t € (a, b).

In connection with the boundary value problem for the heat equation it will be
useful to know the Fredholm radius of the operator T,. Let us introduce the notation
which we shall need in the sequel. We shall proceed similarly to [8].

If P is an operator which maps a Banach space B into B we denote the norm of P
by | P| or |P|s; ie., we put

[Pl = |Pls = sup {[Ef[; e B, |f] = 1},

where |...|| stands for the norm on B. (In a Banach space we use actually the same
symbol ” .. [| for the norm on the space, for the norm of linear functionals on the
space and for linear mappings from the space into itself; but certainly no confusion
can arise.) _

A linear operator 4 : B — B is said to be a compact operator on B if for each
bounded set M < B the set A(M) is relatively compact in B.

Let P : B — B be a continuous linear operator. Put

’

(1.10) ~ wP = inf |P — A|

where A runs over all compact linear operators on the space B. The value (wP)™* is
called the Fredholm radius of the operator P (we take 07* = +o0).

The operator T, is linear (and it follows from the condition (1.1) that it is also
continuous) and maps %o(<a, b)) into %,(<a, b)). Similarly as in [14] (where the
space %(<a, b)) is dealt with) or [11] we can find out that each continuous linear
operator P which maps %,(<a, b)) to €,({a, b)) is of the form

(B) () = j () d2t(e)

(f € %o(<a, b)), t € (a, b)) where for each t € (a, b) the function A} is a function of
bounded variation on {a, b) and

(1.11) |P| = sup var [4f; <a, b)].
te(a,b)
For each t € (a, by we define a function 1, by

2 Glapole))s Te<ari)
L) = V" (

j; Gltaolf), Te <t b
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Then

b
(112) TS(t) = Tf(o(t), 1) = J 1(2) dife)
for each f € €,(<a, b)), t € (a, b) as for 1 € (a, b) it holds

Tfp() 1) = % j '1(6) exp (=02 (2)) oty o2)

and if t; € (a, b) then

2 min{ty,t} 131
- j exp (— 020 (1)) A0 (2) =j a1(c)

according to Lemma 0.2 from [17].
Further we define for each ¢ € (a, b) a function A, by

2

2@ = {n
2

G(%p(r) (7)), T€<0,1)

telt, b).
From (1.4) we obtain

(113) .50 = ") 42 )

which holds for each f e %,(¢a, b)), te(a, b).
It is possible to define analogous functions A, for the operator T_.
It holds

var [1,; <a, b] = \—/%V,((qo(t), ), (te(a b)),
2
Jr

(it is now seen from the last equality and from the boundedness of the function G
that the operator T, is continuous on €,(<a, b»)).

G(@tpeo), (1))

var [ <a, bp] = ﬁ Vilolt), ) +2 —

Finally, we define functions 1° by

2
() = I o) ree)

1, telt,bd
(te(a, b)). Then

(1.14) : To (1) = J 1) dz(x)
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for f € €4(<a, b)), t € (a, b) and

var [1%; <a, b3] = % Velo(i), i) + |1 - %: q(aw(,),,(z))l .

Hence

— 2 2
(1.15) ITo] = sup (_ Ve(olt), 1) + ‘1 2 G(a,,,(,,,,(z))l).
te(a,b) \/n \/71:
Let  be a continuous function on {a, b). Given r = 0, we define an operator
"HY = "HY on the space €,(<a, b)) by

(1.16)

0, tela,by, t<a+r
'H"’ = t—r ;
1) < \—/2; j S (@) exp (=g, (7)) Aoy, 7) , tea,b), t>a+r.

Further we put :
HY = H) = °H),.

Lemma 1.2. Let r > 0, y € 4(<a, b)). Then "HY is a compact operator on
(g()((a’ b>)

Remark 1.1. By (1.16) one may define an operator "HY on the whole ¢(<a, b))
and this operator is a compact operator on %(<a, b)). But this is not necessary here.

Proof of Lemma 1.2. If r = b — a then the assertion is evident as 'H("; is the zero
operator in this case. -

Suppose 0 < r < b — a. If we denote

B = {f; fe%o(<a, b)), |f]| < 1}

then it suffices to show that "H%(4) is a relatively compact set in %,(<a, b)). Since
%o(<a, b)) is a closed subspace of %(<a, b)) it is sufficient to verify that "H%(4) is
a set of equicontinuous and uniformly bounded functions.

First let us show that the functions belonging to "HY(4%) are uniformly bounded.

