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Czechoslovak Mathematical Journal, 25 (100) 1975, Praha 

ON A HEAT POTENTIAL 

MIROSLAV DONT, Praha 
(Received October 9, 1973) 

INTRODUCTORY REMARKS 

In the whole of the present paper we shall deal with the Euclidean plane R^^. 
Let Г be the well-known kernel in R^ (the fundamental solution of the heat equa­

tion in Ä )̂ defined by 

, , , )= / lH-"exp(- ï ; ) , ,>0 
(0.1) r ( 

This kernel is used in the definition of the heat potentials in the plane. For our 
purpose we shall consider a special heat potential which is defined in the following. 
The author wishes to acknowledge his gratitude to JOSEF KRAL who directed his atten­
tion to the heat potential, especially to that mentioned above, and to the relevant 
problems. 

Let Ф be a fixed continuous function of bounded variation on {a, b} (where 
a < b € R^ arc fixed) and put 

(0.2) K = {[(p{tlt]; tE{a,by}, 

With each bounded Baire function / on <a, b} we shall associate a function Tf 
on R^^\K defined by 

(0.3) T/(x, t) 
fb 

/ (T ) d^r{x - ф(т), t - т)ат 

- / (T ) r{x - ф(т), t - T) d(p{x) , 

where д^Г stands for the partial derivative of Г with respect to the first variable. 
It will be shown that if the function (p satisfies a certain complementary condition 
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(namely, a geometric condition on the set K), we can evaluate the "right" and "left" 
limits of Tf on К at the points of continuity of the function / (we may consider the 
function/ on <(a, b> as a function on K). 

The function Tf is continuous on R^ \ K, satisfies the heat equation (we also say 
that it is caloric) and exhibits a boundary discontinuity on К like that of the classical 
double-layer heat potential. We will investigate the potential Tf in a manner similar 
to that used by J. Krai in his papers [6], [7], [8] for the logarithmic potential. By 
analogy to the so-called cyclic variation from these papers we shall introduce and 
investigate the so-called parabolic variation which will assume the principal role in 
our study. 

Now let us introduce some fundamental notations, notions and assertions which 
will be used later. 

Let *i?^ stand for the real line including the points + oo and ~ oo. The term function 
on a set M stands for a mapping from M to *jR̂  ; the real function on M is a mapping 
from M to R^ and if we talk about a continuous function we always mean a real 
function. 

If / is a real function defined on an interval J cz î ^ let us define the variation of 
the function / on an open set G c: J as follows. Put var [/; 0] = 0 and if G ф 0 
define var [/; G] as the least upper bound of all sums of the form 

t\f{bj)-f{aj)\, 

where (a^, b^}, ..., <a„, b„y are non-overlapping compact intervals contained in J. 
For any set M c: J put 

v a r [ / ; M ] = i n f v a r [ / ; G ] , 
G 

where G ranges over all open sets in J for which M с G. It is known that var [/; •] 
is an outer measure and its restriction on the var [/; 'J-measurable sets is a measure. 
The integral of a function F : M -^ *i^^ (where M c: J is a var [/; -j-measurable 
set) with respect to this measure will be denoted by 

F d v a r / , F ( r ) d v a r / ( r ) , etc. 
yf J M 

We say that the function / has locally finite variation if var [/; / ] < oo for every 
compact interval I a J. If the function / has locally finite variation on J then the 
integral 

1 Fdf 

85 



stands for the Lebesgue-Stieltjes integral of the function F. Let us note that if the 
functions F , / a r e continuous on <(a, b> с R^ a n d / i s of bounded variation on <a, b} 
then 

f d / = | V d / , Г Fdf=\l 
J <fl,b> Ja 

where the Lebesgue-Stieltjes integral is on the left hand side and the Stieltjes integral 
on the right hand side. 

Lemma 0.1. Let f, g be continuous functions with locally finite variation on an 
interval J cz R^ and let F be a continuous function on J. Then 

{ F{t)df{t)g{t) = { Ffdg + i 
Ы J J J 

Fgdf 
J 

whenever at least two of those integrals converge. 

Lemma 0.2. Let f be a continuous function of bounded variation on <a, b}, Ф 
a function on f{(^a, b}). Then 

rfib) (*b 
Ф(x)dx= Ф{f{t))df{t) 

J /(a) J a 

whenever there is affinité or infinite) Lebesgue integral on the right hand side. 

Lemma 0.3. Let f be a continuous function with locally finite variation on an in­
terval J с jR ,̂ let p be a function with continuous first derivative on f{J)- Putting 
h = p ^ f-> the function h has locally finite variation on the interval J and 

(0.4) f F d var /г = f \p'{f{t))\ F{t) d v a r / ( 0 

for any low er'Semicontinuous function F ^ 0 on the interval J. If, in addition, the 
integrals in (0.4) are finite, then 

{Fdh = L'{f{t))F{t)df{t). 

Lemma 0.4. Suppose thatf, g are continuous functions with locally finite variation 
on an interval J a R^. Then 

I F d var (fg) й I F | / | d var ^ + I F\g\ d v a r / . 
Jj jj jj 
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Jn particular, the following estimate holds: 

var [fg; J ] g var [g; J] sup \f{t)\ + var [/; J ] sup \g{t)\ . 
tsJ teJ 

Lemma 0.5. Let f be a continuous function of bounded variation on an interval 
J cz R^, Suppose that F "^ 0 is a lower-semicontinuous function on J. For each 
X e R^ put 

e{x,F)= X F{t) 
teJ 

fit) = x 

[we put e(x, F ) = + 00 whenever F(t) > Ofor uncountably many te J withf(t) = x). 
Then e(x, F) is a Lebesgue measurable function of the variable x e R^ and 

л + 00 /• 

0{x,F)dx = F d v a r / . 
J — 00 J J 

These assertions can be found for example in [6]; Lemma 0.2 is established in [13]. 

