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0. INTRODUCTION 

The paper deals with boundary value type problems for functional-differential 
equations 

(0,1) x{t) = \ [d^P{t,S)'] x{t + &) +f{t) a.e. on [a, b\ 

or 

(0,2) x{t) = A{t) x{t) + B{t) x{t - r) + [d,G{t, s)] x{s) + f{t) a.e. on [a, b] , 
J a — r 

where — o o < a < b < o o and the functions P(f, ,9), G{t, s), A{t), B{t) and f(t) 
fulfil some natural assumptions. In particular, we derive their adjoints and in some 
special cases prove the Fredholm alternative. (The results of A. HALANAY [5] or 
E. A. LiFSic [9] on the existence of periodic solutions to the equation (0,1) and the 
results of [12] on integral boundary value problems for ordinary integro-differential 
equations are included.) Our approach is based on the ideas of D. WEXLER [14] 
and ST. SCHWABIK [ U ] and differs from that of A. Halanay [6] or D. HENRY [8] (cf. 
also J. K. HALE [7]). The adjoint problems obtained seem to be more natural than 
those of D. Henry [8] and follow directly from the principles of functional analysis. 
(It is shown that after some artificial steps our adjoint reduces to that of D. Henry.) 
Initial functions are continuous on [a — r, a] or of bounded variation on [a — r, a\. 
In § 4 boundary value type problems for hereditary differential equations con­
sidered in the sense of M. C. DELFOUR, S. K. MITTER [3] (with square integrable 
initial functions) are treated. 
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1. PRELIMINARIES 

Let —ею < a < ß < +CO. The closed interval a ^ t ^ ß is denoted by [a, ß~\, 
its interior a < t < ß by (oc, ß) and the corresponding half-open intervals by [a, ß) 
and (a, j^]. Given а р x ^-matrixM = (m,.j)j=i,...,pj=i....,^, M'denotes its transpose 
and 

\\M\\ = max У Im,- ,\ . 
II il ^-^ \ ^'J\ 

i=l,...,pj=l 

^„ is the space of real column n-vectors with the norm [|x|| = max [х,|. The space of 

real row n-vectors is ^ * . (Elements of ^ * are denoted by x \ where XEM„; 

^„{(x, ß) is the Banach space (B-space) of continuous functions и : [a, jS] -> ^„ 
with the norm ||w||,ĵ  = sup ||w(^)||; J*i^„(a, ß) is the B-space of functions и : [a, j5] ~> 

-> ^„ of bounded variation on [oc, i?] with the norm ||w||^^ = ||^()5)|| + varf w; 
i^n{^, ß) is the set of functions м' : [a, ßj -^ ^ * of bounded variation on [a, j5], 
right continuous on (a, ß) and vanishing at ß (being equipped with the norm |jw'||^^, 
ir^(a, ß) becomes a B-space); sé^J^, ß) is the B-space of absolutely continuous 
functions и : [a, jö] -» ^ „ with the norm ||М||̂ <Й' = ||w||^^; <=̂ „(a, ß) is the B-space 
of Lebesgue integrable (L-integrable) functions и : [a, j5] -> ^„ with the norm 

\\u\\^ = 11̂ (011 ^̂  ' 

J^^{(x, ß) is the B-space of essentially bounded functions u^ : \а, ß~\-^ ^ * with the 

norm Iju'll = sup ess ||wXOi|-
fe[a,/3] 

Given a B-space ^ , ^ * denotes its dual and the value of a functional 3; e ^ * on 
X e .f' is denoted by <x, j>^. The zero functional on Ж is denoted by 0^. Hereafter 
J^f*(a, JÖ) and <((x, î ) are identified with if„°^(a, j^) and 'Г^(а, jö), respectively, while 

<^, y '>^ = 
'ß fß 

y\t) x{t) at and <w, i;'><̂  = [̂ ^^XOl "(0 
a , Ja 

for X G ^„(a, i5), y' e if„^(a, 5̂), w G ̂ „(a, ß) and i;' G 'Г^(а, ß). (There are isometric 
isomorphisms between J^*(a, j5) and if^(a, ß) and between ^*(a, j5) and 'Г^(а, jß), 
cf. e.g. [4].) 

Let ^ , ^ be B-spaces. Given a linear bounded operator T : Ж -^ ^ (defined on 
the whole ^ ) , T* denotes its adjoint (T* : ^ * -> ^* , <Гх, y ) ^ = <x, T*y>^ for all 
X G ^ and j^ G ^ * ) , Ker (T) is the set of all xe^ such that Tx = 0 = zero element 
of ^ and Im (Г) is the range of T. Given two operators T̂  : iT^ -> ^ , T2 : ^"2 -^ ^ , 
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the homogeneous equations T^x = 0 and T2Z = 0 are said to be equivalent if there 
is a one-to-one correspondence between Ker (Tj) and Ker (T2). 

2. GENERAL BOUNDARY VALUE TYPE PROBLEM AND ITS ADJOINT 

2Д. Assumptions. We assume — o o < a < b < + o o , r > 0*). A(t) and B(t) 
are n X n-matrix functions L-integrable on [a, b], G(t, s) is a Borel measurable 
in (r, 5) on [a, b] X [a — r, fc] П X w-matrix function such that var^_^ G(t, •) < 00 
for any t E[^a, b^ and 

J (|lG(f,b)l| +var^_,G(f, •))d^< ^^ 

/(^) e J^„(a, b). Л is an arbitrary B-space, / e Л and the operators M : ̂ „(a — r, a) -^ 
-^ A, N : sé^J^a, Ь) -> Л are linear and bounded, while Im (iV*) с '^*(ß, Ь) = 
= i^l{a, b) (i.e., given Л e Л*, there is a function (iV*A) (t) e i^^{a, b) such that 

{Nx, Я>л = <x, N4}^^ = !\d{N4) (0] x(0 for all x e ^ ^ „ ( a , b)). 

Without any loss of generahty we may also assume that, given t e [a, b], the 
function G(f, •) is right continuous on {a — r, b), while G[t, b) = 0. Given Я e Л*, 
let us denote by (М*Я) (̂ ) the row n-vector function such that (M*i) (t) — (iV*A) (д) e 
G i^,^(a - r, a) and 

<Mw, Я>л = < и, МЧ}^ = Г [d{(M*A) (О ^ (N4) (а)}] u{t) 
J a-r 

+ 

for all и G ^„(a — г, a). 
We are interested in the following boundary value type problem: 

2,2. Problem (P). Determine x e sé^J^a, b) and и e ^„(a — r, a) such that 

(2,0 . ( , )=40 >«)+{f j;j % : :J: ; г : : :} + Jip.««. )̂] »w 
+ [d,G(^, s)] x{s) +f{t) a.e. on [a, b] , 

(2.2) x(a) = u(a) , 

(2.3) Mu +Nx = I, 

where Assumptions 2,1 are fulfilled. 

*) If r = 0, the equation (2,1) reduces to an ordinary integro-differential equation with 
initial data in i?„. The case of r = 0 will be treated separately later on (cf. Sec. 5,5). 
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2,3. Notation. Let us put 

3C = j / ^„ (a , b) X ^„(a - r, a ) , ^ = i f „(a, b) x Л 
and 

(2,4) 

where 

(DX ~ AX — B^x — B2U — G^x — G2u\ 
Mu + Nx I e ^ , 

u(a) — x(a) 

D :xe j / ^ „ ( a , b) -^ x(t) e ^„{a, b) , 

Л : X 6 j/^„(fl, b) -^ A{t) x(t) e ^„{a, b), 

Gl : X 6 j/'«'„(a, fe) -* [dfi{t, s)] x(s) e if„(a, b) , 

G2 : M e < „̂(a - r, a) ^ f [dfi{t, 5)] «(s) e if„(a, b) . 
J a-r 

All these operators are linear and bounded. The given problem (P) can be reformula­
ted as the operator equation 

Г/1 
и 

Clearly, ^ * = .я /<(а , b) x Г'^{а - r, a), '^* = ^^{a, b) x Л* x ^ * and 

,{д^ ̂ ' ) / = <^. éf)̂ «̂  + 
J ö-r 

( / Д , У О = \y\t)f{t)ds + (l,X>A+fk 

for X e ^'g'„(a, fe), M e «'*(a - г, a), g e j / < ( a , fo), /i' e -Г°(а - r, a), / e i^n(a> b), 

г e Л, fc e it„, j ' ^ 6 ^'„«'(a, b), Я e Л* and 7̂  e ^* . Let ( ^ ) € ^ and ( j ' \ A, гО ^ '^*, 

then 

Л.^ + ui^j, {y\ К fy) = {Dx - Ax - Bjx - BjU - GjX - G2U, у")$ 

+ <MM + iVx, Д>л + УХ"(^) - ^(^)) = 
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= <x, D^f - Ä'^y' - Btf - Gif + Nn + Ktf}^^^ + 

+ in, -Btf - Gtr + МЧ + Ktf\ , 
where 

and 

Consequently 

and the adjoint to (P) is the system of equations for {y\ Я, y') e ^ 

Xi : X e sé^,ia, b) -> -x(a) e ̂ „ 

K2 : и e ^„(a — r, a) -^ u[a) e Ш„. 