It holds"HY f(t) = O for each f € €o(<a, b)) and each t e <a, a + r).If t € (a + 1, b),
f e % then

=

rHY ()] = [ -j— j "1(6) exp (= 22 (1)) e 2)

<_?_ var M~ a,t—r <
=\/n||fﬂ [2J(t—r)’<’t >]_
1

< N (var [@; <a,b>] +  sup >Il//(‘l.") - o(t))) < .

te{a,b),t’e{a,b,
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The last term does not depend on t e (a + r, b). Hence indeed, "HY%(4) is a set of
uniformly bounded functions.
Now it suffices to show that for each t € {a, b)

(1.17) lim sup |"HY f(t) — "H* f(s)| = 0.

ses(-:l'b)f
In virtue of the fact that "HY f(f) = 0 for each t € {a, @ + r) we may consider only
t,se{a + r,b). Let t, s be such points and suppose, for instance, ¢ > s. Then

(1.18) sfug}; ["H* f(8) — "HY f(s)| =
= o | [0 o (=) ) -

- r—rf (z) exp (=55 (7)) dotye),(2)

=< ——sup

J‘ f(T) eXp ( an//(r) t(‘c)) d“-//(t) t(T)

- j £(2) exp (~ #00,,(%)) darg )] +

+ = S“pJ (@) exp (= 50,.(7)) dorgoy o7) -

n feB
We have

(119)  sup < var [y, S E- ).
feR

f':rf (¢) exp (— g .4(7)) dtyo,(7)

Since var [oy, {s — r, t — ry] < oo and since the function oy 1s continuous

at the point t — r one sees that

(1.20) lim var [oyq, <S =1t =] =0.

Find S

Further we have .

(1.21)

up | [16) o0 (=, 0) 8500 49 - [[7s6) 0 (- ) 000 5
= Sfug " (T) (exp ( %(,) t(T)) €Xp (—aw(s)s(t))) da'//(t) ‘(1:)
 sup| [0 0 (<o) o) - OE
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+ var [y, — %y, <as — ry] =1(t,s) + (1, s) .
It follows from the Lebesgue theorem (for var [, ; <a, t — )] < o) that

(1.22) lim I(t, s) = 0.

sot—

We can easily verify that

W) — o(r) _ ¥(s) — o(r) _

2 (=7 24— 1)

—(t—5s) o(t) —v() n (1) — ¥(s) -
2l = D= W= + 6 =) 24— 9)

= Li(r) + M{(7).

%yey,(T) = Hye) o(7) =

Hence
I1(t, s) < var [L{; <a,s — r)] + var [M§; <a,s — r)]

and at the same time we find

" var [Li;<a, s — ry] £ (t — s) 3r7>"*(var [@; <a, b)] + sup. |<p(1) - l//(r')]) ,
. te{a,b)
t'eda,b)

var [M};<a,s — ry] < pr(t) = Y(s) 2_1/; .

Therefore

(1.23) lim I1(t, s) = 0

sot—
as the function y is continuous by the assumption. It follows from (1.23), (1.22),
(1.20), (1.21), (1.19) and (1.18) that

lim sup |"HY f(t) = "H" f(s)| = 0.
s—ot—  feRB
sea,b)

Analogously in the case s — ¢+. So we conclude that (1.17) is valid which completes
the proof.

Remark 1.2. Let us note that throughout the proof just finished we did not use
any assumpfion concerning the parabolic variation of the curve ¢. Consequently,
Lemma 1.2 is true even if the assumption (1.1) is omitted (it must be supposed only
that p is a con’{tinuous function of bounded variation on {a, b)).
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Corollary 1.1. Let Y be a continuous function on {a, b) and suppose that (1) +
+ ¢(t) for each t € <a, by. Then HY is a compact operator on ¢,(<a, b»).

Proof. Since for any r > 0 the operator ’Hﬁ is compact and it is well known that
a limit of a sequence of compact operators is a compact operator, too (the limit
being considered in the norm topology in the space of linear continuous operators),
it suffices to show that

(1.24) lim |[HY —"HY| =0.
r-0+
It holds for f € €4(<a, b)), te<a, by, re(0, b — a) that

HY 1(1) — "HY (1) = Ji j L 10 exp (=3 ) g 1)

max{a,t—r}

and it follows from (1.11) that

2 t
(125) |HY - HY| = Q_ms(u%,[ exp (= %5.(7)) d var a4y () -
€la, max{a,t—r}

Since the functions ¢,  are continuous and <p(t) * l[/(t) for each t e (a, b) there
are ro € (0, b — a), ¢ > 0 such that

lo(r) — (@) z ¢
for any 7,1 €<{a, b) for which ]‘C - 1:" < ry. Then for te (a, b>, teda, bd n
N (t = ro, t) we have '
‘l//(t) — (P(T)I > ¢
2J(t—1) " 2J(t-1)