L P A R A B O L I C V A R I A T I O N 

In this part let a < Ь be fixed numbers in R^ and let ^ be a continuous function 
of bounded variation on the interval <a, b>. Let К be the set defined by (0.2). К is 
a compact set in JR^. 

For each [x, t] e î ^ with r > a we define a function a^f on the interval <a, min . 
. {t, b}) by the equality 

(...) „ ^ , ( , ) = ^ _ ^ 
2 V(r - T) 

The function a^ ^ has locally finite variation on the interval <a, min [t, b}). This 
follows immediately from Lemma 0.4 for it holds 

[_2 ^ ( r - Tj J 2^[t - t ) re<a,b> 

for each f e <a, min {г, b}). 
We fix a bounded lower-semicontinuous function Q ^ 0 defined on <a, b>. 
Let [x, ^] e jR .̂ For a, r > 0, a < +oo we put 

(1.2) ni,{r, a) = Ха(т) ; 
T 
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in the sum on the right hand side we consider every т e {a, b} for which 0 < Г — т < 
< г and 

t - T - ' ^-^^ 
*2a 

Further, write 

<r(oo, a) = n%{cc) ; nl/r, cc) = n^^r, a) ; 

w^,r(oo, a) = n^^,{cc) . 

Consequently, п^^(а) stands for the number of all points of the set 

Lemma 1.1. Given [x, ^] e R^, r > 0, then the function n^J^r, a) /5 a measurable 
function of the variable a e (O, 00) and 

poo /*min{r,b} 

(1.3) exp ( - a ^ ) «^.(r, a) da = б(т) exp (-а^^,(т)) d var а^^,(т) 
J o J max{a,f — r} 

whenever max {a, ^ — r} < min {r, b}; otherwise 

(1.4) exp ( —a^) n?,t{f, a) da = 0 . 

P r o o f If max (a, t — r} ^ min {r, b}, then either t ^ a or Г ^ Ь + r. The 
function w^^(r, •) is the zero-function on (0, 00) in each of these two cases, which 
follows immediately from the definition of this function. 

Suppose now that a < t < b + r, xe R^. 
Putting / = (max {a, t - r} , min {t, b}), 

^(т) = е(т)ехр(-а,%(т)) ( т е / ) , 

the function JF is a nonnegative lower-semicontinuous function on the interval / . 
Let us define a function m on JR^ by 

m{ß) = I f (T) , 
T 

where r in the sum runs over those - r e / for which 



It follows from Lemma 0.5 that m is a measurable function on R^ and 

(1.5) n,n{ß)dß := hir)d.aJ,^-j-^'\ = 
J - o o JI L 2 \ / ( f - ^ ) J 

= e W exp {-(XI,{T)) d var a^,,(^) • 
J i 

However, 

(1.6) m(a) + m(--a) = ^^(т) = ^ Ô W ^xp ( -a^ ) = exp ( - a^ ) nl,{r, a) 
M M 

where M = {т б / ; ± a = ос̂ ,г(т)} and thus 
/ • 00 /»00 

(1.7) m{ß) dß = exp ( -a^ ) n%{r, a) da . 
J-oo J 0 

It is seen from (1.6) that Пх^{г, •) is a measurable function on (0, oo). The relation 
(1.3) follows from (1.7) and from (1.5). 

Now we are justified to define the parabolic variation. 

Definition 1.1. Let г > 0. The function V^(r; •, •) defined by equality 
/*00 

(1.8) V^{r; x, t) = \ exp ( -a^ ) n%{r, a) da 

is called the parabolic variation with the radius r and the weight Q of the curve cp 
(or of the set K). Furthermore we write 

V^{œ; x, t) = V^{x, t), V^r; x, t) = Vj,{r; x, t) , 

Vl{x, t) = VK{X, t) for [x, t]eR^ . 

The function Vic{', ') is called the parabolic variation (of the curve cp). 

Let us note that (by Lemma 1.1) 

/•min{r,b} 

(1.9) Vi{r; X, t) = е(т) exp (-а^,,(т)) d var a,,,(^) 
J max {a, t — r} 

for any г > 0, X e R^, a < t < b + r. 
If either t-^a or t^b + r then 

Vi(r;x,t)=Ö. 
Especially, 

f*mm{t,b} 

(1.10) V^{x, 0 = exp ( - а,^,(т)) d var а,,,(т) 

for any X e R^, t > a. 
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Lemma 1.2. The function V^{r; ') is a nonnegative lower-semicontinuous function 
on R^ and is finite on R^ — K. 

Proof. F^(r; •) is nonnegative since Q and also n^^{r\ •) are. 
V2{r\ ') is undoubtedly continuous at every point of the set 

{[x, tl eR^; t S a} n {[x, t]eR^'; t ^ b + r} 

since F^(r; •) = 0 on that set. 
Fix X E R^, t e(a, b + r) and suppose that 

с < V^{r; X, t) 

for a fixed с e R^. Taking into account that g is a lower-semicontinuous on <a, b} 
and putting / = (max (a, t — r}, min {t, b}) we obtain from (1.9) that there is a con­
tinuous function q on <a, b> for which 0 ^ ^ ^ б on <a, b}, such that 

I ^(T) exp (-a^,,(^)) d var а^,,(т) > с . 

It is known that if F ^ 0 is a continuous function on / a n d / i s a continuous function 
with locally finite variation on / then 

F d v a r / = sup I F d v a r / , I 
where L runs over all compact intervals which are contained in / . Now it is seen 
from the definition of the Stieltjes integral that there are points т^, T2, ..., т„ with 

max {fl, r — r} < Tl < T2 < ... < T„ < min [t, b} 

such that 
И - 1 

e{x, 0 = E Фд exp (-осЦт,)) |a^,,(ti) - cc^,t{Ti + i)\ > с . 
t = 1 

If we fix such points т^, T2, ..., т„, the expression 9 may be considered a function on 
the set M = {[x', ^'] e R^; t' > т„}. The function в is surely continuous on M and 
thus there is (5 > 0 with 

Ô < min {TI — max {a, t — r}, min {t, b] — т„} 

such that 

ö(x', r) > с 

for each [x\ t''] e R^ with |x - x'| < ô, \t - f\ < ô. 
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For f e R^ with \t - f\ < Ô it holds 

<Ti, T,,> с (max {a, f — r}, min (r', b}) 

and thus (if, besides that, |x - x'j < ô) the following inequality is vahd: 

f*min{t',b} 

Vi{r; X', f) = e( t ) exp ( - a . ' v W ) ^ var а,,,,.(т) = 
J m a x { a , t ' - r } 

'ft 

^(T) exp (-а2,^,(т:)) d var а,,,,,(т) ^ ö(x', t') > с . 