A^y^ _ Btf - G^y' + N4 + Kb'' 
~Bb' - Gb' + МЧ + x|ŷ  eS-* 

(2.5) i)*Ĵ^ - ̂ *Ĵ  - Btf - Gt/ + N4 + Ktf = o^^, 
- 5|j;̂  - Gif + M*A + Xfŷ  

2,4. An analytic form of the adjoint problem. By the definition of an adjoint 
operator and by the unsymmetric Fubini theorem (2) it holds for all x e j3/^„(a, b), 
и e ^,ia - r, a), y' e ^^{a, b), Я 6 Л* and y' e ^* 

'(:)'''v.^.v)),=(^(:).(/.^./)).= 
y\t) x{t) dt - \ y\t) A(t) x(t) dt - yXt) B{t) x(t - r)dt -

Ja Ja J a + r 

-i: y\t) B(t) u{t - r) dt / ( 0 [dfi{t,s)]x{s)\dt-

- J V ( 0 (Г [d,G(f, s)] i,(s)\ dt + <Mu + Nx, А>л + f(u(a) - x(a)) = 

= t''y\t)x{t)dt- Г[адЩх{1)- Г [dh\t)]u{t). 
Ja Ja J a-r 

e 

(2,6) g\t) = - [y\s)A{s)ds+ I 
Jt J, 

where 

y\s) G{s, t) ds - (mX) (t) -

0 , t > a 

h\t) = - r % X ^ ) ^(^) d5 + f V(^) iG{s, t) ~ G{s, a)) ds + | j^^ ' | ^ 

-- (M'^X) (t) + (iV*yl) (a) for ^ e [a - r, 0] . 
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Now, {у\ Я, у') 6 Ker (и*) iff 

(2,7) О = fV(f) х(0 df - f"[d^XO] ^(0 - С" [d^XO] <t) 
Ja Ja J a-r 

for all X 6 sé^J^a, b) and w e ^„(a - r, a). In particular, if x(t) = 0 on [a, b], (2,7) 
means that 

J: [d/îXO] "(0 = Ö f<̂ r all и e ^„(a - r, a ) . 

Since h' e i^^^(a -~ r, a), this is possible iff h\t) = 0 on [a - r, a]. Thus 

(2,8) y^s) B{s) ds - y\s) (G{s, t) - G{s, a)) ds -f 

+ (M*yl) {t) - (mX) (a) - 7" = 0 on [a - r, a) , 

The equahty (2,7) now becomes (after integrating by parts) 

(2,9) y\t) x{t) dt = -g\a) x{a) - g\i) x{t) dt for all x e j / ^„ (a , b). 

Since we may choose x(t) = x[a) Ф 0 on [a, b], (2,9) implies furthermore g'(a) = 0 
or 

(2,10) f = -
'b rb гь 

/(s) A(s) ds - yXs) B{s) ds + y\s) G{s, a) ds - {N*X) (a). 
a J a + r J a 

Consequently, (2,9) reduces to 

rb Çb 
y\t) x(t) dt = - \ g\t) x{t) dt for all x e j / ^ „ ( a , b) 

Ja Ja 
or 

(yXt) + 9\t)) z{t) àt = 0 for all z e i f „(a, b). 
a 

Hence y\t) = .^'(0 ^•^- ^^ E^' Ч ' ^•^' 

(2,и) /w = [Vw4.)d»Jj.>)' 'W^'' 'S'- '-j.-
*̂  ' [ 0 , t > b - r] 

b 

y\s) G{s, t) ds + (ДГ*Я) (t) a.e. on [a, b] . 

Let z' e ^^{a, b). Then (z \ Я, y') e Ker ([/*) iff there exists y' e ^„°°(a, b) fulfilling 
(2,8) and (2,10) and such that y{t) = z{{) a.e. on [a, b] and (2,11) holds for all t e 
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e(a , b). Finally, inserting (2,10) into (2,8) and taking into account that the right 
hand side of (2,11) is of bounded variation on [a, b] and right continuous on (a, b), 
we complete the proof of the following 

2.5. Theorem. Let z' e ^^{a, b), Я G Л* and y' e ^ t Then {z\ Я, y') e Ker (L/*) 
iff there exists y e J'i^„(a, b) right continuous on (a, b) (the values y(a), y(b) may 
be arbitrary) such that y(t) = z{t) a.e. on [a, b] and 

Çb ГЬ Çb 

(2.12) y\s) A{s) as + y\s) B{s) ds - y^s) G{s, t) ds + (М*Я) (t) = 0 
Ja J t + r Ja 

for f e [a ~ Г, a) , 

/^.^4 ^/^ Г х / л . / ч ^ y'(s)B(s)ds, t < b - r\ 
(2.13) y\t) = y\s) Ä{s) ds + Л , , / \J \J ^ - I 

-' ' [ 0 , t> b - r] 
- \ yXs)G(s,t)ds +{N''X){t) for tE{a,b), 

while 7' is given by (2,10). 

2.6. Definition. The problem (P*) of finding у e ^"Vj^a, b) right continuous on 
(a, b) and le A^ such that (2,12) and (2.13) hold is called the conjugate problem 
to(P) . 

(In virtue of Theorem 2,5 the adjoint problem (2,5) to (P) and the problem (P*) 
conjugate to (P) are equivalent.) 

2.7. Corollary. The problem (P) has a solution only if 

(2,14) y\s)f{s)ds + a^>A=0 

for all solutions [y\ X) of the conjugate problem (P*). / / the operator U defined 
by (2,4) has a closed range Im (U) in =^„(a, b) x Л x ^„ , then the condition (2,14) 
is also sufficient for the existence of a solution to the problem (P). 

(The p r o o f follows from Theorem 2,5 and from the fundamental ''alternative" 
theorem concerning linear equations in B-spaces ([4], VI § 6).) 

2,8. Remark. Let ^ , ^ be B-spaces and let L : ^ -> '^ be hnear and bounded. 
A set '^^ cz ^^ of linear continuous functionals on ^^ is said to be total in ^ * if 
<Jj дУ'з/ = ^ for all 0̂  G '3̂ "̂  implies y = 0. Furthermore, if L"*" : "̂*" -> ^ * is a hnear 
operator such that <Lx, дУа/ = <x, Ь^дУ^^ for all x e Ж and g e^^^ we shall say 
that L"̂  is a conjugate operator to Lwith respect to '̂ "*". Clearly, L^ is a restriction 
of the adjoint operator L* to Lon ^J/^. Hence Ker (L"̂ ) с Ker (L*). (For some more 
details concerning conjugate operators see [U].) 
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Now, let '^„(fl, b) be the space of row n-vector functions of bounded variation 
on [a, b] and right continuous on (a, b). Then '/'^„(a, b) is a total subset in ^^{a, b). 
(In fact, l e t / e Jèf„(a, Ь) and 

Ö = [ V ( 0 / ( O d ^ for all y'er„{a,b). 