I“w),z(T)l =
and hence

(1.26)

t t C2
j exp (—aj . (1) d var a,q, (1) < f exp (— > d var o, (1)
max{a,t—r}

max{a,t—r} 4(t - ‘L')

for each r (0, ry) (and ¢ € (a, b)).
It is easily seen that there is h € R' such that for each t € (a, b), n positive integer

var [a\,,(,)’,; <a, max {a, t— l}>] £ hn
n

(it is possible to put, for instance,

h =var[p;<a,b)] + sup |o(c) — ¥(@)|) -

te{a,b),t’ea,b)
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For re(0, r) let n(r) stand for the least positive integer n such that 1/n < r. Let
te(a,b), re(0,ry), r <t — a. Then we obtain from the preceding

t 62
exp| — d var «, T) =
Jl_r P( 4t - r)) w7
t—1/n(r) CZ d
ex - var o T) +
J\t_r p( 4(t _ T)) 'ﬁ(‘):‘( )

o pr=1/(n+1) 2
+ Y J exp(— )d var o, , (1) <

n=n(r) t—1/n 4([ - T

< Y b+ 1)e

n=n(r)y—1

Hence and from (1.26), (1.25) we get immediately that for r € (0, ro)
R R VN (R ) P
\/TE n=n(r)—1 .

Since n(r) - oo as r — 0+, the equality (1.24) follows which completes the proof.
In the following we suppose again that the condition (1.1) is fulfilled. Then the

value o, (t) is defined for each t € (a, b) and we are justified to define a function ay
on (a, by by

(1.27) ax(t) = |1 = 2= Glotgeo )] -

NE:
Let us prove the following assertion.
Lemma 1.3. For any given r > 0 the function
2
T

is lower-semicontinuous on (a, b). If we put

Vi(r; o(t), 1) + ax(t), (te(a, b))

T.f ="Hyf
for each f e 6o(<a, b)) and if & stands for the unit ball in €,({a, b)) then
2 — —
—Vil(r; o(t), ) + a(t) = sup (T, f(t) — T, f(1)), (te(a, b)).
\/TC feR
Proof. Since the least upper bound of a family of continuous functions is a lower-

semicontinuous function and for fe %4(<a, b)) the function (Tof — T,f) belongs
to @o(<a, b)) it suffices to prove that (1.34) is valid.
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If te(a, b, t > a + r (we consider this case only if r < b — a), f € %,(<a, b))

we have (see (1.14), (1.16))

Ty () = Tof(t) = j "f(e) a1%(c) — J' T ae = [ 1) aee).

t—r

Hence it follows (see the definition of the function 17)

sft:g (Tof(t) = T,f(t)) = var [10; <t — r, b)] =
= %z Vi(r; o(1), 1) + a(t) .

Consider t € (a, a + r). Then T, f(t) = 0 for each f e %,(<a, b)) and thus
sup (T, f(t) — T,f(1)) = sup T, f(t) = var [1; {a, b)] =
SeB feR

= i/27r Vi(o(1), 1) + ok(t) = :/2—71 Vi(r; o(1), 1) + ok(t) .

The lemma is proved.
For the curve ¢ we shall write further
2
F.K = sup —Vy(r; o(1), 1)

te(a,b) T
and

ZK = lim #,K

r-0+

(this limit exists since #,K is a non-decreasing function with respect to r).

Lemma 1.4. For each r > 0 the following equality is valid:

te(a,b) T

(1.28) FK = sup (Jl V(s ol0), 1) + oc,((t)>.

Moreover,

IIA

oT, £ FK.

Proof. The set
Ny = {t; te(a, b), ax(t) = 0}

is dense in <a, b) since ax(t) = 0 iff «,,,() = 0 and this is true almost everywhere
in <a, b) (sec Lemma (1.1)). As the function (2/\/m) Vk(r; o(t), 1) + ak(t) is lower-

semicontinuous on (a, b) we have

sup (72‘ Vi(rs o(1), 1) + o‘:c(t)) = sup (\—/2; Vx(;; (). 1) + ax(t)> =

te(a,b) T

teNo T

= sup ;72— Vi(r; o(1), t) = K
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(the last equality is valid since the function Vi(r; ¢(+), +) is lower-semicontinuous
on (a, b), too) so that (1.29) is proved.
(1.28) implies (see also (1.11)) that

i
ITo = T = sup <* Vilrs o(0), 1) + aK(t)) - FK
te(a,b) \/TL'

for each r > 0. In virtue of Lemma 1.2 the operator T, = "HY (r > 0) is a compact
operator on %,(<a, b)) and thus it follows from the definition of the value wTj, that
oT, S inf [T, - T,| = lim #,K = #K .
r>0 r-»0+
This completes the proof.