As we choose с < Ук(г; x, t) arbitrary, the lower-semicontinuity of V^(r; •) at the 
point [x, ^] follows. 

Now it remains to show that for any [x, t]eR^ \ К it holds V^{r; x, r) < oo. 
If t ^ a then V^(r; x, )̂ = 0. ß is bounded by the assumption. It may be supposed 
for instance that ß ^ 1 pn <a, b}. 

in > b then 

VQ(r; X, 0 ^ Fö(x, 0 й F^(x, 0 = 

= exp (~а^,,(т)) d var а,,,(т) ^ var [a,,,; <a, b}] ^ 

^ sup [x - (P(T)I ( — ^ ^ — — - -—î^ ) + ] var [(59; <a, 6>] < oo 

Te<fl,ö> \2 ^( r - b) 2 ^(t - a)J 2 ^{t - b) 

according to Lemma 0.4. 

Let t e (a, b>, xeR\ ^ Ф (p(t). Put jx - (p(t)\ = r (it holds r > 0). There is 
a (5 > 0 such that \(р{т) ~~- q){t)\ < ir for each te(t - ô,t) (since ^ is a continuous 
function on <a, è>). 

Let us further put 

)r n = 1, 2, . . . 

Then (assuming Ô g 1) 

tn = t -
S 

Vi{r, X, t) ^ VK{X, f) = I 'exp (-а ' , , (т)) d var а,,,(т) = 

exp (-а^,г(т)) d var а^,,(т) + ^ exp (-а^,,(т)) d var а^,,(т) ^ 

00 

й var [«x,,; <a, fj>] + X sup exp (-a^,,(^)) var [a^y, (t„, t„+i}] . 
n=l Te(tn,tn+i} 
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Obviously it holds var [a^ ,; <a, ^i>] < oo. Denoting r/4 ^ ^ =R the following 
estimate is valid on the interval <f„, „̂ + i> (" = 1' 2» •••)• 

n2i?2 

(since |x — (р{т:)\ ^ i r on the interval (t — S, t) 
and 

on the interval <f,„ ^„+i>)-
Furthermore, 

var [a^,,; <r„, r„+i>] g 

* ..<,!",̂ ,> 1̂" - "Wl (27«-...,) ' i v ( ^ ) + 

1 г , чт ^ 3r 1 n + 1 ^ ^ _ 
+ --77 ; va^ [^' On, ^«+i>] ^ - r ^ + -Г-7Г var [(p; <f„ 0 ] • 

Hence 
00 

Fj,(x, t) й var [a,,,; <a, t,}] + ^ 3iî e""'^' + 

2 ^ ( 5 0 = 1 

The assertion is proved. 

The following theorem is the main result of this part. We shall use this theorem 
later. 

Theorem 1.1. Let ÎQ e <а, Ь>. If there is ô > 0 such that 

(1.11) sup {V^{(p(t), t); t G <a, b>, \t - Го| < ^} < 00 

then there is a neighbourhood U of \_(p(tQ), to] in R^^ for which 

(1.12) sup F^(x, t) < 00 , 
lx,t}eU 

If 
(1.13) sup V^{(p{t), t) = c < CO 

then V^ is bounded on the whole R^. 
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Proof. First we prove the second part of the theorem. Let ® be a fixed finite 
system of disjoint intervals <а,, b j ) , . . . , <a„, b„> with <а,, b,> c: <a, fo> (/ = 
= 1,2, . . . ,n ) . Put 

c; = inf {е(т); T e <a,, b,}} , K, = {[q>{t), t\; t e <a,, b,.>} . 

Choose S j eR ' , |s;| ^ C; (i = 1, 2 , . . . , n). Let us define a function h on the set 

«' \ Ù ,̂- by 
i = l 

/*min{f ,b ,} 

(1.14) h{x, t) = Y.SJ ' exp (-а^,,(т)) da,,,(T) • 
J J aj 

We replace the./-th integral in the sum (1.14) by zero whenever t ^ aj (in particular 
h{x, t) =0 ÏÏ t ^ a). 

Fix [x, r] e R^. It is seen from the well known properties of the Stieltjes integral 
that F^(x, t) is equal to the least upper bound of all sums of the form (1.14) where ^ 
runs over all finite disjoint systems of intervals contained in <a, b} and Sj over all 
real numbers such that \sj\ ^ Cj. On that account, the boundedness of the function V^ 
on R^ will be evident if we show that the function h is bounded on R^ by a constant 
which is independent of the choice of the system ^ and the numbers Sj (|sy| ^ Cj). 