Then 

(2,15) 0 = f V ( 0 M^) fo^" a" 3̂^ e ^n(^ ' b) ' 

where g e j / ^„ (a , b) is an indefinite integral o f / on [a, b]. Let 6̂ /(̂ 1) Ф 0̂ 1(̂ 2) fo^* 
a component Ö',. of the vector g = (g^, ^2? •••> 0̂ «)' and for some t^, Î2 e [a, b], 
1̂ < ?2- Analogously to the second part of the proof of Lemma 5,1 in [10] we put 

3̂ X0 = (3^i(0' 3^2(0' •••' >^n(0)' where yj{t) = 0 on [a, b] for 7 Ф /, yi{t) = 0 for 
r G [a, Г1), з;̂ (г) = 1 for t e [t^, 2̂) and ylt) = Oforte [̂ 2, b]. Then j ' e i^„(a, b) and 

f VxO d^(0 = t [ Vxo d̂ XO = f V.(0 agit) = Гад It) = ,̂(̂ 2) - .̂(̂ 1) Ф 0 

which contradicts (2,15). Hence g(t) = const, on [a, b] and/(^) = 0 a.e. on [a, b].) 
The operator D : xe sé^^la, b) -^ x e ^„(a , b) is hnear and bounded. It is easy to 

verify that its conjugate operator D^ with respect to i^„{a, b) is given by 

\ 0, t = a ] 
D^ :fe rla, b) -> \ -y'{t\ t e (a, b)\ e Г^а, b) . 

[ 0 , t = b ] 

Let us put ^"^ = i^n{a,b) x Л* x ^* . Then ^^ is a total subset in ^ * = 
= i f^(a , b) X Л* X ^ * and the conjugate operator U^ to U with respect to ^ ^ 
is given by 

U^ : {y\ Я, 7O e ^ ^ -> ( r ( 0 . n\t)) e ГЦа, b) x < ( a - r, a) , 
where 

[ 0 , f = fejJ' [ 0 , t>b - r] 

- j VCs) G{s, t) as + (N4) (0 + Î Q^ ; ; ^1 for te [a, b] , 

Га+г ПЬ 

f]'{t) = y\s) B{s) ds - y^s) {G{s, t) - G(s, a)) ds + (М*Я) {t) -~ {mX) {a) -
Jf + r Ja 

- f c ^ ' ' < 4 for tB\_a-r,a\. 
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The equation U'^(y\ X, y') = 0 is identical with the system of equations (2,8), (2,10), 
(2,13) and hence it is equivalent also with the problem (P*) introduced in Definition 
2,6. In Section 2,4 we proved actually that Ker((7*) с ^ + and hence Ker((7"^) = 
= Ker (L/*). 

2,9. Remark. The above procedure can be also applied to the case of initial func­
tions of bounded variation on [a — r, a ] . This means that instead of w e ^„(a — r, a) 
we are looking for и e ^i^J^a — r, a). The adjoint problem is again equivalent to 
the system of the form (2,12), (2,13). Only we have to suppose in addition that 
Im(M*) с Г1(а - r, ö). 

2Д0. Remark. Some examples of spaces Л and operators M, N fulfilHng Assump­
tions 2,1 are given in the following § 3. Some conditions on the closedness of Im ((7) 
are given in § 5. 

2,11. Remark. The couple ( j \ Я) being a solution to (P*), the values y^{a), };'(b) 
may be arbitrary. We can require e.g. j ' ( a ) = y^if)) — Oor j ' ( a + ) = y\a),y^{b — ̂  = 
== j ' (b ) . In the latter case we add to the system (2,12), (2,13) the conditions 

(2,16) y\a) = - y\i) {G{s, a +) - G(5, a - ) ) ds + (iV*A) {a + ) - (М*Я) (a - ) , 

y\b) = I j;̂ (5) G{s, b~)ds - (mX) (b-). 

(Indeed, by (2,12) 

rb гъ гь 
y^s) Ä{s) ds + y\s) B{s) ds = y\s) G(s, a - ) ds - (М*Я) {a~).) 

J a Ja+r Ja 

2Д2. Remark. c5/^*(a, b) is isometrically isomorphic with J ^ ^ ( Ö , b) x ^* . Given 
g e^^^i^n(a, b), there exist uniquely determined ß^ e ^ * and y\t)e ^^{a, b) such 
that 

< ,̂ g}^^ = ß'M + I y\t)x{t) dt 

for all X e j3/^„(a,b). (See [4] IV, 13, 29.) By a similar argument as in 2,4 we could 
derive the analytic form of the adjoint problem also in the case that iV is a general 
linear bounded operator ^ ^ „ ( a , b) -^ A without supposing Im(N*) с i^l{a, b). 

/ / iV* : Я G Л * -^ (iV*A, N4) e Se^{a,^ b) x ^ * and (М*Я) {t) - (N4) e Г^а - r, a) 
for any X G Л*, then the problem of finding (y\t), X) e ^^{a, b) x Л* such that (2,12) 
holds on [a — r, a) and (2,13) holds a,e. on [a, b] is equivalent to the adjoint of the 
given prob lent (P). 
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3. SOME SPECIAL CASES 

Let US mention some special cases of the given problem (P) which arise by a special 
choice of the boundary operators M, N and of the terminal space Л. 

ЗД. The case Л = c^^(^, d). Let Л = 5£jc, J ) ( - - o o < c < ( i < + o o ) and 

(ЗД) M : M e ^„(a — r, A) [d5M(a, 5)] w(s) 6 Л . 

(3,2) iV : X e j</^„(a, b) -^ [d,iV(a, s)] x(s) e Л , 

where M(a, s) is a Borel measurable in (a, s) e [c, d] x [a — r, a] m x n-matrix 
function such that var"_^ M(a, •) < 00 for any a e [c, J ] and 

|)llM(a,a) + var^_, M(a, •)) da < сю 

and iV(a, s) is a Borel measurable in (a, s) e [c, (i] x [a, b] m x n-matrix function 
such that varj iV(a, •) < 00 for any a e [c, J ] and 

(||iV(a, b)|| + var^iV(a, •)) da < 00 . 

Without any loss of generahty we may assume that for any a G [С, d\, М((х, •) is right 
continuous on (a — r, 0), iV(a, •) is right continuous on (a, b), M(a, a) = ]V(a, a) 
and iV(a, b) = 0. 

Let X e AC„(a, b), и e C„{a — r, a), Я' e ^^{c, d). Then by the unsymmetric 
Fubini theorem ([2]) 

<Mw, A^>^ = X\a) i [d,M(a, 5)] w(s) J da = 

= I ' d, I X\a) (M(a, s) - M(a, a)) da u[s) 

and 

<iVx, A^>^ = 

where 

(3,3) 

X\a) ( I [d,N(a, s)] x(s) j da = | d, j ДХ«) ^(«> ^) da ] x(s) , 

(iV*A') (f) = I l^(a) N{a, t) da e ^ ° ( ö , Ъ) 
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and 

(3,4) (М*Я^) (О - (М*Я^) (а) = 

À\(X) (М(а, t) - М(а, а)) da е -Г^^^ - г, а). 

Hence in this case the adjoint problem is equivalent to the system (2,12), (2,13), 
where M* and iV* have the special form (3,4) and (3,3), respectively. 

3.2. The case Л = ^J^c, d). Similarly we can treat the case of Л = ^^„(c, d) 
(— o o < c < ^ < + o o ) with the operators M, N given by (3,1), (3,2), where M(% 5) 
and iV(*, a) are continuous on [c, d~\ for any s e [a — r, a] and a e [a, b]. (Let us 
note that in this case any Hnear bounded operator M : ^„(a — r, a) -> Л can be 
expressed in the form (3,1), where M(a, s) fulfils all our assumptions.) Analogously 
as in 3,1 we obtain 

M"" :ГЕ rl{c, d)-^\ ЩЩ M(a, i) e Г „{a - r/a) , 

m :Ге К{с, d) -^ [ '[dlXa)] iV(a, t) e Г'„{а, b) . 

