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ON A HEAT POTENTIAL

MirosLAV DonNT, Praha
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INTRODUCTORY REMARKS

In the whole of the present paper we shall deal with the Euclidean plane R?.
Let I' be the well-known kernel in R? (the fundamental solution of the heat equa-
tion in R?) defined by

0.1) (1) = <%(n:t)—1/2 exp(—— Z?) , 1> 0.

0, t=0

This kernel is used in the definition of the heat potentials in the plane. For our
purpose we shall consider a special heat potential which is defined in the following.
The author wishes to acknowledge his gratitude to Joser KRAL who directed his atten-
tion to the heat potential, especially to that mentioned above, and to the relevant

problems.
Let ¢ be a fixed continuous function of bounded variation on {a, b) (where

a < beR! are fixed) and put
0.2) K = {[o(1), t]; te<a, b} .

With each bounded Baire function f on {a, b) we shall associate a function Tf
. on R*\ K defined by

0.3) Tf(x, 1) = — J' "€ o, (x — olc), t — 7) dr —
- be(r) I'(x — o(t), t = 7)do(r),

where 0,I" stands for the partial derivative of I with respect to the first variable.
It will be shown that if the function ¢ satisfies a certain complementary condition
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(namely, a geometric condition on the set K), we can evaluate the “right” and “left”
limits of Tf on K at the points of continuity of the function f (we may consider the
function f on {a, b) as a function on K).

The function Tf is continuous on R*\ K, satisfies the heat equation (we also say
that it is caloric) and exhibits a boundary discontinuity on K like that of the classical
double-layer heat potential. We will investigate the potential Tf in a manner similar
to that used by J. Kral in his papers [6], [7], [8] for the logarithmic potential. By
analogy to the so-called cyclic variation from these papers we shall introduce and
investigate the so-called parabolic variation which will assume the principal role in
our study.

Now let us introduce some fundamental notations, notions and assertions which
will be used later.

Let *R* stand for the real line including the points + oo and — co. The term function
on a set M stands for a mapping from M to *R!; the real function on M is a mapping
from M to R! and if we talk about a continuous function we always mean a real
function.

If f is a real function defined on an interval J < R! let us define the variation of
the function f on an open set G = J as follows. Put var [f;0] = 0 and if G + 0
define var [f; G] as the least upper bound of all sums of the form

1) - sa)

where {ay, b,), ..., {a,, b,y are non-overlapping compact intervals contained in J.
For any set M < J put

var [f; M] = infvar [f; G],
G

where G ranges over all open sets in J for which M < G. It is known that var [ f; *]
is an outer measure and its restriction on the var [ f; - ]-measurable sets is a measure.
The integral of a function F : M — *R' (where M < J is a var [f; *]-measurable
set) with respect to this measure will be denoted by

Jdearf, fF(t)dvarf(t), etc.
M M

We say that the function f has locally finite variation if var Lfs I < oo for every
compact interval I < J. If the function f has locally finite variation on J then the

integral
f Fdf
M
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stands for the Lebesgue-Stieltjes integral of the function F. Let us note that if the
functions F, f are continuous on {a, b)> = R! and fis of bounded variation on {a, b}

then
b
I F df =J Fdf,
{a,b) a

where the Lebesgue-Stieltjes integral is on the left hand side and the Stieltjes integral
on the right hand side.

Lemma 0.1. Let f, g be continuous functions with locally finite variation on an
interval J = R and let F be a continuous function on J. Then

J JF(t) dar (1) o(t) = J Ffdg + JAJFg df

whenever at least two of those integrals converge.

Lemma 0.2. Let f be a continuous function of bounded variation on {a, by, ®
a function on f(<a, b)). Then

Jﬂb)gp(x) dx = J‘:(D(f(t)) ()

S(a)

whenever there is a (ﬁnite or inﬁnite) Lebesgue integral on the right hand side.

Lemma 0.3. Let f be a continuous function with locally finite variation on an in-
terval J < R%, let p be a function with continuous first derivative on f(J). Putting
h = p = f, the function h has locally finite variation on the interval J and

(04) j Fdvar - 'f [P FO) dvar ()

for any lower-semicontinuous function F = 0 on the interval J. If, in addition, the
integrals in (0.4) are finite, then

'[ Fdh = f P (F(0) F(1) df () -

J J

Lemma 0.4. Suppose that f, g are continuous functions with locally finite variation
on an interval J = RY. Then

Jdear(fg)§fFlf|dvarg +jF[gldvarf.
. J J

J
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In particular, the following estimate holds:

var [fg; J] < var[g; J] SthlJp If(t)| + var [f; J] stlg) |g(t)| .

Lemma 0.5. Let f be a continuous function of bounded variation on an interval
J = RY. Suppose that F = 0 is a lower-semicontinuous function on J. For each
x € R! put

o F) = L ()
S)=x

(we put 6(x, F) = + o whenever F(t) > 0 for uncountably many t € J with f(t) = x).
Then O(x, F) is a Lebesgue measurable function of the variable x € R* and

+ o0
J 0(x,F)dx=devarf.
- J

These assertions can be found for example in [6]; Lemma 0.2 is established in [13].

1. PARABOLIC VARIATION

In this part let a < b be fixed numbers in R! and let ¢ be a continuous function
of bounded variation on the interval {a, b). Let K be the set defined by (0.2). K is
a compact set in R2.