Let us define a function F^ on JR^ \ X^ (/ = 1, 2, ..., n) by 

^ i\^, Ч ~ \ (*mm{t,bi} 

ехр(-а^,^(т))<1а^,г(т) t > a^ 

We define a function G on *jR̂  in the following way: 

exp( —x^)dx ^ > — 00 
J — 00 

(we shall use this notation also in the sequel). Let us note that 

0 й G{t) й VTÜ 

for each t e *Я^ and that G is an increasing function on *K^. 
Suppose that t e(ai, bi}, x e R^, x ф (p(t), let f e (a^, t). Then 

exp (-а^,,(т)) da,,,(T) = exp ( - z^ ) dz = G(a,^,(^0) - <^K,r(«0) • 
J u t J ССх,Л(Ч) 

(This follows from Lemma 0.2). 
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If we let f tend to t, we obtain (considering the cases x > (p{t) and x < (p(t) 
separately) 

x,t) = / V2V0-«.•)/ (1.16) F^x, t) 

for any t e^üi, b}. Similarly one comes to the equahty 

(1.17) Fix, 0 = G (2^^1^РЩ - G (±^^Щ 

which holds for [x, г] e jR ,̂ t > bi. It is readily verified that the function Ff satisfies 
the heat equation on the set R^ \ K^. Hence the function h satisfies the heat equation 

n 

on the set R^ \ \j Ki. 
i = l 

Assuming [xi, ^i] е К we distinguish the following two cases. 
n 

a) [xi, t{\ Ф \J Ki- In this case the function h is continuous at the point [x^, f j 
and thus *"̂  

l*mm{ti ,bj} 

(1.18) lim h(x, t) = /z(xi, t^) = J]sj exp (~а^,,(т)) da ,̂,(T) g 
U,t]-^[xi,fi] J J aj 

r4nin{ti,bj} 

g EO e^P (-^lt(^)) d var a^,,,,(^) ̂  

/•min{ri,bj} 

^ E ô(^) exp (-4, tX^)) d ^ar a^„,X^) ^ 
J Jaj 

й I Ô(̂ ) exp (-a^,,(^)) d var a,^,,^^) = ^Л^ь ^i) ^ ^ 

(everywhere in those sums we consider only such members for which ÜJ < t^). 
n 

b) [xj, fi] G (J Ki. We can assume, for instance, that t^ e <a„, b„>. In the same 
i = i 

way as in the case a) one may show that 
/*mm{t,bj} 

(1.19) lim Х^Л ехр(-а1,{т))аа,_,{т)^с 
lx,f]-*ixutilj^n Jaj 

(in the sum we again consider only such terms for which aj < t). 
We may suppose that ß g 1 on <a, b>. Then Cj S 1 (and thus \sj\ g l ) . Consider 
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a point [x, îj^e R^ \ К for which t > a„. In the case t ^ b„ WQ put ot^f(t) = +cx) 
if X > (p{t); if X < (p[t) we put a^^t{t) = — oo (so that 

Then 
^min{t,bn} 

(1.20) s„ exp(-a^_,(^))da,,,(T) = 
J an 

/•ax,t(min{f,b„}) 
= 5„ exp ( - z^ ) dz = s„(G(a^,,(min {t, fej)) - G(a^,,(a„))) ^ ^n . 

Jœ^,t(an) 

Since we replace the n-th member in the definition of the value h(x, t) by zero in the 
case t й cin^ it is seen from (1.19), (1.20) and (1.18) that 

(1.21) lim sup h(x, t) -^ с + ^Jn 
[^,t]->[xi,fi] 

ix,f]éK 

for any [xj , r j 6 X (in the case g ^ 1 on <a, b>). 

Further, let us show that 

(1.22) lim 
(*m\n{t,v} 

exp(-a^,,(T))da^,,(T) = 0 

for each interval <w, v) a <(a, b) . 

First we show that for any [x, tje R^" \ К such that t > 0, 

(1.23) exp (-a,^,(т)) da.,,(^) = ^ Г 3 ^ 2 ^''P ( " « - ' W ) ^^ 
Ja ^ J M V^ V 

i l*min{t,v} 1 

2 J« V(^-'^) 

According to Lemma 0.1 and Lemma 0.3 the equality (1.23) holds whenever at least 
two of those three integrals converge. However, the integral on the left hand side of 
(1.23) must converge since the parabohc variation V^ is finite on R^ \ К (see Lemma 
1.2). 

ÏÎ t > V then the functions 

X — (р(т) 1 

are bounded on the interval <м, v} so that the integrals on the right hand side of 
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(1.23) converge. If t e (w, v} then x Ф (p{t) by assumption and it is seen from the defi­
nition of the function a^^ that there are ô, c^ > 0 such that 

exp (-осЦт)) ^ exp /^- - ^ j 

for each т e{t — ô, t). Hence it follows that the functions 

i ^ exp (-<,( .» , - - i _ e . p (-<,(,)) 

are bounded on the interval <w, t) and so the integrals on the right hand side of 
(1.23) converge in this case, too. The equality (1.23) is proved. 

From (1.23) it follows that to verify the equality (1.22), it is sufficient to show 
analogous equalities for the following integrals: 

n(x, t) = exp I - i Z-VJJ- \ d(p(x). 

In each estimate we may assume t > м (in the other case l(x, t) = Il(x, t) = 0). It 
holds 

g (. - u) sup | 1 ^ 5 | | exp ( - (Л^^^ ; re<u, min {, .})} . 

Let /c be a given number such that к > max {[Ö|, |Ь|, sup {|ф(т)[; т e <a, b}}} and 
suppose |x| + \t\ > 2k. Then either 

a) 1̂1 > к or b) |x| > Â:. 

It is sufficient to consider only t > kin the case a) (otherwise /(x, t) = //(x, t) = 0). 
Then it holds on the interval <a, b} 

(' 

2 
S • sup {z exp (~z^)} -^0 for fc -^ CO . 

к — b z>o 
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те<а,Ь> 
Putting Л = sup |< (̂т)| we have 

к 
< s u p ^ ^ - ± ^ e x p f - ^ ^ " " ^ ^ = 6̂ /̂  ^ " ^ ^ в-^/^-^0 for fc-^oo 

in the case b). Hence, in fact, 

(1.24) lim /(x, t) =0. 

One may estimate the integral II similarly. 
Obviously it holds 

\n{x, t)\ й var [cp; {a, b>] sup J— exp (-а^^,(т)); т e <w, min {t, v})i 
Wv - V 3 

(if t > u). In the case ^ > fc it is 

on the interval <a, Ь> and if |x| > к, then 

^ sup — exp (- ^^ " ^^Л = - ^ e-'^^ -> 0 for к-> œ 
z>o yjz \ Az J к — A 

on the interval <a, min [t, Ъ]) (if t > a). Hence 

(1.25) lim Я(х, г) = О . 