3.3. Finite dimensional terminal space. Let Л = ^ ^ and 

[dM{s)]u{s)G^^, M :u E ^„{a — r, a) 

N :xe sé^ia, b) [div(s)] x(s) G m^, 

where M(t) and N(t) are m x n-matrix functions of bounded variation on [a — r, a] 
and [a, b], respectively. We may assume also M right continuous on (a — r, 0), iV 
right continuous on (a, b), М(а) = iV(a) and N(b) = 0. 

Let X e s/^n{a, b), и e ^„(a - r, a) and Я' e ^* , then 

<MM, Я^>^ = i^Mw) [d{AXM(s) - M(a))}] w(5) 

and 

<iVx, ry^ = ^XiVx) = I [d{r N{s))'] x{s), 

where (М*Я^) (0 - (М*Я^) (a) = À\M(t) - М(а)) e Г^„{а - r, a) and (тГ) (t) = 
= riV(Oe^„V'b). 

The adjoint problem is equivalent to the conjugate problem (P*) given by (2,12), 
(2,13) with M* and iV* defined above. Moreover, we may write it in the form more 
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similar to the adjoint of the boundary value problem for ordinary integro-dififerential 
equation ([12]). Let us put for t e [a, b] 

M =N{a+) - M{a-), N = - i V ( b ~ ) , 

C{t) = G(f, a + ) - G{t, a-) , D{t) = -G(r , b-), 

!

N{a+) for s = a , (G{t, a+) for s = a , 

N{s) for a < s < b , Go(^ s) = I G(t, s) for a < s < b , 
N{b~) for s =b, [G{t,b-) for s = b. 

Then, requiring у\а+) = y\a), y\b—) = y\b) (cf. Remark 2,11) we obtain the 
conjugate problem (P*) to (P) in the following form: 
Çb rb Çb 

y\s) A{s) ds + y\s) B{s) ds - y\s) G{s, t) as + Г M{t) = 0 , 
Ja J t + r J a 

on [a — Г, a) J 
/(,) = У(Ь) + fV(.) Щ ds + 111/« m d., ,ib- r] 

J' [ 0 , t> b 

- j V(s ) (Gois, t) - Go{s, b)) ds + r{L{t) - L(b)) on [a, b] , 

y\a) ==ГЙ - \ y\s) C{s) ds , y\b) = -X'N +\ y\s) D{s) ds . 
Ja Ja 

3,4. Boundary value type problems for functional-differential equations of retarded 
type. In this section we shall deal with boundary value problems for standard func­
tional-differential equation 

(3.5) ^{t) = { [d,P{t,^x{t + ^)+f{t) a.e. on [a^b], 

(3.6) x(t) = u{t) on [a — r, a\ , 

(3,7) Mu -\- Nx = leA , 

where the initial functions u{t) are continuous on [a — r, a] and the following 
assumptions are fulfilled: 

P{t, S) is a Borel measurable in (t, ô) e [a, b] x ( —oo, +oo) n x n-matrix 
function such that P{t, 3) = P(f, - r ) for 3 ^ - r , P(ï, 3) = P{t, 0) for 5 ^ 0 , 
var^y P(r, •) < 00 for all t e [a, b] and 

(|lP(t,0)l| +var^_,P(f, • ) ) d ^ < ^ • 
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4 is a B-space and the operators M : ^„(a — r, a) -^ Л and N : s/^„{a, b) -^ Л 
are linear and bounded, while Im (Л^*) с i^^(a, b). Furthermore, / e Л and f(t) e 
e ^„(a, b). We may also assume that P(t, •) is right continuous on (—r, 0) and 
P{t, 0) = 0 for any t e [a, b]. 

Let us put for t e [a, b] 
{P{t, - r + ) if s u t - r , 

B{t) = P(t, -r-h) - P(t, -r), G{t, s) = lp{t, s - t) if t - r S s u t , 
[p(t, 0) = 0 if s ^ t . 

Then B(t) and G(t, s) fulfil Assuptions 2,1. Moreover, given Г e [a, b], G(r, •) is right 
continuous on (a — r, b), G(t, b) = 0 and 

f [d,P(r, ^)] x(r + ^) = Г [d,P(r, s - t)] x{s) = 

= B{t) x(t - r) + I [dß(t, s)] x{s) . 
Ja-r 

The problem (3,5)— (3,7) is reduced to the problem of the type (P). Furthermore, 
for t e [a — r, a] 

Г y\s) B{s) ds - fV(5) G(s, t) ds = Г yXs) {P{s, - Г + ) - P{s, - r ) ) ds -
Jr + r Ja J t + r 

rt+r Çb ГЬ 
- y^s) P(s, t - s)ds - y\s) P{s, - r + ) d5 = - y\s) P{s, t - s) ds . 

Ja jt + r ja 
Analogously for t e (a, b — r) 

Г y\s) B(s) ds - f V(5) G(s, t)ds = -- !%\s) P{s, t-s)ds 
Jt + r Ja Jt 

- y\s) G(s, t)ds = - \ y\s) P(s, t - s)ds for te[b - r,b]. 

The following theorem is now a direct consequence of Theorem 2,5. 

3,5. Theorem. The problem of finding у e ^i^„{a, b) right continuous on (a, b) 
(the values y(a), y(b) may be arbitrary) and Я e Л* such that 

(3.8) - y\s) P(5, t ^ s)ds + (МЧ) (t) = 0 on [a - r, a) , 

(3.9) y\t) = - I y\s) P{s, t - s)ds + (N4) (t) on (a, b) 

is equivalent to the adjoint problem to the problem (3,5)-(3,7). 
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{The functions (М*Х) (t) and (N*X) (t) are again such that for any À e Л* 
(МЧ) (t) - {N*X) (a) e Г°{а - r, a), (N*X) (t) e Г°{а, b) and 

iMu, Я>л = f " [d{(M*l) {t) - (M*A) (a)}] u{i) , 
J a—r 

<iVx,A>^ = Г[с1(^*А)(0]х(0 

for all и 6 ̂ „{a — r, a), x e j3/^„(a, b) and X e Л*.) 

3,6. Two-point boundary value type problem. Let us consider the "two-point" 
boundary value type problem given by the system (3,5), (3,6) and 

(3,10) Mu +Ньх = 1еЛ, 

where the functions P(t, d), f(t) and the operator M satisfy the corresponding as­
sumptions of Section 3,4. Given Я e Л*, let (М*Я) (t) denote now a function from 
i^^{a — r, a) such that 

iMu, A>̂  = [d(M*/l) (t)] u{t) 

for all и e ^„(a — r, a) and A e Л*. The operator iV̂ , = iVŜ  : j/^„(a, b) -> Л is the 
composition of a linear bounded operator N : ̂ „(b ~ r, b) -^ Л and of a shift 
operator Sjj : x e j/^„(a, b) -> x/[b — r, b] e ^„(b — r, b) (which is also linear and 
bounded). Let 0 < r ^ b — a. 

Let X e j^^„{a, b) and À e Л*. Then 

<iV,x, Я>л = <5ь^, iVA>̂  = Г [d{N4) (0] x(0 
Jb-r 

where (iV*A) (t) e Г'^{Ь - r, b), and putting 

ŷv / j (fj - ]lN4){t) for b-r<tub 
and 

l^i-^JW-|(^*д)(^) for fe-rgi^bj^^"^'''''^' 

we get finally 

<iV,x,A>^=J\d(JV*A)(0]x(0. 

Since all the assumptions of Section 3,4 are satisfied, the following assertion is an 
immediate consequence of Theorem 3,5. 
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3.7. Corollary. The problem of finding y e ^i^„(a, b) right continuous on (a, b) 
(the values y(a), y(b) may be arbitrary) and A e Л* such that 

(3,11) y\s) P{s, t - s)ds - (М*Я) (t) = (N4) (b - r) on [a ~ r, a) , 

гъ 
(ЗД2) y\t) + y\s) P{s, t - s)às = (N4) (b - r) on (a, Ь ~ r) , 

J t 

(ЗДЗ) y\t) + I y\s) P{s, t - s)ds - (N4) (t) = 0 on [b - r, b) 

is equivalent to the adjoint problem to the two-point problem (3,5), (3,6), (3,10). 