We shall show in the sequel that even wT, = #K. Similarly to [8] we shall
define 9B to be the set of all operators V: %y(<a, b)) = Go(<a, b)) of the form

(129) Vi) = 350 [ 160 40

(f e %o(<a, b)), t € {a, by) where f; € €o(<a, by)and g, (i = 1, 2,,.., n)are functions
of bounded variation on {a, b). If P is a linear operator on %,(<a, b)) then

(1.30) wP =inf{|P -V

; Ve B}

which follows from the fact that any compact operator can be approximated by
operators of the form (1.29) (see, for instance, [14] or [11] where the space €(<a, b))
is considered, but the argument can be modified without great difficulty to fit our case).

Let 2 < B be the set of all operators of the form (1.29) where, in addition, the
functions g; are supposed to be continuous on {a, b).

Lemma 1.5. It holds

oT, = inf {|T, — W|; We 2B} .

Proof. The proof is quite similar to that of Lemma 1.18 in [8] (analogously the
proof of the following theorem is similar to that of Theorem 1.19 in [8]). We only
recapitulate it here.

Let Ve B be of the form (1.29), where f; € %(<a, b)), g; have finite variation on
{a, by (i = 1,2, ..., n). For each t e (a, b) we put

(131) () = var, [226) - . 140 00 1]
4 being the unit ball in €,(<a, b)), we have
(1.32) h(t) = sup (T, = V) (1)
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For each fe%,(<a, b)) the function (T, — V) f is continuous on {a, b) which
implies (by virtue of (1.32)) that the function h is lower-semicontinuous on (a, b).
Since the set

N, = {te(a, b); o(t) = 0}

is dense in <{a, b) we get
(1.33) [|To = V| = sup h(r) = sup h(z) .
te(a,b) teNo

Giveni = 1,2,..., n we can write
g9:i = 4q; + s,

where g, is a continuous function on {a, b) (of bounded variation) and s; is a saltus-
function. We put

(139 010 = 550 [ 16) a9

for each fe %O«a, b)), te{a,b)y. Then Qe W. In exactly the same way as we
showed that the function h is lower-semicontinuous on (a, b) one can verify that the
function p defined on (a, b) by

p(t) = var, [22(z) — ¥ £(1) 4(v); <a, b)]
i=1
is lower-semicontinuous on (a, b). Hence
(1.35) |To — Q| = sup p(t).
teNo
Considering t € N, we have
2

NE:
and it is seen from the definition of the function Z° that for such ¢ the function 1°
is continuous on <{a, b). Since the functions g; are continuous and s; are saltus-

functions we get, taking into account that the variation of a sum of a continuous
function and a saltus-function equals the sum of the variations of those functions,

lim 70(z) = lim
To1—

[ nd Sad

G(ergio 1)) = Jl 6(0) = 1

o) = var, [6) = $10 ) = L1050 <a. 5] =
= var, [2() = $4(0) a0 <a 5] +

+ var, [i;"lf,-(t) si(2); <a, bY] = p(1)

for each t € N,.
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Hence
(1.36) 1T -7z [T - 2|

by (1.33) and (1.35). In other words, given Ve B there is a Q € I such that (1.36)
is valid. This implies

(1.37) inf [T, — V|| 2 inf |T, - 0| .
. Vel QB

However, 3 < B so that the inequality (1.37) turns to the equality. Hence (making
use of (1.30) where we write T, instead of P) the assertion follows and the proof is

complete.
Theorem 1.1. It holds

0T, = FK = lim sup (\/27t Vi(r; o(2), 1) + OtK(t)> .

r-0+ te(a,b)

Proof. It is easily verified that
2
Tn «(r; o(2), 1) + ax(t) = var [17; (max {a, t — 7}, b)].