The relations (1.24), (1.25) and (1.21) result in (1.22) and hence (see the definition 
of the function h) 

Um /i(x, r) = 0 . 
|x| + |f|-^oo 

Thus there is ß > max {]a|, [b|, sup |ф(т)|} such that /i(x, r) ̂  с + л/тг for each 
те<а,Ь> 

point [x, t\ e R^^ for which |x| + [̂ | ^ B. Now it is seen (for (1.21)) that the following 
estimate holds on the boundary of the region D = [{ — B, B) x ( —Б, B)] \ K: 

lim sup й(х, t) ^ с + ̂ n ([xi, r j e ôD) . 
lx,tli-*lxi,ttl 
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As it was mentioned, the function h solves the heat equation on the set R^^ \ К 
and thus for any point [x, r] e D it is 

/ï(x, t) ^ с -{• yjn 

in accordance with the maximum principle for caloric functions (see, for example, 
[15]). On that account h S с Л- yjn on the whole JR̂  \ K. Hence it follows 

F|(x, t)uc + ^n 

for any point [x, ]̂ e R^ (if we suppose g ^ 1 on <a, b>; but it follows from (1.9) 
that on R^ 

Vf{x,t)=pV^(x,t) 

for any p e R^, p > 0). The second part of Theorem 1.1 is proved. 
Let us prove the first part of the theorem. 
Suppose that there is (5 > 0 such that (1.11) is valid. Put 

^0 = {[^(0' ÜI t^Oo- i^, to + iSy} . 

One may define functions F £ and V^^^s ^^ the same manner as the function V^ was 
defined. Then it holds 

(1.26) F|(x, 0 = F£(X, 0 + Fß_ J x , 0 {[x,t-]BR') 

(one puts V^^(x, t) = 0 if t ^ to — ^ô, otherwise 

l*min{t,to + ô/2} 

УЦХ, t) = Ô(T) exp (-а^,,(т)) d var а,,,(т) ; 
J to-ô/2 

the function F^_x^ may be defined by means of the equaUty (1.26)). By the same ar­
gument as in the first part of the proof appHed to the function V^^, we obtain that 
the function F £ is bounded on K ,̂ since it is bounded on K^. 

Let us show the boundedness of V^^^^ on a neighborhood of the point [с)(̂ о)̂  ô] 
in R^. Put Xo = (p(to), 

и = {xo - iô, Xo + iô) X {to - i(5, to + iô) 

and consider [x, tj e U. Assuming g ^ Co on <a, b>, we get 
nto-ô/2 

V^-KX^, t) = Ô(T) exp (-а^,,(т)) d var а,,,(т) ^ 

й Co var [a^y, <a, to - i^>] ^ - - 7 - - sup |x - (р(т)\ + 
2 ^^д T6<a,ïo-^/2> 

+ : 7 ^ ^^^ [^' <^' ^̂  "~ ^^>] = 1̂ 
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where ĉ  is a (finite) constant which is independent of [x, r] e U. Hence it is seen 
that the function V^_K^ is bounded on U and so (taking into account (1.26)) the 
function VK is bounded, too. 

The theorem is proved. 

2. LIMITS OF THE OPERATOR T 

Similarly as in the preceding part we suppose that (^a, b} is a compact interval 
in R^ (a < b) and <̂  is a continuous function of bounded variation on <a, b}. 

^{{a, by) is defined to be the space of all continuous functions endowed with the 
supremum norm topology (||/|| = ||/||<^ = sup {|/(0|? ^ ^ <̂ >̂ ^)})- ^̂  ^̂  well known 
that the space ^(<a, b>) is a Banach space. 

Let g be a nonnegative lower-semicontinuous and bounded function and let 
V^{r; X, t), V^{x, t), ... mean the same as above. 

Analogously to [9] we define the space ^Q{{a, b>) = ^Q as the space of all 
functions / e ^(<a, b>) for which there is a real constant с (dependent on the func-
tion / ) such that 

(2.1) \f\ucQ 

on <a, by and with the property that 

(2.2) \f(to) ~ /(01 = o{Q{t)) as t-^ tçy, te {a, by 

for each point tçy e <a, by. Note that (2.2) holds for a function fe'^({a, by) and 
a point 0̂ e <«j by if and only if for each г > 0 there is <5 > 0 such that 

\f{to)-f{t)\èsQ{t) 

for any t 6 <a, b> n (JQ — Ô, ÎQ + ô). It is clear that if 

Hm inf Q{t) > 0 

te<ia,by 

then (2.2) is valid for each/e ^(<a, by). 

We define a norm on the space ^^(^a, b>) by 

| | / | |Q = inf ( cG^^ | / | ^ cß on <a, by] . 

The space ^Q(<«J b>) endowed with this norm is a Banach space. It is sufficient to 
show the completness of this space. 

Let {/„}^=i CI ^^((a, by) be a Cauchy sequence (in the norm ||.--||Q). Since ß is 
bounded by the assumption, the sequence {/„}^=i is Cauchy in the norm ||.. ,\^ 
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too and thus there is a function/e ^(<а, Ь>) such that/„ -^/uniformly on <a, b>. 
It is readily verified that 

= SUP{||/„||Q ; n = 1,2,...} < 00 

and that | / | g cQ on <a, b>. Given Го e <a, b>, let us prove that the condition (2.2) 
is satisfied. If 

hm inf Q{t) > 0 
te(a,by 

then this is evident. In the other case Q{to) = 0 and thus also /(to) = 0. If we put 
^n = sup ||/^ ~f„\\ we have 

m>n 

(2.3) |/(t) - /„(01 è sup 1/Д0 - Щ й 
m>n 

'̂  e(Osup||/,-/„||e = c„e(o 
m>n 

for each point t e <a, b> and any positive integer n. Since the sequence {/„} is Cauchy 
in ^Q it holds that c„ -> 0 as n -> oo. Given г > 0 there is a positive integer HQ such 
that c„Q < |e. Since /„^ 6 ^Q there is (5 > 0 such that 

\m\u\Q{t) 

for each t e <a, b> n (̂ Q — ^, to + <5) (for/„Q(̂ o) = O). But for these t we have 

1/(01 й 1/(0 - A„(0| + | / J0 | й c„„ 0(0 + 1 Q{t) й s ô(0 

which shows that the condition (2.2) is satisfied and thus/e^Q(<a, b>). Further­
more, it is seen from (2.3) that 

||Л-/||о^^„ 
which implies/« - ^ / in ^^({fl, b>). 