3.8. Relationship with the adjoint of D. Henry. Let us continue the investigation 
of the tv^o-point boundary value type problem (3,5), (3,6), (3,10). We shall show that 
the adjoint problem (3,11) derived in 3,6 can be reduced to the form of D. Henry [8]. 
Let us put for ^ e [ -Г , 0] P{t, d) = P{t + b - a, &)ifte[a - r, a). Given a func­
tion z(t) defined on [a — r, b] and t e [a, b], we put 

^0/4 _. | < ^ + oc) if a e [ - r , 0 ) , 
^̂  ^ " 10 if a = 0 . 

Let i^„( — r, 0) be the space of all row n-vector functions of bounded variation on 
[ —r, 0] and right continuous on ( —r, 0). Let R(ß, a) be the resolvent kernel for the 
Volterra integral equation 

zXa)+\ z\ß)P{b + ß,a-ß)dß = 0, a e [ - r , 0 ] . 

Gronwall's inequality apphed to the „resolvent equation" 

R{ß,oc)+ rR{ß,y)P{b+y,a-y)dy=P{b +ß,a- ß); а , ^ 5 б [ - г , 0 ] 

yields analogously as in the proof of Lemma 1 in [14] that var?.^i^(j9, ') < со for 
any j ? e [ —r, 0], while the function r(ß) = Ya,x^_^R(ß, •) is bounded on [ — ЛО]. 
Hence the resolvent operator 

R : w\oc) G F„(--r, 0) -> ! \ щ R{ß, a) dß e 1Г„(~г, 0) 

is linear and bounded and for any ŵ  e f^„( —r, O), the unique solution 2^(a) on 
[ - r , 0 ] t o 

z\(x) + I V(iß) P{b + ß, (X-- ß)dß = w\a) 
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is given by 

£ ^y^^ - î vv̂  = (/ - Я) w \ 

where / denotes the identity operator. 
Now, let {y\ Я) be a solution to (3,11) —(3,13). Let us extend the function y\t) 

on the interval [a ~ r, a\ in such a way that 

(3,15) y\i) + y\s) P{s, t ~ s)ds = -{M'^X) {t) for te[a - r,a) 

y\s) P{s, a - s)ds = (iV*A) {b - r). 

and 

(3,16) y\a) + 

Since 

Гу\8) P(s, ^ - 5) ds = j y\a + ß)P{a + ß, t - a - ß) dß = 

го 
= у\(^ + ß) Р{Ь + ß, OL - ß)dß, where a = t - a , 

Ja 

(3,15) yields 

(3,17) У:"^ = -{1~К){МП), 

The last equation (3,13) in our conjugate system is obviously equivalent to the 
condition 

(ЗД8) 3 ; ; ^ = ( / ~ Я ) ( Л ? * Я ) . 

Finally, owing to (3,15) and (3,16) the equations (3,11) and (3,12) can be replaced 
by the single equation 

(3,19) y\t)-\- y\s) P{s, t - s)ds = (iV*2) (b - r) on [a - r, b ~ r) , 

The system (3,17) —(3,19) is just the adjoint problem of D. Henry from [8]. (Only 
we have the expression depending on Я instead of an arbitrary constant on the right 
hand side of the Volterra integral equation on [a — r, Ь — r).) 

Obviously the couple {y\ X) being a solution to the system (3,17) —(3,19), it is 
a solution to (3,11)-(3,13), 

3,9. Periodic solutions. Let a = 0, Ь = T < 00 (r g Г). Let P{%S) be for any 
5 e [ —r, 0] a T-periodic function on ( — 00, +00). Let us consider the periodic 
problem consisting of the equations (3,5), (3,6) and 

(3,20) u(t) - x{T+ t) =0 for r e [~r, 0] 
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(i.e., in (3,10) we have Л = ^ „ ( - r , 0), / = 0, M = / , Nj = NSj, N : z(t) e 
6 ^„(T -r.T)-^ -z(T +S)E ^„(-r, 0).) 

By Corollary 3,7 the adjoint problem is equivalent to the system of equations for 
y\t) of bounded variation on [ —r, Г] and right continuous on ( —r, T— r) u 
u (T - r, T) and for Щ e Г^(-г, 0), 

(3.21) y\t) + f / ( ^ ) ^(^' t-s)ds = -Ц-г) on [ -Г , Г - r] , 

(3.22) y\t) + I J X ^ ) P{S, t - s)ds = -r{t) on [ -Г , 0) , 

(3.23) J X O + З'Х )̂ ^(^' ^ - 5) ds = -Я^^ - ^) on [Г - r,T). 

Indeed, since actually we are looking for y'(t) in the space J^^( —r, T), we may 
change the values of у ' on a set of measure zero in [ —r, Г] . Hence we may put 

УЩ + f V(^) P(s, -s) ds = -Ц-г) 

and 

y\T - r) + \ y\s) P{s, T- r - s)ds = -Ц-г) , 
JT-r 

(P(s, - s +) = P(s, - s) for any 5 7̂  г and thus y\0 + ) = y\0).) 

Furthermore, since by the periodicity assumption on P(*, ,9) 

ryXs)P(s,t-s)ds==ry\T+ß)P{ß,t-T~ß)dß for telT-r,T}, 

the system (3,22), (3,23) is equivalent to the condition 

(3,24) /(t)=y\T+t) for / G [ - r , 0 ) . 

ЗД0. Corollary. The adjoint to the periodic problem (3,5), (3,6), (3,20) /5 equi-
valent to the problem of finding y(t) e ^i^„( — r, T) right continuous on( — r, T — r) u 
u (T — r, T) which satisfies (3,21) and (3,24), where Я'(—r) stands for an arbi­
trary constant n-vector. 

{In other words, the problem of finding T-periodic solutions to the equation 

i{t) + I y\s) P{s, t - s)ds = const 

is a well posed adjoint problem to the problem of finding T-periodic solutions to 
the equation (3,5).) 
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4. BOUNDARY VALUE TYPE PROBLEMS FOR HEREDITARY 
DIFFERENTIAL EQUATIONS OF THE DELFOUR-MITTER TYPE 

4Д. Notation. Let - o o < a < ß < +00. if^(a, ß) is the Hilbert space of square 
integrable (column) n-vector functions on [a, ß^ with the inner product 

rß rß 
u,ve ^l[(x, ß) -> (w, v)^ = M'(5) v(^s) ds = v\s) u(s) ds. 

Ja Ja 

(The corresponding norm on ^l(oc, ß) is given by 

и e ^'„(a, ß) -> \\и\\^г = ({]\uis)\\' dsT'. 

Wl'^(oc, ß) is the Hilbert space of functions x : [a, ßl -> ^„ which are absolutely 
continuous on [a, jS] and whose derivatives Dx are square integrable on [a, jö]. 
The inner product and the corresponding norm are on if^l '^(a, ß) given by 

x,ye irl'\a, ß) -> (x, y)^ = {Dx, Dy)^ + (x, y)^ 

and 

X G irl\oi, ß) -> | |x| |^ = (||^^|1^2 + \4l^f'^ • 

The corresponding spaces of row vector functions will be denoted also by J^^(a, ß) 
and iV^l '^(a, ß). No misunderstanding may arise. 

4,2. Assumptions. Let - o o < a < b < +00 and г > 0. Let Л(^) and B{t) be 
n X n-matrix functions essentially bounded on \a, b] and f{t) e ^l{a, b), let M 
and N be constant m x n-matrices and / e i^^. Let Л be an arbitrary B-space, w e A. 
and let P : J^^(a ~ r, a) -> Л and ß : ii^l'\a, b) -> Л be linear and bounded ope­
rators. 

453. Problem (TT). The subject of this paragraph is the following boundary value 
type problem (л;) 

Determine x G Wl'\a, b), ^ e ^„ and и e ^l{a - r, a) in such a way that 

(4.1) ад - A(,) , ( , ) - { I » < ; -_%%IX']= / « ) a.e. с [». Ч , 

(4.2) Pu + ß x = w, 

(4.3) M^+Nx{b) = l, 

(4.4) x ( a ) - < ? = 0 . 