According to Lemmas 1.5 and 1.4 it is seen that it suffices to show that
(1.38) “ T, — W“ 2 lim sup var [19; {max {a, t — r}, b)]
r—>0+ te(a,b)
for each We IB.
Let We 2 be of the form

Wi = %100 [ 16403, (Fe%olca bY), 1€ a, )

where f; € %o(Ca, b)) and g, are continuous functions of bounded variation (i =
=1,2,...,n). Then :
(1.39) |To — w| = s(upb>var [z - Zlf,.(t) gs; <a, b>].

tea, i=

As the function 12 is constant on {t, b> and the functions g, are continuous on
<a, by we obtain for t € (a, by, r > 0 that

var ['I? _zn:fi(t) g:; <a, b>] =
= var [2) — if,»(t)gi; {max {a, t — r}, b)] =
i=1
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> var [A{; <max {a, t — r}, bY] — var [1%; (¢, b>] —
~ var [ii (i) 95 <max {a, t — r}, 1] = var [1% (max {a, t — r}, b3] —
-Varaé;ﬂﬁ)gg (max {a, t — 1}, 1]
Taking ¢ = a we have, of course,
var[Zf-ig;f(a)gi;<a,b>] > var [1%; (a, b]

(79 is a saltus-function, g; are continuous).
In order to prove (1.38) it will then suffice to verify that

(1.40) lim sup var [ifi(t) g <max{a,t —r}, )] =0.
r-0+ tea,b) i=1
Writing )
¢ =sup {|fi(1)]; teda, by, i =1,2,...,n}
we have
(1.41) var [ ifi(t) gi; <max{a,t —r}, )] <
i=1

<c zn: var [g;; <max {a, t — r}, £)] = h,(1)
i=1

for each t € {a, by, r > 0. The functions h, so defined are continuous (because g,
are continuous) and it is seen that

b () 2 b (1), (te<a b))

whenever r; = r, > 0. Further it follows from the continuity of the functions g,
that '

lim h(t) =0

r-0+
for each t € {a, b). It is well known that a sequence which converges pointwise to
zero on a compact interval and is non-decreasing converges also uniformly on that
interval (the Dini theorem).

Thus
lim sup h(f) =0.

r-0+ tela,b)

Using (1.41) we conclude that (1.40) is valid and so is (1.38). The assertion is proved.
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2. THE FOURIER PROBLEM

First we shall deal with the following boundary value problem. Let <{a, b) be
a compact interval in R!, ¢ a continuous function of bounded variation on {a, b).
Put

(2.1) K = {[o(t), 1]; tea, b}, M ={[x,t]; te(a,b), x > ¢(1)},
B =Ku {[x,d]; x 2 ¢(a)} .

Let F be a continuous bounded function on B. We look for a function G on M
which solves the heat equation on M and satisfies

(2.2) lim  G(x, £) = F(xo» to)
[x,t]-[x0,t0]
[x,t]leM
for each point [x,, #o] € B.
Let us suppose

(2.3) sup Vi(o(1), 1) < o .
te{a,b)

Let T, have the same meaning as in Section 1 and suppose
(2.4 0Ty £1.

We shall show that in this case there is a solution of the problem formulated above
and it may be expressed in an integral form.

Let T,, T_ denote the same as above, i.e., let
T, 1(t) = TH(o(t). 1) + 1) (z - j— cmm.t(t»),
T f(t) = TS(o(1). 1) — ﬁf(t) A 0)

for each f e %o(<a, b)), te(a, b) (T, f(a) = T_ f(a) = 0 for each f € %,(<a, b))).

Further, we have

T. (1) = lim Tf (x', t
(2.5) * f( ) [x',t'1>[o(1),1] 7 ( ’ ) ’
t'eda,b),x"> (1)

T_f(1) = lim Tf(x, ¢
(2.6) f( ) [x",t"1=[o(1),1] f( )
t'e{a,b),x’ <o(t)

for each f € €y(<a, b)), t € a, b).
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Let F be a given continuous bounded function on B. We define a function F,
on the interval (— oo, o) by

Fy(x) = F(x, a), x = ¢(a),
Fy(x) = F(¢(a), a), x < ¢(a);

this function is continuous and bounded on R!. We can define

N 1 (x = 7)?
2.7) v ) =51 '[ g <— m) Fy(t) de

for each [x, {] € M; = {[x, f] € R?*; t > a}. The function G, is the so-called Poisson
integral of the function F, and is known to be caloric on M. Moreover, it is known
that

(2.8) lim  G(x, t) = Fy(x,)

[x,t]1-[x0,a]
t>a

for each x, € R'. Let us define a function F, € €,(<a, b)) by

0 t=a

F(,q;(t), 1) — Gy(o(t), 1), te(a, b).