Definition 2.1. Let / be a bounded Baire function on <a, b>. The potential Tf is 
defined to be a function which is evaluated in the following way: given [x, t] e R^ 
we put r / (x , t) = Oi{ t ^ a; if t > a WQ put 

whenever the integral on the right hand side exists and is finite. 
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Remark 2.1. Let us have [x, t] еЯ^ and suppose that V^{x, t) < со. Let / be 
a bounded Baire function on <(a, by and let | / | g cQ on <(a, b> for a suitable с e R^. 
Then the value T/(x, )̂ is defined (one may consider t > a only, as in the other case 
T/(x, t) is defined naturally) since 

J. min{f,b} 

/ ( T ) exp (-а^,,(т)) d var а^,,(т) ^ 

^ С б(т) exp ( —а^^ (̂т)) d var а^,^(т) = с V^{x, t) < оо 

so that the integral on the right hand side converges. In particular 

\Tf{x,t)\u^Vi{xj)\\f\\Q 

whenever F^(x, )̂ < oo and / e ^д(<а, Ь>). 
If [x, ^] GJR^ \ К then Vj^{x, t) < со in accordance with Lemma L2. Conse­

quently, T/(x, )̂ is defined for such [x, ^] for any bounded Baire function on <a, b}. 
In the same way as we proved (L23) (see the proof of Theorem 1.1) one can show 
that 

(2.5) Tfix, 0 = 2 ^ J / W ( f ^ ^ exp (-a.^,(r)) dr -

-j ^•min{t,b} i 

- -7 - / W -JJ- -Ч exp (-а^,,(т)) аф) 

for each [x, i] e R^ \ К (in the case t > a, of course). This equahty also holds in 
the case [x, t] e K, Tf{x, t) is defined and at least one of the integrals on the right 
hand side is convergent. 

Let us note that the first term on the right hand side of (2.5) is a double-layer heat 
potential while the other is a single-layer heat potential (cf. (0.3)). Hence, for a fix 
bounded Baire function / , Tf is a solution of the heat equation when considered as 
a function on the set R^ \ K. 

The following example points out that it may happen that Vj^x, t) < со while the 
integrals on the right hand side in (2.5) either do not exist or are divergent. Set 

9{^)=^-i f G < - l , 0 > , 

and consider the point [x, t\ = [0, 0]. The function (p is a continuous function of 
bounded variation on the interval < —1, 0> and Fĵ (0, 0) < 00 since the function 
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is constant. Nevertheless, for instance, 

J _ i ( f - T ) ' / ' J _ I | T | 
00 

and 

f - ^ e x p ( - a l , ( - ) ) d ç , ( r ) = - i f n e - / - d t = -œ. 
J _ I V O - T ) 2 J _ I 1 T | 

Remark 2.2. In the first part we defined for [x, t] e R^ with t > a a. function a^, 
on the interval <a, min {f, b}) by 

2 V(t. - T) 

If ^ > Ь we can define the function a^ ̂  by this equality on the whole interval (,a, b} 
and the function so defined is a continuous function of bounded variation on <a, b). 

If t e (a, b> and x 4= ̂ (0 we put a ,̂f(t) = +00 if x > (p{t) and a-ç,((?) = •- 00 
if X < (p(t). The function â . ̂  is continuous at the point t in the sense 

hm а ,̂,(т) = cc^^,{t). 

Consider now [x, t] G К with t > a. We wish to find a condition under which 
there exists a limit (finite or infinite) 

(2.6) Hm ""-^^ 
r-^t-2^{t - T) 

If this limit exists we shall denote its value by cn^J^i) in the sequel. 
Let us mention that the condition F̂ (̂x, t) < 00 is sufficient (but not necessary) 

for the existence of the limit (2.6). Indeed, if F|̂ (x, t) < oo then the integral 

1: exp(-a^,,(T))da^,,(T) 
a 

converges. Let G be the same function as defined above, i.e., 

G{u) = exp( —z^)dz, 
J — 00 

Then we have (see Lemma 0.2) 

exp(-a^^(T))da^,,(T) = lim exp (-а^,,(т)) da ,̂,(T) = 

= lim(G(a,,,(0)~G(a,,,(a))) 
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so that the limit 
X — <P(T) 

lim G 
2V0 

exists and since G is an increasing function the limit (2.6) exists, too. 
We defined the value Г/(х, t) by (2.4) if the integral on the right hand side of (2.4) 

converged (we consider t > a, of course). 
Let us have a given point [x, t]eK such that Vf^(x, t) = +oo (then certainly t > a) 

and suppose that the limit (2.6) exists at this point. In general we cannot define 
T/(x, t) for every/e ^(<a, b>). Suppose that Q is a bounded lower-semicontinuous 
nonnegative function on <a, b> such that V^{x, t) < со. Then the integral on the 
right hand side in (2.4) converges whenever fe^Q^^^a, b>). Let us now consider 
a function/G ^(<ö, by) of a form/ = k + fi where /c is a function which assumes 
a constant value on <a, b> (i.e. к e R^) and /^ e ̂ Q. Then we can and shall define 
T/(x, 0 by 

(2.7) r/(x, 0 = 4 " (̂̂ (̂ -.̂ (0) - G{^M)) + T /̂i(̂ ' 0 • 

Remark 2.3. Let [x, t] e R^^ and suppose Fĵ (x, )̂ < oo. As we have noted, every 
function /е^д({а, b}) fulfils 

(2-8) \Tf{x,t)\s\\f\\Q-^;-V^{x,t). 