For each [x, 1] € R* with t > a we define a function «, , on the interval {a, min .
.{t, b}) by the equality

(L1) %m=£ﬁ%%.

The function «,, has locally finite variation on the interval {a, min {t, b}). This
follows immediately from Lemma 0.4 for it holds

var. L(p(z)*'a'<;var “La sup |x — oft
,[2\/0_1),(,t)]=2V,(t_t,)( [¢’<’b>]+re<fb>| o(7))

for each ¢’ € (a, min {t, b}).
We fix a bounded lower-semicontinuous function Q = 0 defined on <{a, b).
Let [x, t] € R*. Fora, r > 0, & < +o00 we put

(12 nEdr @) = 201 ;
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in the sum on the right hand side we consider every t € {a, b) for which0 < t — 7 <

< r and
2
- (Y
20

ng (o0, ) = n2(a); nl(r,a)=n,(r,a);

n, (o0, a) = n, (a).

Further, write

Consequently, n, («) stands for the number of all points of the set

2a

Km{[é,r]eRz; t—‘c=<é—x)2, [c,r]4=[x,t]}.

Lemma 1.1. Given [x, t] € R?, r > 0, then the function n2 (r, o) is a measurable
function of the variable a € (0, o) and

00 min{t,b}
(1.3) J‘ exp (—a?) n2 (r, o) da = '[ O(7) exp (—of (7)) d var o, ()
0 max{a,t—r}
whenever max {a, t — r} < min {t, b}; otherwise
(1.4) . ‘[ exp (—a?) n (r, ) da = 0.
0

Proof. If max{a,t — r} = min {t, b}, then either t < a or t = b + r. The
function n2 (r, +) is the zero-function on (0, o) in each of these two cases, which
follows immediately from the definition of this function.

Suppose now thata <t < b + r, xe R%.
Putting I = (max {a, t — r}, min {t, b}),

F(D) = 0f) exp (~22,(2)) (xel),

the function F is a nonnega'tive lower-semicontinuous function on the interval I.
Let us define a function m on R! by

m(B) = Y F(r),
where t in the sum runs over those 7 € I for which

x—o@) _,
-9 "
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It follows from Lemma 0.5 that m is a measurable function on R! and

(1.5) J j:m(ﬂ) dp = f IF(T) d var, [2"\/;—"’_(?)] -
- j ) exp (<) dvar o ().

However,

(1.6)  m(x) + m(—o) = ZF T) = ZQ(’C) exp (—o?) = exp (—a?) n? (r, o)
where M = {tel; +a = o, (7)} and thus

(L.7) f “ () dp = f exp (—o2) n (1, o) doc.

It is seen from (1.6) that n, (r, *) is a measurable function on (0, o). The relation

(1.3) follows from (1.7) and from (1.5).
Now we are justified to define the parabolic variation.

Definition 1.1. Let » > 0. The function Vi&(r; +, -) defined by equality
(1.8) VE(r; x, 1) =J exp (—a?) n2 (r, o) da
0

is called the parabolic variation with the radius r and the weight Q of the curve @
(or of the set K). Furthermore we write

V(oo; x, 1) =VE2(x, 1), Vi(r;x, 1) =Vi(r; x, 1),
Vi(x, 1) = Vi(x, 1) for [x,1]eR>.
The function Vi(+, +) is called the parabolic variation (of the curve o).
Let us note that (by Lemma 1.1)

(19) Ve ) = [ 0(e) exp (= a2 (5)) d var o (%)

max{a,t—r}

forany r >0, xeR,a<t<b+r.
If either t < aort = b + r then

Va(r;x,t) =0.
Especially,

min{t,b}
(1.10) Vi(x, 1) = f exp (o2 (1)) d var a, (v)
for any x e R!, t > a.
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Lemma 1.2. The function V,?(r; ) is a nonnegative lower-semicontinuous function
on R? and is finite on R* — K.

Proof. V(r; -) is nonnegative since Q and also n? (r; *) are.
V&(r; +) is undoubtedly continuous at every point of the set

{[x.t]eR*s t<a}n{[x,f]eR* t=b +r}

since VZ(r; +) = 0 on that set.
Fix xe R', t e (a, b + r) and suppose that

c <V(r;x, t)

for a fixed ¢ € R. Taking into account that Q is a lower-semicontinuous on {a, b}
and putting I = (max {a, t — r}, min {, b}) we obtain from (1.9) that there is a con-
tinuous function ¢ on <a, b) for which0 < ¢ < Q on {a, b), such that

J Iq(r) exp (—a2 (z)) d var o, (t) > c.

It is known that if F = 0 is a continuous function on I and f is a continuous function
with locally finite variation on I then

Jdearf: supdevarf,

I L JL

where L runs over all compact intervals which are contained in I. Now it isseen

from the definition of the Stieltjes integral that there are points 7, 7,, ..., 7, With
max {a,t — r} <1, <1, <..<r1,<min{t, b}

such that

0(x, t) ='§:q(t,~) exp (—a2 (1)) [ote (T:) — o (Tisy)| > €.