Suppose now that there is a function f € €,(<a, b)) such that

29) Fi() =<

(2.10) T.f=F,.
Putting
(2.11) G(x,t) = Tf(x, 1) + Gy(x, 1), ([x,t]eM)

one can easily verify that for the solution G the condition (2.2) is fulfilled and thus
this function solves the boundary value problem stated above for the boundary
condition F on B. Now it suffices to answer the question when does such a function f
exist. We shall show that if the condition (2.4) is fulfilled then one can find such a func-
tion f.

It is well known that by the Riesz-Schauder theory the Fredholm alternative is
valid for a continuous linear operator on a Banach space whenever the Fredholm
radius of the operator is bigger than 1. But to say that the condition (2.4) is fulfilled
is to say that the Fredholm radius of the operator T, is.bigger than 1. Thus if this
condition is fulfilled then the operator T, (=T, + I) either maps the space %,({a, b))
onto %,(<a, b)) or there exists a function f € %,(<a, b)) which is not equal to zero
function such that T, f = 0. In the first case, given an arbitrary g € €o(<a, b)),
one can find exactly one function f € %,(<a, b)) such that T, f = 0. It is evident that
it suffices to show the following lemma.
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Lemma 2.1. Let &T, < 1. Then the equations
2.12) T.f=0,
(2.13) T_f=0
are solved in %o(<a, b)) only by the zero function.

Proof. Consider, for instance, the equation (2.12).
Since by Theorem 1.1

oT, = lim sup (i Velrs o(t), 1) + ozK(t)),
=0+ te(aby \3/T0

there is r, > 0 such that

2

Jr

for each r € (0, r,), t € (a, b). Let f € €y(<a, b)) and suppose that Tf = 0 (on {a, b}).

First we show that f(t) = 0 for each t € {a, a + r,) (We may suppose r, < b — a).
There exists a point ¢’ € (a, @ + ro) such that

@) = swp |f()]-
tela,a+ro)

(2.14) Vi(rs o(1), 1) + axlt) < 1

Then it holds (as the function 1, is constant on (', b))

@1s) ITo ()] = j ) 42(e)

- j 1) a12(@)| = [1()] var [22; <a, 3] =

= 5@ (% Valolt), ) + a,((y)) _
=|7()] (\%z Vi(ro; o(t), t') + ax(t’)).

Further we have
(2.16) 0="T,70t)=Tof(t) +f(t).

Comparing (2.15) and (2.16) we obtain from (2.14) that f(#) = 0 and thus f(t) = 0
for each te{a, a + ry).

Suppose further that 2r, < b — a and prove that f(f) = 0 for each te<a + ro,
a + 2ry>. There is a point " € {a + ry, a + 2r,) such that

|7") = sup {|f()]; te<a + ro, a + 2ro)} .
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It holds f (t) = 0 for each t € {a, a + ry) by the first part of this proof so that

j 1) 422(e)| <

atro

|To £(1")] =

< () <ﬁ Vi(ros o(1"), 1) + ozK(t”)).

Further, (2.16) is valid also if we write " instead of ¢'. Similarly as above we get from
(2.14) that f(¢") = 0 and thus f(¢) = 0 for each t € {(a, a + 2ry).

Continuing by induction, we conclude that f (t) = 0 for each t € {a, b) so that the
equation (2.12) is solved only by the zero function.

Analogously for the equation (2.13).

The lemma is proved.

According to Lemma 2.1 and the preceding argument we obtain immediately the
following assertion.

Theorem 2.1. Let ¢ be a continuous function of bounded variation on the interval
<a, by and let K, M, B be defined by (2.1). Suppose that

r—0+ te(a,b)

lim sup (:/2; Vi(r; o(t), 1) + ocK(t)) <1

(this condition requires the validity of (2.3)).
Given a continuous bounded function F on B, let us put

<F(x a) x 2 ¢(a)
F(o(a),a) x < ¢(a).
Then there is one and only one function f € o({a, b)) such that the function
_ 1 (* _Fi) (x— 1)
G ) = Tr ) + 51 j_w N exp< e )) de ([x1]eM)

is a solution of the boundary value problem for the heat equation on M with the
boundary condition F on B.