If the point [x, t\ is fixed we may consider Т/(х, t) to be a value of a continuous 
linear functional. This functional we denote by Г^ ,̂ that is, we write 

T.Af) = T.J = Tf{x, t) 

for/ e ^Q. The norm of the functional T^^t we denote by || T̂ ,r||(2» i-̂ -? we put 

\\T.AQ = sup{r,,,(/); fe^Q, | | / | |Q ^ 1} . 

Hence the symbol [[--.ЦО will be used for a norm on the space ^^^((a, b>) as 
well as for a norm of functional on the space ^^((a, b>); no misunderstanding 
can occur. 

It follows immediately from (2.8) and the definition of the norm of a functional 
that 
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Since Q is lower-semicontinuous we have (if t > a) 

— F|(x , 0 = -7- Oh) exp ( -a l t (^ ) ) d var а^,,(т) = 

= sup J - - - / ( T ) exp (-a,^,,(^))da,,,(T); / б ^ « а , b » , | / | ^ e [ = 

= sup {T/(x, 0; / e ^ « a , b » , | / | ^ ß} . 

L e t / б ^(<a, b>) and suppose that | / | ^ g on ia.b}. It is easily verified that there 
are functions /„ e ^Q{{CI, b>) such that f„ -^ f uniformly on <(a, b> and ||/„| |Q = 1-
But from this it already follows that 

(2.9) \\T^,\\Q=-^Vi{x,t). 

Lemma 2.1. Let Q ^ 0 be a bounded lower-semicontinuous function on <a, b) 
and suppose that g(a) = 0. Let M be a set in jR̂  such that eitherM a {[x, ?]; 
t e <a, b>, X > (p{t)} or M cz {[x, r] ; ^ e <a, b>, x < (p{t)} and suppose that 
[XQ, ^Q] е К n M. T/ie?î a finite limit 

(2.10) 

exists for 

(2.11) 

eachfe ^Q{{a, 

lim Т/(л 
[x,f]->Uo,fo] 

[д:,Г]еМ 

, Ь>) if and only if 

lim sup F^(x, 
[^,î]-*[xo,fo] 

:, 0 

0< 00 . 

/ / the condition is fulfilled then the limit (2.10) exists (and is finite) even for any 
bounded Baire function f on <a, ЬУ for which 

(2.12) \f{to) - /(01 = o{Q{t)) as t-^ t^ , t e {a, b} 

and f (to) =OifQ{to) = 0. 

Proof, a) Suppose that the hmit (2.10) exists and is finite for e a c h / e ^д(<а, Ь>). 
Then (for the space ^Q(<a, b>) is Banach) it follows by the Banach-Steinhaus theorem 
that 

lim ||^x,r|iô ^ ^ 
[x,f]->[xo,fo] 

1х,фМ 

and so, according to (2.9), the condition (2.11) is fulfilled, 

b) Let the condition (2.11) be fulfilled. L e t / b e a bounded Baire function on {a, b> 
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for which (2.12) holds and suppose that f{to) = 0. There are (5 > 0 and с < GO 
such that 

V^ix, t) й с 

for each [x, t^e M n {[x, ^] ; |x -- XQ] < 3, \t — Г̂ ] < ô}. Given e > 0, one deduces 
from (2.12) that there is ^^ > 0 with ô^ < ô such that 

| / ( T ) | g ß ( T ) b A F 
4c 

for each т 6 (̂ o — ^i , ÎQ, + ô^). Putting ti = t^ — 3^ we have 

(2.13) 
2 Г 

~Г /Wexp(-a^,,(T))da^,,(T) < 

^ f f' Ô(T) exp (-а,^,(т)) d var а,,,(т) ^ ^ F ^ x , 0 й 
2c J,^ 2c 

for each point [x, t\eM for which |x — Xo| < ^i and j^ — ̂ о| < ^i-
Let us consider a sequence {[x„, ^„]}Г=1 с: t/ = (XQ — i ^ | , Xo + ^3^) x 

X (̂ 0 — 2^1? 0̂ + 2<5i) such that [x„, t^ -^ [xo, ^o] as w -^ oo. Then, of course, 

and 
sup {var K,,f„; <a, t^y\ ; n = 1, 2, . . .} < 

| / ( т ) е х р ( - а , ^ Ц т ) ) | ^ sup | /(т) | < cx) 
Te<a,îi> 

00 

for each т e <a, r^), и = 1, 2 , . . . This implies 

(2.14) lim A Г / ( , ) exp(-а1,,„(т)) da.„.,„(t) = 

2 Г'' 

= ^ /Wexp(-a^„,,„(T))dot,„,jT) . 

In Other words, the integral 
(2.15) 

Ф 
- /(T)exp(-a^,,(T))da^,,(^) 

considered as a function of the variable [x, t\ is continuous at the point [XQ, ^Q]. 
Let us suppose that, in addition, we have chosen 3^ such that 

1 4 r / ( T ) e x p ( - < , J t ) ) d a , „ . , „ ( t ) - r / ( x ^ , g 

(this is possible for V^{x^, t(^ < oo and / 6 "^(^(^a, b})). 