Let тГ = т Г ^ ^ а , Ь) x ^„ x ^^^a - r, a), ^ = ^l{a, b) x Л x âl^ x ^„ and 
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let the operators D, Ä, B^ : irj,'\a, b) -> if^(a, b) and B2 : .^^{a - r, a) 
-> J^^(a, b) be defined analogously as in 2,3 and 

I/ eir 

Dx ~ ÄX — B^x — B2U 

Pu + Qx 
Mi +N x{b) 

x{a) - i 

X 

i 
и 

— 
L _J 

71 
w 
/ 

oj 

The operator U is clearly linear and bounded and the given problem (тт) is equivalent 
to the operator equation 

и 

4.4. Remark. The corresponding initial value problem (4,1) and (4,4) (with и e 
G <^l{a — r, a) and ^ e M„ fixed) was studied in [3]. 

4.5. Theorem. Let rj' G ^^(a, b), Я G Л*, ŷ  G ^* anJ ^' G С - T/ien (f/\ Я, 7\ ô') e 
G Ker ([/*) iff there exists y' e ^l{a, b) such that y' + (d/dr) (о*Я) G j/'^#„(a, b), 
j(0 ~ (̂0 ̂ •̂ - ^^ [̂ ' Ч ^̂ ^ 

d̂  

df [/ + |-̂ (ô*A)](0 = -/(040 ^ ^̂  
+ (0*Я) (ï) a.e. on [a, b] , 

y\t + r) B{t + r), t < b - r 

t > b — r + 

Г/+^(0*А)1(а)=^М, 
d^ 

(fo) = - r W , 

y\t + r) B{t + r) - {P*X) (t) = 0 a.e. on [a - r, a] , 

while ô" = y'M (P* : Л* -> ^'^{a - r, a) and Q* : Л* ->• iTl'^a, b) are the adjoints 
to P and Q). 

Proof. Let n'eä'l{a,b), ХеЛ*, f e 0tl and Ô'e m*„. Then {ц\Х,у\е')в 
6 Ker ([/*) iff for any (x, tu)eir 

0 = j , U*{f,\X,y\ô')\ = С/ , ('?^^y^'50 = 

ль p - r 
j/XO x(0 df - t]\t) A{t) x{t) dt - riXt + r) B{t + r) x{t) dt -

ri\t + r) B{t + r) u{t) dt + УХМ^ + N x{b)) + ô\x{a) - I) + 
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+ (M, P*X)^ + (x, Q*X)^ = 

= I riXt) x{t) d( + I ГА (2*д) (j)1 Щ d( - г PXO ^(0 dï 
J" J«U< J Ja 

+ 

where 

+ fN x{b) + 6' x(a) - I " q\t) ii{t) àt + {fM - ô') i , 
J a — r 

PXO = '̂ xoÄ{t) + {"'(̂  + \ ^ } ^ ^ ' ^ ' \ l \ y ] - m ) ( 0 on la,b-] 
and 

q\t) = r\\t + r) Б(г + r) - (Р*Я) (/) on [a - r, a\ . 

In particular, putting (̂  = О and x{î) = О on [a, Ь], we get 

(4.5) r\\t + r) Б(г 4- r) - (P*A) {i) = 0 a.e. on [a - r, a] . 

Furthermore, putting x(t) = 0 on [a, b] and u(t) = 0 on [a — r, a], we get 

(4.6) y'M - Ô' =0. 

Let us put 

j p\s) ds - y'N - ô\ t = a 

^'(^) " [ V(s) ds - y W , a < r < Ь j 

[ 0 , t = b 

Then, in virtue of the integration-by-parts formula, 

= [' \n\t) + Г | (ô*A) (ol - öXOJ ^(0 d( - âfX«) <«) 

for all X G j3/^„(a, b). Again, we deduce that 

rb Çb Çb 

(4.7) ^X«) = y\s)A{s)ds Л- y\s)B{s)ds - (ß*l) (5) ds - yW - ^̂  = 0 
J a J a + r Ja 

and 

(4.8) УХО + [ ^ (0*Я) (0l = J^X«) ^(^) as - Ç{Q4) (s) d5 - yW + 

6-r°(fl,b). 
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( 0 , t ^ b - r \ 

for some y' e ^l{a, b), y\t) = r]%t) a.e. on [a, b']. 
By (4,8), [ j / + {àjàt){Q*X)\{a+) anà[f + {àjàt){Q*X)'\{b~) exist, 

p + i(ô*A)J(b-) = -rW 

and according to (4,6) and (4,7) 

The theorem easily follows. 

4,6. Corollary. Le^ //7^ operator Q in (4,2) be a linear and bounded mapping of 
\^l{a, b) into Л, Then {r}\ Я, y\ Ô') e Ker (t/*) iff there is y' e j / ^ „ ( a , b) such that 
y'(t) = ï]\t) a.e. on [a, b] and 

fit) = -fit) A(t) - [y^(^ -̂  %'(^ ^ ^); ; ; ^̂  : ; } ^ (QH) ( O a.e. on [a, b] , 

>'X«) = y ^ M , f(b) = - y W , 

->^^(r + r) B(t + r) + (Р*Я) (̂ ) = 0 a.e. on [a - r, a] 

(P* : Л* -> ^ ^ ( a - r, 0) and ß * : Л* -> ^^(a, b) are adjoints of P and ß). 

Proof. Since for all x e ^l{a, b) and /I G Л* ^ 

<ß^, ^УА = (̂ , ß*^)^ = J'(ß*^) (О ^(0 ̂ ^ ' 

the term [(d/d/) (ß*A)] does not appear in the formula (4,8). 

4,7. Remark. Let ß : =^^(a, b) -^ Л be Hnear and bounded. Then ß is also bounded 
as an operator irl'^(a, b) -^ Л and apparently we have two possible adjoint prob­
lems, defined in Theorem 4,5 and Corollary 4,6, respectively. We must take into 
account that in this case we should write ß * instead of ß* in the former adjoint, 
where ß = QE and E : x E Wl'^[a, b) -^ x e ^l{a, b) is a continuous imbedding 
of irl'\a, b) into £el{a, b). (Given A e Л* and x e irl'\a, b% 

^\Q4) (0 x{t) dt = J ' 11^^ {йП) (0 j x{t) + m){t) x(0} d^. 
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5. REMARKS ON THE CLOSEDNESS OF lm(U) 

All the boundary value type problems which occur in paragraphs 2 and 3 of this 
paper may be formulated as operator equations of the type 

where Î7 is a linear bounded mapping of either ^^ = sé^J^a, b) x ^„(a — r, a) 
or ^^ = sé^J^a, b) X J*'r„(a - r, a) into ^ = ^„{a, b) x Л x ^„ and Л is a 
B-space. The aim of this paragraph is to characterize in some special cases the range 
Im (и) of the operator U and, in particular, to find some conditions guaranteeing 
the closedness of Im (U). 

Let (^ + ^i^)„ (a — r, a) denote the set of all functions w : [^a — r, a] -> M^ 
for which there exist functions и G ̂ „(a — г, a) and v 6 ^f^J^a — r, a) such that 
w(t) = u(t) + v(t) on [a — r, a ] . 

In what follows we make use of the following lemma which is a slight modification 
of the variation-of-constants formula due to H. T. Banks [1]. 

5.1. Lemma. Let the n x n-matrix function P(t, S) fulfil the corresponding 
assumptions from Sec. 3,4. Given f e ^„i^, b) and и e{^ + ^i^\(a - r, a), 
there is just one solution to the initial value problem ((3,5), (3,6)) 

^(0 = J _ l^A^, Щ 4t + 3) + / ( 0 a.e. on [a, b] , 

x(t) = u(t) on [a ~ r, a~\ . 