If we fix such points 74, 7, ..., 7,, the expression 6 may be considered a function on
the set M = {[x', #'] € R*; t' > 1,}. The function 0 is surely continuous on M and
thus there is 6 > 0 with

0 < min {r; — max {a, t — r}, min {1, b} — 1,}
such that
0(x',t) > c

for each [x’, '] € R? with |x — X| <6, |t -] <o
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For t' € R' with |t — ¢| < & it holds
(74> Ty = (max {a, ¢’ — r}, min {t, b})
and thus (if, besides that, |x — x'| < 8) the following inequality is valid:

min(t’ b}
V(r;x', 1) = O(t) exp (—o. (7)) d var «. ,.(t) =

max{a,t’—r}
= j nq(r) exp (—al. (7)) d varoa,. .(ct) = O(x', t') > c.
T1
As we choose ¢ < V(r; x, 1) arbitrary, the lower-semicontinuity of VZ(r; *) at the

point [x, t] follows.
Now it remains to show that for any [x, f]e R* \ K it holds V@(r; x, 1) < co.
If t < a then V&(r; x, 1) = 0. Q is bounded by the assumption. It may be supposed

for instance that Q < 1 on (a, b).

If t > b then
V(r; x, 1) S VE(x, 1) < Vi(x, t) =

b
= f exp (—aZ (v)) d var a, (7) < var [a,,; <a, b)] <

var [@; {a, b)] <

1 1 1
< sup [x = o(7) <z JE=b) 2 - a)> ’ N

te{a,b)

according to Lemma 0.4,

Let te(a, by, x€R', x + ¢(t). Put lx — qo(t)l = r (it holds r > 0). There is
a é > 0 such that |¢(r) — @(t)|] < 4r for each T e (¢ — 4, 1) (since ¢ is a continuous
function on {a, b)).

Let us further put
1

2

t,=1—
n

forn=1,2,...
Then (assuming @ < 1)

ty
V(rs x, 1) < Vi(x, 1) =f exp (—o} (c)) d var o, (t) =

ty 0 th+1
= f exp (——otf,,(‘r)) dvaro, (1) + ) f exp (—af (1)) dvar o, (1) <
n=1 Jg.

a

< var [, <a, 1,)] + Y. sup exp (—af (v)) var [0, ;3 oy tye 1] -

n=1 t€{tn,tn+1)
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Obviously it holds var [a, ,; <a,t;>] < . Denoting r/4 /6 = R the following
estimate is valid on the interval <ty t,41» (n = 1,2, ...):

exp (—o2 (1)) < e

(since |x — '(/)(‘C)l > 1r on the interval (t — 6, )

and
r 1 r 1
o >-———2-———=nR
0] 2 22 (1t —1) " 4t —t)
on the interval {t,, t,+>).
Furthermore,
var [ax t; <tn’ tn+l>] é
< sup |x (0)) ! ) +
= w0 2¢0~m0 2t —1)
1 3r 1 n +1

var [(P <tn5 n+1>] = var [(P <t1’ t>]

T =) 2205 28

Hence

Vi(x, t) < var [o, ; <a, t,] + . 3R e MR 4

n=1

var [o; {ty, )] & —n2R2
4+ LMD /] n+1)e < .
2\/6 ngl( )

The assertion is proved.

The following theorem is the main result of this part. We shall use this theorem
later.

Theorem 1.1. Let t, € {a, b). If there is 6 > 0 such that
(1.11) sup {V2(¢(1), 1); te<a, by, |t — 15| < 6} < o

then there is a neighbourhood U of Lo(to), to] in R? for which

(1.12) sup V2(x, ) < o0 .
[x,t]leU
If
(1.13) sup VR(o(t),t) = c <
te{a,b)

then V2 is bounded on the whole R2.
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Proof. First we prove the second part of the theorem. Let & be a fixed finite
system of disjoint intervals (ay, b), ..., <a, b,> with {a, b)) =<a,b) (i =
=1,2,...,n). Put

¢; =inf {Q(r); tela, b}, K;={[o(t),t]; tea,b)}.

Choose s; e R, |s,~] < (i =1,2,...,n). Let us define a function h on the set
n

R* N\ UK; by
i=1

min{r,b ;}

(1.14) Wx 1) = Y, J exp (—a2 (1) dore (1)

J aj
We replace the j-th integral in the sum (1.14) by zero whenever ¢ < a; (in particular
h(x,t) =0 if 1 < a).

Fix [x, ] € R%. It is seen from the well known properties of the Stieltjes integral
that VZ(x, t) is equal to the least upper bound of all sums of the form (1.14) where 2
runs over all finite disjoint systems of intervals contained in {a, b} and s; over all
real numbers such that |s;| £ c¢;. On that account, the boundedness of the function V2
on R? will be evident if we show that the function h is bounded on R? by a constant
which is independent of the choice of the system 2 and the numbers s; (lsjl < ¢)).

Let us define a function F; on R* \ K, (i = 1,2, ..., n) by

t

IIA
S

/0
Fi(X, t) = S pmin{tbi)
j exp (—of (v)) do, [(t) 1> a

ai

\

We define a function G on *R! in the following way:

t=—00

(1.19) o) = <°.
0 \j exp(—x?)dx t> —o0

(we shall use this notation also in the sequel). Let us note that
0<G(f) < Jn

for each ¢ € *R! and that G is an increasing function on *R®.
Suppose that t € (a;, b,>, x € R', x * o(t), let t' € (a;, t). Then

J "exp (=02, (5) d.(0) = fp (=22)dz = Gland(t) = Glandar) -

a; x, ¢(a@i)

(This follows from Lemma 0.2).