Remark 2.1. In exactly the same way as we solved the boundary value problem for
the heat equation on M we may solve the boundary value problem for the set

M' = {[x,t]; te(a, b), x < ¢(t)}

with boundary conditions defined on the set

=K u {[x al; x £ ¢(a)} .
We should only use the operator T_ = T, — I instead of T,.
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Let <a, b) be a compact interval in R! and consider on this interval two continuous
functions ¢,, @, of bounded variation such that

(2.17) @4(t) < @,(t)
for each t € {a, b). Putting
(2.18) K; ={[ot).t]; tela,bd}, (i=1,2),

M = {[x1]; te(a b), ¢:(1) < x < 05(1)},
B =K, UK, u({[x, a]; ¢,(a) £ x £ ¢,(a)}

we shall solve the Faurier boundary value problem on the region M; i.e., given

a continuous function F defined on the set B we look for a function G caloric on M
such that

(2.19) lim  G(x, t) = F(xq, to)
[x,t1=[xo0,t0]
[x,t]leM
holds for each point [x,, t,] € B.
By analogy to Def. 1.1 in [17] we define the parabolic variations of the curves

¢4, ¢, which we shall denote by Vi, Vx, respectively. Throughout the following we
shall suppose that

(2.20) sup Vg (o(t), 1) < o0, (i=1,2).
te{a,b)
Further, we denote

o) — o{7)

i .t) = }l‘:‘_ *im , (i=1,2)

and

2
) = [t = - Gl 0)
for each t € (a, b).

In the same way as we defined the heat potential operator T for the curve ¢ let
us define the heat potential operators T;, T, corresponding to the curves @i, @,;
i.e., we put

min{t,b}

= [ oG5 00

for each bounded Baire function f defined on {a, b)> and x e R!, t > a. Put

(2.21) T, f(6) = T, f(@u(). 1) + £(2) (2 - :/2; G(l%,m.:(‘))>’
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(2.22) Tf()=-T, floa(1), 1) + £(2) G(2%,0..(1))
for each f e 6o(<a, b)), t e <a, b>.

In the sequel we shall deal with the space €, = €,(<a, b)) which is defined to be
the space of all continuous mappings F from <a, b to R* for which F(a) = [0, 0].
Thus €, is the set of all pairs [ fy, f,] with f, f, € €(<a, b)). We introduce a norm
in €y(<a, b)) by

[0 2231 = 100 £21leo = [Filleo + 12eo

([f1. f2] € €;). €, endowed with this norm is a Banach space.

It is easily verified that any linear operator P which maps €, into €, may be expres-
sed (uniquely) in the form

(225) P(fl’fZ) = [Plfl + P2f2: ijl + P4f2]’ ([fufz]EGO)

where P; (i = 1,2, 3,4) are linear operators mapping %o(<a, b)) into itself. The
operator P is bounded iff all operators P; are and is compact iff all P; are.

Let us define an operator R acting on €, by
(2.26)  R(f1,f2) (1) = [T1 f1(0) — T2 fa0s (1), 1), T2 fo(t) + T fi(wa(0), 1)]
([f1>f2] € €, te<a, b)) and put
(227) Ry=R -1

where I is the identity operator on €.
Lemma 2.2. It holds

R, = max { lim sup <i Vi(r; 0(2), 1) + a,(,(t)>}.

i=1,2 [r>0+ re(aby \\/T

Proof. We have shown in Corollary 1.1 that the operator defined by the equality

(1.16) is compact provided ¥(t) # ¢(r) for each t € {a, b). Applying this assertion

to the cases Y = @, ¢ = ¢, and ¥ = @,, ¢ = ¢, we conclude that the operator R,
defined on €, by

(2.28) Ry(f1, f2) (1) = [~ T2 fal0s(t), 1), T fl({pz(t), 1]

([f1, f2]€ €y, tela, b); ie. R, =[—HS:, HY?]) is a compact operator on €.
If P is a continuous linear operator on a Banach space and P, is a compact operator
acting on the same space then it is seen immediately from the definition of the
value wP that

o(P + P,) = oP.
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Hence
(2.29) oRy, = wR;
where we put R, = R, — R,.
We have
(2:30) Ry(f1.f2) = [Tif1 = f1s Tof2 — ], ([f1, £2]1€€).
In accordance with Theorem 1.1 we get

(2.31) o(Ty —I) = lim sup (j Vi (rs 04(2), 1) + ok (t))

r-0+ tela,b)

and

(2:32) o(T, —I) = lim sup (\/2 VKz(r ?5(t), 1) + oy 2(t))

r-0+ tela,b)
Let us now show that for a linear operator P mapping €, into €, which has the form

P(fl’fz) = [P1f1’ szz] s ([fl:fz] € (‘:0)
it holds

(2.33) _ - wP = max {oP,, wP,} .
If P is a compact operator acting on €, which is of the form

P(fi.f5) = [Pifi + Pofs, Pofy + Pufa], ([fufa]e€),

then the operators P; (i = 1,2, 3, 4) are compact operators acting on %,(<a, b))
and we have

@34 (P = P 1) = [P = P [A]l + [Po] [£a] + [B5] 5] +
+ [Ps = Po| | 12] = max {[P, o [Pe = P} (1] + [12]) +
+ [Pe] |22 + 1Ps] 7] = Py = Py, [P = Po} +
+ |Po] [12] + [Ps] 7]

for each [fy, f,] € €, such that |[f,,f,]| < 1. We may assume P,, P, to be zero
operators and conclude (by the definition of @P, @P,, P, and the definition of the
norm of operators) that

(2:35) P < max {wPy, wP,} .