There exist a linear operator Ф : (^ + ^i^\ {a - r, a) -^ sé^J^a, b) and a linear 
bounded operator W : ̂ „ (a , b) -^ sé^J^a, b) such that this solution is given by 

(5.1) ^ х = Фи + ^ ' 

The operator Ф as a mapping ^i^„(a ~ r, a) -^ sé^J^a, b) is completely continuous 
and as a mapping ^„(a — r, a) ~> sé^J^a, b) bounded. Moreover, ifb — r'^a 
and if Si,:xe sé^rkP', b) -^ хЦЬ ~ r,b'\e ^„{b — r, b), then the operator T = 
= 5̂ ,Ф : ^„(a •- r, a) -~> ̂ Jb — r. b) is completely continuous. 

(The compactness of Ф : ̂ Y'J^a — r, a) -^ sé^J^a, b) was shown in [13] and the 
proof of the compactness of Tcan be find in [7], Remark 8,9.) 

5.2. Remark. It follows from the special form of the operator Ф (cf. [1]) that for 
any w e (^ + ^i^X (a - r, a) 

(5.2) Фи =Ф^и{а) + ФЫ, 

where Ф ^ ^„ -> j/<^„(a, b) is Unear and bounded and Ф^ : (^ + ^Г)„ (^ ™ ̂  a) -> 
-^ -^"^„(a, b) is linear and completely continuous as an operator ^"fj,^ "" »̂ ̂ ) "^ 
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-> sé^J^a, b) and bounded as an operator ^„(a -r, a) -> j/^„(a, b). Moreover, 
if V is a simple jump function v(i) = 0 on [a — r, a) and v(a) = ^, then Ф̂ у = 0. 

5,3. Problem (3,5)-(3,7). Let us turn back to the problem (3,5)— (3,7) whose 
adjoint was derived in Sec. 3,4. Let Л be an arbitrary B-space and let the operators 
M : ̂ „(a — r, a) -^ Л and N : j/^„(a, b) -> Л and the n x n-matrix function 
P{t,S) fulfil the assumptions of Sec. 3,4. Let / e J^„(a, b) and I e Ä. Let us put 
^^ = j/^„(a, b) X ^„{a - r, a), ^ = ^„(a, b) x Л x ^„, 

Pi : X e j / ^ , (a , b) -> [d^P(r, a)] jc(̂  + 5) e if „(a, b) , 
J max( —r,a—f) 

Лтах(-1 ' ,а-0 

P^-.ue C„{a -r,a)-^\ \d^P{t, Щ u{t + 9), e ^„(a, b), 
and 

(5,3) U-.rje^. 
Dx — P^x — P2W 

Mu + Nx 
и(а) — x(a) 

(where again D : x e sé^J^a, b) -^ x e câf„(fl, b)). The system (3,5) —(3,7) is equivalent 
to the operator equation 

(5'4) t / ( : ) = | [ 

5,3,1. Theorem. Let Im (M + МФ) be closed in Л, then the operator U defined 
by (5,3) has closed range Im (U) in ^. 

Proof. Let [f,l,d)e^. According to the variation-of-constants formula (5,1) 

a couple { j e ^^ is a solution to the equation 

K:)= 
iif 

x= Фй + ¥f = Ф%и{а) + d) -{- Ф^и + Wf := Ф''d + Фи + Wf, 

where ü = и + щ, uj^t) = О on [a - r, A), ujia) = d{Ф^u^ = 0, cf. Remark 5,2) 
and и e ^„(a — r, a) is a solution to the operator equation 

[M + МФ] и = -NWf + I - NФ^d . 
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Let us denote 

гл 
^ - > -NYf + I - МФ^аеЛ. 

Then 5(lm (U)) = Im (M + МФ) and since the operator S is linear and bounded, 
our assertion readily follows. 

5.3.2. Corollary. If Л = ^ ^ , then Im (U) is closed in ^. 
(In this case Im (M + ]УФ) is a A: — dimencional (0 g fc ^ m) hnear subspace of ^^ . ) 

5.3.3. Corollary, Let 0 ^ r S Ь ~ a, Sj, : x e j^^„(a, b) -^ x \ [b ~ r, b] e 
e ^„(b — r, b) and let N : ̂ „(b — r, b) -^ Л be linear and bounded. Let the oper­
ator и be given by (5,3), where N is replaced by iV̂ , = TVŜ ,. Then, if the operator M 
posseses a bounded inverseM~^ : Л -> ^„[a — r, a), the range Im (U) of U is closed 
in ^ . 

Proof. By Theorem 5,3,1 Im (U) is closed in ^ if the range of the operator 

M + ^З^Ф = M + NT:%la - г, a)-^ Л 

is closed. Since by Lemma 5,1 the operator T = З^^Ф : ̂ „(a — r, a) -^ ^„(b — r, b) 
is completely continuous, the existence of a bounded M~^ implies the closedness 
of Im (M + NT) and hence also of Im (17). 

5.3.4. Remark. Our restriction to two-point boundary value type problems in 
Corollary 5,3,3 does not mean an essential loss of generahty (cf. [8]). 

5.3.5. Corollary. The T-periodic problem (3,5), (3,6), (3,20) (cf. Sec. 3,9) has 
a solution iff 

J: y\s)f{s) ds = 0 
0 

for all T'periodic solutions y\t) (i.e., y\t) = y\T + t) on [ —r, 0)) of the equation 

y\t) + y\s) P(s, t — s)ds = const, on [^ — r,T—r]^. 

(Proof follows from Corollaries 3,10 and 5,3,3.) 

5,3,6. Remark. Let A^ be a B-space and let the operators M^ : ^„{a — r, a) -^ A^ 
and iVi : j / ^ „ ( a , b) -> A^ be Hnear and bounded. If Л = ^„(a — r, a) x A^ and 

M : M 6<^„(a - r, a) -> [ j ^ J e ^ , N : x 6 ^ '^„(a, Ъ) -* [ j v ^ ^ ^ ' 
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then the operator U given by (5,3) has closed range Im (U) in ^ = ^„{^^ ^) ^ 
X ^„(fl — 1% a) X Ai X ^„ . (Indeed, according to Lemma 5,1 an element (/, h, /, d) 
of ^ belongs to Im {U) iff 

F{f, h, I, d) = N,Wf + (Ml + М,Ф) /î - / + М.Ф^'а = О . 

It is easy to see that the operator F : ^ -> /li is linear and bounded. Consequently, 
the set Im (U) = Ker (F) is closed in ^ . ) 

5,3^1. Remark. All the assertions of this section will remain true if we replace the 
initial space ^„(a — r, a) by ^i^„[a — r, a). Moreover, Corollary 5,3,3 could be 
now formulated directly for a general hnear bounded operator N : sé^J^a, b) -^ A. 
( N need not be of the two-point character N = NSfy.) This is possible in virtue of the 
compactness of the operator Ф : ^i^Ja — r, a) -^ .sé^J^a, b) in the variation-of-
constants formula (5,1) (cf. Lemma 5,1). 

5,4. Problem (2,1) —(2,3). The subject of this section is the general problem of 
finding X e sé^J^a, b) and и e ^i^„{a — r, a) which satisfy (2,1) —(2,3). Let Assump­
tions 2,1 be fulfilled. We make use of the notation introduced in Sec. 2,3. (Only 
^n{a — r, a) should be replaced everywhere by ^i^„{a — r, a).) 

5,4Д. Lemma. Let —co<c<d< +oo and let X(r, s) be an n x n-matrix 
function defined and Borel measurable in {t, s) on [a, b] x [c, d^ and such that 
varf K(r, •) < 00 for any te [a, b], while 

(var^X(^, •) + \K{t, J)||) dr < 00 . i: 
Then the operator 

K:ue ^r„{c, d) -> [d,K{t, s)] u{s) e SeJ^a, b) 

is completely continuous. 

Proof. The operator К is surely linear and bounded. 
Let {M^*}JLI CZ ^r„{c, d) and ||w^'||^^ < 1 (j = h 2, ...)• Then by Helly's Choice 

Theorem there exists a subsequence {w '̂} с {u^'] and u^ e ^i^Jc, d) such that 

lim u'\s) = u\s) for all s e [c, d] . 
• • i - > -oo 

Let us put for s G [с, d] and / = 1,2,. . . 

v\s) = ||a^-'(s) - Л4 

and for f, s e [a, b] x [c, d] 

fc((,s) = var^K:((, • ) • 
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Then \\v\s)\\ S \\u^\\^r + 1 on [c, d\ for any / = 1, 2,. . . , varj /c(r, •) = var^X(r, •) 
for any t e [a, b\ and by the unsymmetric Fubini theorem 

II f [ d ^ ( ^ s)] {u^is) - u\s))l dt й [ Y f [d./c(f, s)] v4s)\ dt = 

= [TdJV5)dflt>'(s). 