< 
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Hence, the continuity of the integral (2.15) at the point [x^, ^o] implies that 
there is a neighborhood U^ a U such that 

(2.16) 14- Г / ( т ) exp {-all^)) da,,,(T) - ГДхо, ^o) < -
2 

for each point [x, f] G t/^. It is seen from (2.16) that 

\Tf{x,t)- Г/(ха,Га)| < £ • 

So we have proved that if/(^Q) = 0 (and othe other conditions are fulfilled) the limit 

(2.17) lim Г/(х, t) = Г/(хо, ô) 
[x,t]-^[xo,fo] 

[x,r]eM 

exists. If ô(to) = 0 the proof is complete since by the assumption we consider in 
this case only functions / for which /(^o) — ^^ 

In the case 6(^0) > 0 it suffices to prove that the limit exists for the function / 
which assumes the constant value 1 (for T^ ^ is hnear). Since V2 is lower-semicon-
tinuous (see Lemma 1.2) it follows from (2.11) that V2{xçy, ÎQ) < 00. It is easily 
verified that if 6(^0) > 0 and F^(xo» 0̂) < ^ then ^^(XQ, 0̂) < 00, too. If б(Го) > 0 
then, of course, tç^ > ahy the assumption. According to Remark 2.2 it follows from 
Fĵ (x(), ^Q) < CO that the hmit 

(2.18) '̂ "^ ^ o - ' ^ ^ ^ ) lim 
x-^to- 2-sJ{t - T) 

exists. 
Let us now show that if the limit (2.18) exists then even the hmits 

(2.19) 

(2.20) 

lim Tl{x,t), 
[д:,г]-^[хо,?о] 

xxpit) 

lim Г1(х, )̂ 
[jc,0-*[xo,fo] 

x<(p{t) 

(1 stands for the constant function equal to 1 on <(a, b>) exist without any assumption 
on the parabolic variation. Let'[x, t\ eR^, te (a, b}, x > cp{t). Then we have 

T i(x, 0 = 4" f ^̂ p {~^ltb)) ^^xA^) = 

2 Г' 2 
= Hm - - - exp(-a^^XT))da^,,(T) = lim —-{G{cc^,{t')) -

- G(«.,,(a))) = 4 - (G(a.,(0) - G(a.,(a))) = 2 - - 1 G ( f ^ ^ , 
^n ^n \2 ^{t - a), 
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The function (x — (p{ci))\2 ^{t — a) considered as a function of the variable [x, t] 
is continuous on the set {\x,t\eR^\x > a}. As the function G is continuous, we get 

(2.21) lim r i ( x , 0 = 2 - A G ( i ^ 2 - l Ä ) . 

X>(p{t) 

Similarly we find 

(2.22) Иш Tl(.,t)=-j-G(^^-^\. 
[x,f]-*[xo,fo3 Jn \2 JUQ, - a)J 

This completes the proof. 

Remark 2.4. Let ô 6 (a, b}, XQ = ф(^о) ^^^ l^t either M с D^ = {[x, t]; t e 
e{a, b), X > (p{t)} or M a D~ = {[x, г]; f e (a, b), x < (p{t)}. Suppose that 
[xo, ^o] ̂ ^ ^^^ the condition (2.11) is fulfilled. Further suppose that the limit 

a.„,,(̂ o) = lim ^^^^^-A 
t^to- 2^{tç^ — t) 

exists (finite or infinite). This is, of course, fulfilled for instance whenever Q{to) > 0, 
because then l̂ î (xo, tg) < со follows from (2.11). Let us consider a function/ of the 
form f = к + fi, where /ce jR̂  is a constant and /^ is a bounded Baire function 
for which the condition (2.12) is fulfilled (and for which /1(^0) = 0 if ß(^o) = 0)-
We can define the value T/(xo, 0̂) by (2.7). According to that equahty, the linearity 
of T^ t and to the equalities (2.17), (2.21), (2.22) we now have 

(2.23) lim T/(x, 0 = T/(xo, t^) + f{to) f2 - 4 " ^{а^оА^о)) 
lx,t]-^[xo,tol \ Jn 

1х,фМ ^ 

if M С D+; if M с: D - then 

(2.24) lim Г/(х , t) = Г/(хо, t^) - f{to) - f G{a,o,M) • 
[x,f]->[xo,fo] V ^ 

1х,фМ ^ 

If ajco,ro(̂ o) = Ö ̂ ^^^ we get equahties analogous to classical equalities for the hmit 
of a double-layer heat potential: 

hm T/(x, t) = Tf{xoto) ± f{to) , 
[x,f]-*[xo,fo] 

ix,t}eM 

where we consider + or — when M с D"*" or M с D~, respectively. 
The following assertion is a corollary of Lemma 2.1 and Theorem 1.1 (by virtue of 

the lower-semicontinuity of F^). 
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Theorem 2.1. Let Q ^ О be a bounded lower-semicontinuous function on <a, b> 
such that Q(a) = 0. Let t^ e <(a, b>, XQ = (pijo). Then there exist finite limits 

(2.25) hm T/(x, t), 
[х,Г]-»[д:оДо] 

Гб<а,Ь>,х><р(0 

(2.26) lim Tf{x,t) 
fe<a,b>,jc<<jo(0 

/or each f e "^Q^^a, b>) i/ anJ only if there is ô > 0 such that 

(2.27) sup {V^{(p{t), t); t e{to ~ S, tçy + ô) n <a, b>} < oo . 

If the condition (2.27) is fulfilled for some ^ > 0 then the limits (2.25), (2.26) exist 
and are finite for any bounded Baire function f on <a, b> such that 

| / (0 - /(^o)| = o{Q{t)) as t^to, tE{a, b} 

and f {to) =OifQ{to) = 0 . 
The last assertion enable us to define operators T+ and T^ on ^o{^a, fe>) by the 

following equalities: 

(2.27) ^^+/(0= 1™ Tf{x\t'), 
ix\n-*\:<p(t),t-\ 

t'eia,by,x'>q>{t) 

(2.28) î - / ( 0 = lim Tf{x\t') 
ix',n-^l<p{t),n 

t'e(a,by,x'<(p(t) 

f o r / e ^ o « « , b » , te {a, by. 
These operators are important in connection with the Fourier problem of the heat 

equation. The reader is referred to the article "On a boundary value problem for the 
heat equation" which will be pubhshed in this journal. 
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