Further it holds for each compact operator P

I(F = PY(7u £2)] 2 |(By = P + |(Pe = P2 1] -
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Suppose, for instance, P, = wP, and let f, = 0. If we let f; run over all functions
belonging to %,(<a, b)) such that Hf1 H =< 1 we arrive at

|P—P|z [P, - P
which implies

(2.36) oP 2 wP, = max {wP,, oP,} .

(2.33) follows now from (2.35) and (2.36). The assertion follows then from (2.33),
(2.30), (2.31), (2.32) and (2.29).

Lemma 2.3. Suppose wR, < 1. Then the equation

(2.37) R(f1,f2) =0
(where 0 € €, is the zero element) has in €, only the trivial solution.

Proof. We have shown in the proof of Corollary 1.1 that if y(t) + ¢(t) on the
whole <{a, b) then

(2.38) lim |HY — "HY|| = lim sup Vi(r; y(2), 1) = 0
r-0+ . r-0 e(a,b)

+ tea

(see (1.24) and (2.25)). Applying (2.38) to the case Y = ¢, ¢ = ¢,(K = K,) one
obtains

(2-39) lim  sup Vi,(r; @4(1), 1) = 0.

r-0+ te{a,b)

According to Lemma 2.2 and the relation (1.39) it follows from the assumption
R, < 1 that there is ry > 0 (r, < b — a) such that

2 2
(2.40) ?;r. Vi,(ro; @4(1), 1) + ok, (t) + %sz(r& e.(t), 1) < 1
for each ¢ € (a, b).

Let [f, f2] € €, and let R(fy, f,) = 0. Then there are ' € (a, a + ro, i € {1,2}
such that

l7{r)] = m{ax{ sup >]f,-(t)|} .

j=1,2 tela,atro

Suppose, for instance, i = 1. Then
2 ’
(2.41) 0 = Tufi(0a(t), 1) + £:(1) (1 - Gl ))) N

+ [1(t) = Tofaos(t), 1)
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and, on the other hand,

(2.42)

Tf(or(), ©) +f,(z'>(1 - Ji G(I%.(,,,,..(v») — Tfen(t) t'){ <
< |5 )|( Ve (ro; 01(1), ) + g (¢) +j Vo o1(t), t)>

If we compare (2.41), (2.42) and (2.40) we get f,(¢") = 0 so that the functions f;, f,
vanish on the interval <a, a + ry).

The proof may be completed by induction similarly to the proof of Lemma 2.1.

Theorem 2.2. Let ¢,, ¢, be continuous functions of bounded variation on the

interval {a, b) and suppose that ¢,(t) < ¢, (t)for eachte{a, b). Let K,,K,, M, B
be defined by (2.18) and let

(2.43) max { lim sup (—i Vi (r; ot), 1) + ocK‘,(t)>} <1
i=1,2 (r=20+ tela,b) \/77.'
(the condition (2.20) is included in (2.43)). Let F be a continuous function on B
and put .
 Fou(aya) x5 o,(a)

(2.44) Fy(x) = —F(x, a) x € (@4(a), @2(a))
F(p,(a),a) x = @y(a).

Then there is a unique pair of functions g, g, € €o(<a, b)) such that the function G
defined on M by

ey k=t -G 50)-
“Ge e (GRS
2 i/n J: J (_T)a) exp (’ %) dr ([x, t]eM)

is a solution of the boundary value problem for the heat equation on M with the
boundary condition F on B.

Proof of this theorem is based on the Riesz-Schauder theory similarly to the proof
of Theorem 2.1. If we put

o = | (- )
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for t > a, x € R! and define functions f;, /2 by
1) = Flo 1) 1) = Gulo1) 1) te(ab), i=12,
f1(a) =f2(a) =0

then we can find (using the Riesz-Schauder theory) a unique pair [g,, g,] e €, for
which
R(gp gz) = [fl,fz] .

It is easily verified that this pair [g,, g,] possesses the required properties.
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