93



If we let ¢ tend to t, we obtain (considering the cases x > ¢(f) and x < ¢(t)
separately)

-0 ) =0

for any t € (a;, by. Similarly one comes to the equality

(1.17) Fi(x,1) = G(;\/_(,—qj%> —¢ (2%/%2—%)_))

which holds for [x, t] € R?, t > b;. It is readily verified that the function F; satisfies
the heat equation on the set R* \ K;. Hence the function h satisfies the heat equation

(1.16) Fix, 1) = <

on the set R? \ U K.
i=1

i=

Assuming [x, t,] € K we distinguish the following two cases.

a) [xy, t;] ¢ UK. In this case the function h is continuous at the point [x,, #,]
and thus i= '

min{ty,b;}

(118)  fim  A(x ) = h(xi, 1) = O, J' exp (o (2)) ey (1) <
[x,t]-[x1,t1] J ajy

min{t1,b )

< ;cjf exp (—of (v))dvara,, ,,(7) <

aj

min{ty,b;}
<y j 0) exp (~22,,(2) dvar o, ,(7) <
7 Ja
Ty
< f Q(c) exp (—oZ (7)) d var oy, ,,(t) = VE(x, t,) < ¢

(everywhere in those sums we consider only such members for which a; < t,).

b) [x,,1,] €U K;. We can assume, for instance, that ¢, € {a,, b,>. In the same
i=1

way as in the case a) one may show that

min{t,bj}
(1.19) im Y J exp (—a2(1)) dog 1) < ¢

[x,t1=[x1,t1] j*n aj

(in the sum we again consider only such terms for which a; < t).
We may suppose that Q < 1 on <a, b). Then ¢; < 1 (and thus [sj] < 1). Consider
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a point [x, f] € R* \ K for which ¢ > a,. In the case t < b, we put a, (1) = +o0
if x > ¢(1); if x < ¢(t) we put o, (f) = — oo (so that
o, (1) = lim o, (7)) .
[ 2nd 2ol

Then

min{t,b,}
(1.20) 5 j exp (— a2 (1)) dat (5) =

an

= an‘ax’!(mi““‘b"))exp (=2%) dz = s5,(G(oty,(min {t, b,})) — G(x, (a,))) < 7 .

ax,t(an)

Since we replace the n-th member in the definition of the value h(x, ) by zero in the
case t < a,, it is seen from (1.19), (1.20) and (1.18) that

(1.21) lim sup h(x,?) S c + /7
[x,t]=[x,t1]
[x,t]¢K
for any [x, t,] € K (in the case Q < 1 on <a, b)).
Further, let us show that

min{z,v}
(1.22) fim J exp (—a2,(x) doy (1) = 0

|x[+[t]=>+ J,

for each interval (u, v) < <{a, b).
First we show that for any [x, ] € R> \ K such that ¢t > 0,

min{t,v}

(1.23) f " axp (=2 () dar (5) = - J * = 00 oy (o2 (1)) dt —

. 1),  (-qon
1

min{t,0} 1 )
- EL N exp (—aZ (7)) do(z) .

According to Lemma 0.1 and Lemma 0.3 the equality (1.23) holds whenever at least
two of those three integrals converge. However, the integral on the left hand side of
(1.23) must converge since the parabolic variation V2 is finite on R* \ K (see Lemma
12).

If t > v then the functions

x — ¢(7) 1

(=" Ji-9)

are bounded on the interval {u, v) so that the integrals on the right hand side of
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(1.23) converge. If ¢ € (u, v then x # ¢(t) by assumption and it is seen from the defi-
nition of the function «, , that there are 6, ¢, > 0 such that

exp (~22.(9) 5 exp (= )

t—1

for each 7 e (t — &, t). Hence it follows that the functions

f—%)(;)z exp (—oZ (7)), . exp (—aZ (7))

1
( Je—9)

are bounded on the interval Cu, t) and so the integrals on the right hand side of
(1.23) converge in this case, too. The equality (1.23) is proved.

From (1.23) it follows that to verify the equality (1.22), it is sufficient to show
analogous equalities for the following integrals:

e = [ g (- ) o

In each estimate we may assume ¢ > u (in the other case I(x, t) = II(x, f) = 0). It

holds
|1(x, 1)| < qu,v; |x = o()] exp<_ (——9"())i) dr <

" (t—r)? 4t — 1)

s i (G2 o}

Let k be a given number such that k > max {|a|, ||, sup {J¢()|; 7 € <a, b)}} and
suppose |xl ]tl > 2k. Then either

a) |t| >k or b)|x|>k.

It is sufficient to consider only ¢ > k in the case a) (otherwise I(x, t) = II(x, t) = 0).
Then it holds on the interval <a, b)

(oo (- 52 - bl et <

< sup{zexp(-— )} >0 for k—>o0.

2
k—b:

96



Putting 4 = sup |¢()| we have

te{a,b)
x — ¢(1) exp __(x—(p(1:))2 < k+ A4 exp ~(k——A)2 <
(t— )2 4t — 1) (t =)y 4t — 1)
AY
< supk +Aexp _ (k=) =63/2ii£—e“3/2 -0 for k— o
>0 z3/2 4z (k — A)3
in the case b). Hence, in fact,
(1.24) lim I(x,t)=0.
|x] +[t]=o0
One may estimate the integral II similarly.
Obviously it holds
]II(x, t)l < var [; <a, b)] sup {\/( 1 )exp (=2 (7)); T e <u, min {t, v})}
t—r

(if t > u). In the case ¢t > k it is

1 (x - (p(‘r))2 1
N "( 4<r—r>> J(k =)

on the interval {a, b) and if |x| > k, then

el w5

— A4)? 2
gsup—Lexp _ (k=4 e e 250 for k— oo
>0 /Z 4z k— A4

-0 for k— o

on the interval {a, min {t, b}) (if ¢ > a). Hence

(1.25) lim II(x,1) =0.