Given a subdivision {c = SQ < s^ ... < s„ = d} of [c, d], 
m Ij /•& Ij ЛЬ / m \ 

S W^ 5,) ~ fc(f, 5,.i) dr ^ E \\k(t, sO - % 5,_0|| dt й 

< 00 . 

Thus 

sf\y^4Kt^'))dt 

var^ k{t, • )dn < 00 

and according to the dominated convergence theorem for Perron-Stieltjes integrals 

or 

hm \ \dA k(t, s) dt] v\s) = 0 
/->oo J с \_ J a J 

r^ II 
[d,K{t, sj] (u'^s) - u%sm dt = 0 

J с II 
lim \\Ки'' - КиЦ^ = lim 
г->оо 1->оо 

which completes the proof. 

5.4.2. Remark. The operator 

и e ^„(c, d) -> [d,K{t, s)] u(s) e if „(a, b) 

(with K(t, s) fulfiUing the assumptions of Lemma 5,4,1) need not be generally сощ« 
pletely continuous. 

5.4.3. Theorem. / / the operator M : ̂ i^„(a — r, a) -^ Л has a bounded in^ 
verse M~^, then the operator U given by (2,4) (with ^„(a — r, a) replaced by 
^'Vj^a — r, ö)) has closed range in ^, 

Proof. By Lemma 5,1 appHed to initial value problems of the type 

x(t) = A(t) x{t) + B{t) x{t - r) + g(t) a.e. on [a, b} , 

x(t) = u{t) on [a — r, a^ , 

62 



the triple (/, l,d)E^ belongs to Im (U) iff there is a solution 1^]еЖ^ = J^^„{a, b) x 

X ^i^J^a — r, a) to the system of operator equations 

(5.5) X - WG^x - Фи - WG2U = Wf + Ф^а, 
Ми + Nx = I, 

where the operator Ф : ^i^„{a - r, a) -^ ^"^„(Ö, b) is linear and completely con­
tinuous and the operators Ф̂  : ̂ ^ -> sé^J^a, b) and W : ^„{a, b) -> j^^„(a, b) 
are linear and bounded. Since there exists a bounded inverse M"^ of M, the latter 
equation in (5,5) yields и = M'^l - M~'^Nx, while the former becomes 

X - {ФМ-^N + TG, + 4'G2M-^N} и = Wf + {Ф + WG2) M'H + Ф ^ . 

Let us put К = ФМ-^N + 4'G^ + WG2M-^N, 5(/, I d) = Wf + {Ф + WG2) . 
. M"^/ + Ф^а aiid let/ denote the identity operator on sé^J^a, b). Then 5'(lm (U)) = 
= Im (/ ~ K) and since S :^ -> sé^J^a, b) is linear and bounded, Im (U) is closed 
if Im (/ — К) is closed. The operators G ,̂ G2 are completely continuous by Lemma 
5,4,1 and since the operators M~^,N and !F are bounded the operator К is also 
completely continuous and Im (/ — К) is closed. 

5,4,4. Remark. As an easy consequence of Theorem 5,4,3 we obtain that in the 
case of the T-periodic problem (i.e. a = 0, b = T, r < T, Л = s/^„{ — r, 0), M == I, 
N :xe j/^„(0, T) -> XT{S) = x{T -\- s)e sé^J^-r, 0) and / = 0) the range Im ((7) 
of 17 is closed in ^, 

5,5. Boundary value problems for ordinary integrodifferential equations. If r = 0 
and A = 01^, then the given problem (2,1) —(2,3) reduces to the boundary value 
problem for an ordinary integrodifferential equation of the form 

(5.6) x{t) = A{t) x(t) + I [d,G(/, s)] x{s) + / ( 0 a.e. on [a, b] , 

(5.7) iVx = / , 

where the n x n-matrix function A{t) is J^f-integrable on [a, fo], var^ G(f, •) < 00 
for any t e [a, b], 

'\^x\G{u^)^'\G(t,b)\)àt<a,, i 
/ e J^„(a, b), I e m^ and the operator iV : sé^J^a, b) -^ ^^ is linear and bounded. 
(The initial space reduces to ^„.) 

Let us reformulate the problem (5,6), (5,7) as the operator equation 

Ux = . 
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where 

(5.8) U:xes^<^„{a,b)->(^'' ^ ^ ^ Л 6 jSf„(a, b) x i^^ 

and the symbols D, A, G have the obvious menaning. 

5Д1. Theorem. The operator U defined by (5,8) has closed range in 
X m^. 

Proof. There exist Hnear and bounded operators Ф̂  : ̂ „ -> j/^„(a, b) and W : 
: =^„(a, b) -^ sé^J^a, b) such that an n-vector function x{t) is a solution to the given 
problem iff 

X = Ф'^с + Th + Wf, 

where the couple (h, c) e =^„(a, b) x ^„ (/z = Gx) is a solution to the system 

(5.9) h - {G0'')c - {GW) h = {GW)f, 
{МФ^)с +{NW) h = I ~ {NT)f. 

(АГФ^) is a constant m x n-matrix. Let e.g. m < n. Putting 

(Op^q denotes the zero p x ^-matrix and /„ is the identity n x n-matrix), 

к : 0 e :. .(«. 6) x « . . [ ( « > _+ ( f > " ] e ^ . (« , 6) x « . 

and 

S : ( Л 6 ^„(a, b) X ^ „ - . \f^^/f~\ e ^„(«. b) x i^„, 

the system (5,9) becomes 

and S(lm (U)) = Im (/ — К). Since by Lemma 5,4,1 the operator G is completely 
continuous, it is easy to verify that the operator К is completely continuous. It means 
that Im (/ — К) is closed and taking into account that the operator S is linear and 
bounded we complete the proof. The case m > n can be treated analogously. 
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Let N(t) be an m x /i-matrix function of bounded variation on [a, b] and let the 
operator N be given by 

(5,10) N :xe ^^^„{a, b) -> [dN{s)] x{s) e M^ . 

Without any loss of generality we may assume that for any t G [a, b\ the functions 
G(^, •) and N are right-continuous on (a, b). Let us put for t e [a, b] 

C{t) = G(r, a +) - G{u a) , Z)(/) = G(r, b) - G(r, b - ) , 

!

G(f, a + ) for 5 = a , Г]У(а + ) for 5 = a , 

G(f, 5) for a < s < Ь , L(s) = \N{S) for a < S < b , 
G{t, b-) for 5 = fe , [N{b-) for s = b, 

M = N(a +) - N(a) , N = N(b) - N(b-). 
Then similarly as in Sec. 3,3 we obtain that the adjoint problem to (5,6), (5,7) is 
equivalent to the problem of finding y e ^i^Jia, b), right-continuous on [a, b) 
and left—continuous at b and кеМ^ such that 

(5,11) y\t) = y\b) + j V ( ^ ) Щ ^' - J V ( ^ ) {Go{s, t) - Go(5, b)) as + 

-b l\L{t) - L{b)) on [a, b] , 

(5Д2) y\a) = Я^М - I y\s) C{s) as , y\b) = - A W + | j^X^) ^(5) ds . 

The following theorem is then a direct corollary of Theorem 5,5,1. 

555,2. Theorem. The problem (5,6), (5,7) possesses a solution iff 

гь 
/(5)/(s)d5 + Г / = 0 

Ja 

for any solution {y^if), Я") of the adjoint problem (5,11), (5,12). 
Theorem 5,5,2 generalizes Theorem 3,1 from [12]. 

Acknowledgement. The author wishes to express his appreciation to Professor A. 
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and have given rise to § 4 of this paper. 
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