Ix[+]t] >0
The relations (1.24), (1.25) and (1.21) result in (1.22) and hence (see the definition
of the function h)
lim h(x, 1) =0.

. |x]+[t] =
Thus there is B > max {|a|, ||, sup [(p(r)l} such that h(x, t) < ¢ + / for each

point [x, t] € R for which |x| + [tl > B Now it is seen (for (1.21)) that the following
estimate holds on the boundary of the region D = [(—B, B) x (—B, B)] \ K:

limsup h(x,t) < ¢ + /n ([x,t,]€dD).

[x,t]-[x1,t1]
[x,tleD
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As it was mentioned, the function h solves the heat equation on the set R* \ K
and thus for any point [x, t] e D it is

h(x,1) < c + /n
in accordance with the maximum principle for caloric functions (see, for example,
[15]). On that account h < ¢ + \/r on the whole R* \ K. Hence it follows

VE(x, 1) S c + n

for any point [x, t] € R? (if we suppose Q < 1 on {a, b); but it follows from (1.9)
that on R?
VEe(x, 1) = pVE(x, 1)

for any p e R', p > 0). The second part of Theorem 1.1 is proved.
Let us prove the first part of the theorem.
Suppose that there is 6 > 0 such that (1.11) is valid. Put

Ks = {[o(1). t]; te<to — 19, 1o + 103} .
One may define functions V2 and Vg, in the same manner as the function V¢ was
defined. Then it holds
(1.26) VE(x, 1) =V2(x, 1) + V& k(x. 1) ([x,]eR?

one puts V2(x, t) = 0if t < t, — 10, otherwise
Ks (0]

min{t,to+4/2}
Ve (x,t) = f 0() exp (—a} (7)) d var o (1) ;

to—5/2

the function V¢_x, may be defined by means of the equality (1.26)). By the same ar-
gument as in the first part of the proof applied to the function VKQ‘,, we obtain that
the function V,?a is bounded on R?, since it is bounded on K.

Let us show the boundedness of V2, on a neighborhood of the point [¢(t,), o]
in R%. Put x, = ¢(to),

U= (.xO - %‘5, Xo + %‘5) X (tO b J4‘_6, to + %5)

and consider [x, {] e U. Assuming Q < ¢, on {a, b), we get

Ve k(x, 1) = Jto_a/zQ(r) exp (—aZ (v)) d var «, (1) <

‘o sup Ix — (1) +

S covar [oy . <a, ty — 30> =
o var [or,: <a, ] 2 /40 recato-/2y

+ —0 var[p; <a, ty — 10Y] < ¢,

2. /46
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where ¢, is a (finite) constant which is independent of [x, ] € U. Hence it is seen
that the function V2 g, is bounded on U and so (taking into account (1.26)) the
function V2 is bounded, too.

The theorem is proved.

2. LIMITS OF THE OPERATOR T

Similarly as in the preceding part we suppose that <{a, b) is a compact interval
in R! (a < b) and ¢ is a continuous function of bounded variation on <{a, b).

%((a, b)) is defined to be the space of all continuous functions endowed with the
supremum norm topology (Hf“ = "f”(g = sup {|f(¢)]; t € <a, b)}). It is well known
that the space %(<a, b)) is a Banach space.

Let Q be a nonnegative lower-semicontinuous and bounded function and let
VE(r; x, 1), VE(x, 1), ... mean the same as above.

Analogously to [9] we define the space %y(<a, b)) = €, as the space of all
functions f € %((a, b)) for which there is a real constant ¢ (dependent on the func-
tion f) such that

(1) - /] = co
on {a, b) and with the property that
(2.2) |£(to) = 7(t)] = o(Q(1)) as 11y, tela,b)

for each point t, € {a, b). Note that (2.2) holds for a function f e %(<a, b)) and
a point t, € {a, b) if and only if for each ¢ > 0 there is 6 > 0 such that

|/(to) = /(1) =& Q(1)
for any t € {a, b) N (t, — 6, ty + 9). It is clear that if

lim inf Q(f) > 0
1y
then (2.2) is valid for each f e %(<a, b)).

We define a norm on the space €,({a, b)) by
|/]q = inf{ceR"; |f] < cQ on {a, b)}.

The space %Q((a, b}) endowed with this norm is a Banach space. It is sufficient to
show the completness of this space.

Let {f,};=, = €y(<a, b)) be a Cauchy sequence (in the norm |...||o). Since Q is

0

bounded by the assumption, the sequence {f,}, is Cauchy in the norm H . ||@
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too and thus there is a function f e %((a, b)) such that f, — f uniformly on {a, b).
It is readily verified that

f"

and that |f] < ¢Q on <a, b). Given t, € {a, b), let us prove that the condition (2.2)
is satisfied. If

c=sup{||fule; n=12..} <o

lim inf Q(f) > 0
t=tg
tea,b)

then this is evident. In the other case Q(f,) = 0 and thus also f(¢,) = 0. If we put
¢, = sup “f,,, — full we have
m>n

(23) |£() = 10| = sup |1a6) = £0)] =
= 0(0)sp [fu = fillo = e Q)

for each point ¢ € {a, b) and any positive integer n. Since the sequence {f,} is Cauchy
in %, it holds that ¢, — 0 as n — 0. Given ¢ > 0 there is a positive integer n, such
that ¢,, < }e. Since f,, € %, there is 6 > 0 such that

o) = 5 00)
for each t € {a, b) N (ty — 6, ty + &) (for £,,(ty) = 0). But for these ¢ we have

[F@)] < 1£(1) — fuo0)] +

1) = € O0) + 5 00 < 2 0()

which shows that the condition (2.2) is satisfied and thus f e 4(<a, b)). Further-
more, it is seen from (2.3) that

Ifo =Flo = e
which implies f, — f in €4(<a, b)).

Definition 2.1. Let f be a bounded Baire function on {a, b). The potential Tf is
defined to be a function which is evaluated in the following way: given [x, t] € R?
we put Tf(x, t) = 0if t < a;if t > a we put

o [minieo) _ (x = o) x — ¢(7)
24) Tf(x1)= %J /(@) exp ( ) )d’2 J(t—=7)

whenever the integral on the right hand side exists and is finite.

a
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Remark 2.1. Let us have [x, f] e R*> and suppose that V&(x, t) < oo. Let f be
a bounded Baire function on {a, b) and let [f| < ¢Q on {a, b) for a suitable c € R*.
Then the value Tf(x, t) is defined (one may consider ¢ > a only, as in the other case
Tf(x, t) is defined naturally) since

J~min(!’b)f (1) exp (—a2 () d var o, (1) <

a

IIA

CJ\miﬂ(‘:b) Q(t) exp (—di,z(f)) d var (x_x,t('f) =c VKQ(x’ t) <™

a

so that the integral on the right hand side converges. In particular
2
TG 0] = =V, 0) [ 7]
Jr

whenever V2(x, 1) < oo and f e €,(<a, b).

If [x,7]eR?* \ K then Vi(x, ) < oo in accordance with Lemma 1.2. Conse-
quently, Tf(x, t) is defined for such [x, ¢] for any bounded Baire function on <a, b).
In the same way as we proved (1.23) (see the proof of Theorem 1.1) one can show
that

A f ot -
min(t b} 1
\/ f ) exp (—aZ (7)) do(7)

for each [x, ] € R*> \ K (in the case t > a, of course). This equality also holds in
the case [x, t] eK, Tf (x, t) is defined and at least one of the integrals on the right
hand side is convergent.

Let us note that the first term on the right hand side of (2.5) is a double-layer heat
potential while the other is a single-layer heat potential (cf. (0.3)). Hence, for a fix
bounded Baire function f, Tf is a solution of the heat equation when considered as
a function on the set R* \ K.

The following example points out that it may happen that Vi(x, t) < co while the
integrals on the right hand side in (2.5) either do not exist or are divergent. Set

o(t) =/—t tel(—-1,0)

and consider the point [x, t] = [0, 0]. The function ¢ is a continuous function of
bounded variation on the interval (—1, 0) and V,(0, 0) < oo since the function

4, (7) = ‘\/*/“ 1
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is constant. Nevertheless, for instance,

[ be = 00 oy, (=2 (0) de = [ '

= p—1/4 —
(t - 1)3’2 e dt = o

-1 ]

and

° 1 exp (—a2 (7)) do(r =——l ’ —l—e"l/4 T=—0.
J—1J(t—r P (=2 (@) dol) 2J—1ITI ’

Remark 2.2. In the first part we defined for [x, t] € R* with ¢ > a a function «,,
on the interval {a, min {t, b}) by :

x — ot
o 1) = =20
2 -
If t > b we can define the function o, , by this equality on the whole interval {a, b)
and the function so defined is a continuous function of bounded variation on <a, b.

If te(a, b) and x + ¢(f) we put a, (1) = +o0 if x > ¢(f) and o, () = —o0
if x < ¢(t). The function a, , is continuous at the point ¢ in the sense

lim o, (1) = o, (1)

Tt —

Consider now [x, t] e K with t > a. We wish to find a condition under which
there exists a limit (finite or infinite)

(2.6) lim =2
e 2 J(t — 1)
If this limit exists we shall denote its value by ax,,(t) in the sequel.

Let us mention that the condition Vj(x, t) < oo is sufficient (but not necessary)
for the existence of the limit (2.6). Indeed, if Vi(x, t) < oo then the integral

j “exp (=02 (1)) dit ()

a

converges. Let G be the same function as defined above, i.e.,

6(u) =J’“ exp (—z2)dz .

el

Then we have (see Lemma 0.2)

[[er (-2 ) an9) = tim [ exp (=20 dn ) =

a

= ,lll;ﬂ_ (G(ax,,(l')) - G(“x,t(a)))
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so that the limit

exists and since G is an increasing function the limit (2.6) exists, too.

We defined the value Tf(x, t) by (2.4) if the integral on the right hand side of (2.4)
converged (we consider ¢ > a, of course).

kg Sl

Let us have a given point [x, ] € K such that Vi(x, 1) = + oo (then certainly t > a)
and suppose that the limit (2.6) exists at this point. In general we cannot define
Tf(x, 1) for every f € (<a, b)). Suppose that Q is a bounded lower-semicontinuous
nonnegative function on <{a, b) such that V,?(x, f) < co. Then the integral on the
right hand side in (2.4) converges whenever fe %y({a, b)). Let us now consider
a function f € ¢({a, b)) of a form f = k + f, where k is a function which assumes
a constant value on <a, b) (i.e. ke R') and f, € . Then we can and shall define
Tf(x, 1) by

27) Tf(x, 1) = \_/2; K(G(ae 1)) — Gl a)) + TSi(x, 7).

Remark 2.3. Let [x, f] € R? and suppose V(x, t) < oo. As we have noted, every
function f € €y(<a, b)) fulfils

(2.8) 1T/, 9] < £ ﬁ VE(x, 1).

If the point [x, ] is fixed we may consider Tf(x, t) to be a value of a continuous
linear functional. This functional we denote by T, ,, that is, we write

Tx,t(f) =T..f= Tf(X, t)

for f € €. The norm of the functional T, , we denote by ” Tx,,‘

o> 1.€., we put
| Teile = sup {T {f); Fe %o, [ fllo =1}

Hence the symbol |...[, will be used for a norm on the space €y(<a, b)) as
well as for a norm of functionals on the space %"Q(<a, b)); no misunderstanding
can occur. '

It follows immediately from (2.8) and the definition of the norm of a functional
that

I T < j; Ve(x, ).

103



Since Q is lower-semicontinuous we have (if ¢ > a)

ﬁ VE(x, 1) = \/ J.mm“ " O(7) exp (— o2 (v)) d var «, (1) =

= su i e 7) exp (—a? (t o, AT); JE a < =
= { [0 exp (-, 0) b9 S oo ), 1] 5 )
= sup {Tf(x, t); fe%(a, b)), |f| <

Let f € %(<a, b)) and suppose that |f| < Q on <a,b). It is easily verified that there
are functions f, € ¥y(<a, b)) such that f, — f uniformly on <a, b) and ”fn”Q <1
But from this it already follows that

(29) | Ted]o = ﬁvﬂx, 0.

Lemma 2.1. Let Q = 0 be a boimded lower-semicontinuous function on {a, b)
and suppose that Q(a) = 0. Let M be a set in R* such that eitherM < {[x, t];
teda, by, x> ¢(t)} or M < {[x,1]; te<a, by, x < ¢(t)} and suppose that
[Xo0s o] € K © M. Then a finite limit
(2.10) lim Tf(x, 1)

[x,1]-[x0,t0]
[x,t]leM

exists for each f € y(<a, b)) if and only if

(2.11) lim sup V@(x, 1) < o0 .
[x,t]1=[xo0,t0]
[x,tleM

If the condition is fulfilled then the limit (2.10) exists (and is finite) even for any
bounded Baire function f on {a, b) for which

(2.12) |f(te) = (1) = o(Q(1)) as t—1t,, tela, b)

and f(t,) = 0if Q(t,) = 0.

Proof. a) Suppose that the limit (2.10) exists and is finite for each f € €y(<a, b)).
Then (for the space €,(<a, b)) is Banach) it follows by the Banach-Steinhaus theorem
that

lim  |T,.[e <

[x,1]1=[x0.t0]
[x,t]leM

and so, according to (2.9), the condition (2.11) is fulfilled.
b) Let the condition (2.11) be fulfilled. Let f be a bounded Baire function on {a, b)
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for which (2.12) holds and suppose that f(fp) = 0. There are § > 0 and ¢ < o

such that
VE(x,1) S ¢

for each [x, ] e M n {[x, 1]; |x — x| < 8, |t — to| < 6}. Given & > 0, one deduces
from (2.12) that there is 6, > 0 with 8, < d such that

en
6] < 0
c
for each t € (ty — 6y, tp + ;). Putting t; = t, — 8, we have

2 [ 2 (0)) do, (7)] <
(2.]3) %J‘tlf(f) eXp("“x,t( ))d x,r() =

11
< 2| Q@) exp (=02 (0)) dvara, (v) < = VE(x, 1) < =
2c t ’ 2c 2

for each point [x, f] € M for which |x — xo| < &, and |t = to] < 6.
Let us consider a sequence {[x,, t,|}ac1 © U = (Xo — 105, Xo + 36,) x
x (to — 19,, to + 36,) such that [x,, t,] = [Xo, to] as n — co. Then, of course,

sup {var [«,, ,; <a,t,>]; n=12..} <o
and
@) exp (—az )] = sup [7(2)] < 0

for each T €<a, t;>, n = 1,2, ... This implies

(214) o f " 1(0) ex (=3, 15) it ) =

-2 j 1) exp (=2, (1)) Aty 1) -
7).
In other words, the integral
2.15) 2 f (1) exp (o2 (1)) dotg )
vrla

considered as a function of the variable [x, ¢] is continuous at the point [xo0s fo]-
Let us suppose that, in addition, we have chosen &, such that

2 [u :
= | S(@) exp (=0, () Aot 1o(7) = Tf (o0 t0)| < -
\/7! a 4
(this is possible for VZ(x,, t,) < oo and f € o(<a, b))).
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Hence, the continuity of the integral (2.15) at the point [x,, f,] implies that
there is a neighborhood U, < U such that

(2.16)

\%I J:f(r) exp (— a2 () doy (t) — Tf (05 1o)| < %

for each point [x, t] € U,. It is seen from (2.16) that
ITf(x, 1) = Tf(xo, 10)] < €.

So we have proved that if f(¢,) = 0 (and othe other conditions are fulfilled) the limit

(2.17) lim Tf(x, t) = Tf(xo, to)
L

exists. If Q(t,) = 0 the proof is complete since by the assumption we consider in
this case only functions f for which f(t,) = 0.

In the case Q(t,) > 0 it suffices to prove that the limit exists for the function f
which assumes the constant value 1 (for T, is linear). Since V¢ is lower-semicon-
tinuous (see Lemma 1.2) it follows from (2.11) that V&(xo, t,) < co. It is easily
verified that if Q(t,) > 0 and Vi&(x,, t,) < oo then V(x,, to) < 00, too. If Q(to) > 0
then, of course, ¢, > a by the assumption. According to Remark 2.2 it follows from
Vi(Xo, to) < 00 that the limit
(2.18) fim Yo~ 9()

10— 2/(t — 1)

exists.
Let us now show that if the limit (2.18) exists then even the limits

(2.19) ' lim TIi(x,1),
[x,t]-[x0,t0]
x>p(1)

(2.20) lim  T1(x, 1)
[x,t]—=[x0,t0]
x<o(t)

(1 stands for the constant function equal to 1 on <{a, b)) exist without any assumption
on the parabolic variation. Let'[x, ] € R?, t € (a, b), x > ¢(t). Then we have

T l(x, t) = ;-/2; .rexp (—df’,(‘r)) d“x,t(f) =

= lim in: t,exp (= (7)) de, (7) ="lirf1— :/27«[ (G(o, (1)) —

t'>t— a

= G(tx,[a))) = \72; (Gt (1)) — Glay (@) =2 — \/27: G ( 21\_/_;_(/:((13) )
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The function (x — ¢(a))/2 \/(t — a) considered as a function of the variable [x, ]
is continuous on the set {[x, f] € R*; x > a}. As the function G is continuous, we get

im x, 1) =2 — 2 GfXe—ola) 9(a)
(221) Lm T ) =2 0(2 N a)).

x>o@(1)

Similarly we find

(2'22) [xytll—i'r[l;lo,'o] r l(x, t) T :/27[ ¢ <2x\0/(;) (p_(aj)> .

x<¢(1)

This completes the proof.

Remark 2.4. Let t,€(a, b), x, = ¢(tp) and let either M = D* = {[x,1]; te
€(a,b), x> (1)} or M < D™ ={[x,t]; te(a,b), x < ¢(t)}. Suppose that
[x0» to] € M and the condition (2.11) is fulfilled. Further suppose that the limit

oy oto) = lim 0= 90
t-to— 2\/(t0 - t)

exists (finite or infinite). This is, of course, fulfilled for instance whenever Q(t,) > 0,
because then Vi(xo, t) < oo follows from (2.11). Let us consider a function f of the
form f = k + f,, where ke R! is a constant and f; is a bounded Baire function
for which the condition (2.12) is fulfilled (and for which f;(t,) = 0 if Q(t;) = 0).
We can define the value Tf(x,, t,) by (2.7). According to that equality, the linearity
of T, , and to the equalities (2.17), (2.21), (2.22) we now have

X . 2
(2.23) lim  Tf(x, 1) = TS(xor to) + £(to) (2 _2 G(ocm,o(to)))
[x,11~[xo,t0] Jr
[x,tleM
if M c« DY;if M = D™ then
. 2

(2.24) lim  Tf(x, 1) = Tf(xo, to) — f(to) —- G(0ty 10(t0)) -

[x,[ti’—g:]?ito] VT

If o .o(fo) = O then we get equalities analogous to classical equalities for the limit
of a double-layer heat potential:

lim  Tf(x, 1) = Tf(xoto) £ f(to) »

where we consider + or — when M = D* or M <= D™, respectively.

The following assertion is a corollary of Lemma 2.1 and Theorem 1.1 (by virtue of
the lower-semicontinuity of V2).

107



Theorem 2.1. Let Q = 0 be a bounded lower-semicontinuous function on {a, b)
such that Q(a) = 0. Let ty € {a, b), xo = ¢(t;). Then there exist finite limits

(2.25) lim  Tf(x, 1),
[x,t]-[x0,%0]
te{a,b),x>@(t)

(2:26) lim  Tf(x, 1)
[x,t]>[xo,t0]
teda,b),x <¢(1)

for each f € ¢y(<a, b)) if and only if there is & > 0 such that
(2:27) sup {V2(o(1), 1); te(ty — 8, 1o + 8) n<a, b)} < 0.

If the condition (2.27) is fulfilled for some § > O then the limits (2.25), (2.26) exist
and are finite for any bounded Baire function f on {a, b) such that

|£(1) = (to)] = o(QQ)) as t—1t,, tela, by

and f(t,) = 0 if Q(t,) = 0.
The last assertion enable us to define operators T, and T_ on %,(<a, b)) by the
following equalities:

(2.27) T./()= lim Tf(,t),
[x".t"]=[o(1),1]
t’e{a,b),x’ > (1)
(2.28) ' T_f= 1lim  Tf(x,7)
[x’,t"]1=[o(1),1]
t'e{a,b),x’ <q(t)

for fe %o(<a, b)), te {a, b).

These operators are important in connection with the Fourier problem of the heat
equation. The reader is referred to the article “On a boundary value problem for the
heat equation” which will be published in this journal.
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