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PLANES WITH COMPARISON OF HALL AND HUGHES FRAMES
AND WITH EXAMPLES OF GENERALIZED OVAL FRAMES

VAcrLAv HAVEL, Brno

(Received January 17, 1974)

In this Note we shall suggest a general way of coordinate labeling of points
and lines of a given projective plane by couples of elements of some set S. We shall
denote such a labeling rule a frame. Every frame determines a “coordinative” con-
sisting of one quaternary relation on the set S and of two equivalence relations on the
set S2. Conversely, every coordinative determines, up to isomorphisms, just one
projective plane. Further we shall investigate special frames as a halfcartesian
frame, a cartesian frame, a Hall frame and a Hughes frame. These special frames give
rise to planar ternary rings. An intimate connection between Hall and Hughes
planar ternary rings (corresponding to the cases of Hall and Hughes frames) is
described and explained. Finally generalized oval frames are studied. For Hall’s
approach, cf. [3]—[4] and for the Hughes’ one, see [5]—[6]. Planar ternary rings
with zero are for the first time investigated in [10]. For general planar ternary rings
see [8]—[9]. The references of articles on oval coordinates are not given except the
stimulating paper [1] of R. Artzy.

Let (2, £, 1) be a projective plane of order n, (P_, 1,)) €I a fixed flag, S a set of
cardinality n and = : §* > Z\1,, 4: 8% > £\ P_, bijections.*¥) For every (u, v) e
€ 8%, u is called the slope and v the intercept of the line (u, v)*. Then a quaternary
relation Q in S such that (x, y,u,v)e @ : < (x, y)® I(u, v)* and equivalence relations
I, p on S? such that

(xu .V1) l (xza )’2) =1l e ﬁw N\ {lcn} (x,, )ﬁ)n, (xz, ,Vz)" 17,
(u1, v1) P (43, 05) > IP el N{P}  PI(uy, v,)?, (uy, v,)*
*) If (2, Z, 1) is a projective plane then denote by 4 LI B(a M b) the line joining two distinct
points A4, B (the point at which two distinct lines a, b intersect). Further let 4 (@) denote the set
{le 2| 411} {Pe 2| Pla}) forevery A € P(ac £). 1t is well known that any set S the

cardinality of which is equal to the order of the given plane satisfies #S2= #(£\1],) =
= #(-7\ i,au)
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are well-determined. It can be readily shown that
(i) V(c,d) e S? 1eS?*1 3'(a,b)eS* (a,b,c,d)eQ, (a,b)el,
(i) V(a, b) e S? pe S*p 3'(c,d)eS* (a,b,c,d)e @, (c,d)ep,
(iii) V(ay, by), (a3, b,) € S%; (ay, by) non l(ay, by) 3! (c, d) e S?
(al’ bl, [ d)9 (az, bZ, c, d) € Q9
(iv) Y(cy, dy), (c2, d3) € S%; (cy, dy) non p(c,, d;) 3! (a, b) e S?
(aa b, cl’ dl)’ (a, b, 621 dZ) € Q‘

A quadruple (P, I, m, ) will be called a frame and the quadruple (S, Q, p, /)
is said to be corresponding to it.

Now define a coordinative as a quadruple (S, @, p,[), where S is a set with
#S = 2, Q is a quaternary relation in S and p, [ are equivalence relations on S
satisfying (i) to (iv).

To every coordinative (S, Q, p, I) there exists a projective plane (2, £, 1) together
with its frame F = (P, l,, n, A) such that (S, Q, p, ) corresponds to F.

Proof. First define 7 := §? n S?[p u {0}, £ := S?U S?[l U {0} with disjoint
summands. Secondly define I € £ x & by the rules

(x, ) I(u,v) = (x, y,u,0)€Q Vx, y,u,veS,

(x, y)I1 = (x, ) el vl e S?[1,
ploo Vpe S?p,
oIl vl e S?[1,
pI(u,v):=(u,v)ep VpeS?p,
oloo.

It can be easily verified that (2, %, I) is a projective plane. If we choose 7 : S* —
- P\N®, A: 5% - £\ to be equal to identity mapping ids then (o0, 00, ids2, ids2)
is a frame of (2, &, 1) and the corresponding coordinative is equal to the original
one. m

We shall call the projective plane from the proof a plane over a given coordinative.

Now we shall introduce some important kinds of frames for a given projective
plane (#, Z,1). A frame (P, l,,, 7, 1) is said to be halfcartesian if in the cor-
responding coordinative (S, @, p, I), p and I satisfy

(I) (*15 1) l(xz’ y2) 1 Xy = X,
() (“1’ v)p (uz, vy) 1 UL = U,
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Then conditions (i) — (iv) assume the following form:
(i) Va,c,deS 3'beS (a,b,c,d)eQ,
(ii') Va,b,ceS 3IdeS (a,b,c,d)e0,
(iii") V(ay, by), (az, by) € S?; ay *+ a, 3'(c,d)eS?
(ay, by, ¢y, dy), (ay. by, €3, d>) € O,
(iv') V(cy» dy), (¢35 d2)€S? ¢y £ ¢, 3!(a,b)eS?
(al, bl, Cys d1)7 (aZ, b2, Cas d2) € Q

A set S, #S = 2, together with a quaternary relation @ in S satisfying
(i) —(iv") will be called a planar relation system. Any given planar relation system
(S, Q) determines automatically both the equivalence relations 7, p on S? satisfying
(2), (p) so that we can consider (S, Q) itself a coordinative.

For every planar relation system (S, Q) construct a projective plane isomorphic
to the projective plane over it substituting every [ € S?/I by the element x € S such that
(x, y) el VyeS and similarly substituting every p e S?/p by the element u € S such
that (u, v) e p Yo e S. We get the projective plane (S> U S U {e0}, S? U S U {0}, T)
where

() I, v):=(x, y,u,v)e @, (x,y)Ix Vx,yeS,
ul(u,v) Vu,veS, uloo VueS, oolx VxeS, owlow.
For simplicity we shall say again that this plane is over (S, Q); it will be always clear
from the context which of both cases is meant.

If (Pw, lss 7, l) is a halfcartesian frame and (S, Q) its corresponding relation

system, then define ternary operations T, T* over S by virtue of

(a, T(a,c,d),c,d)e Q@ Va,c,deS; (a,b,c,T*(c,a,b))eQ Va,b,ceS.
Conditions (i")—(iv") are then
(ipan) Tis well defined;
(iigan) Va,b,ceS 3'deS T(a,c,d) = b;
(iigay) Vay, by, ay,b,€8; a; +a, e, deS T(ay, c,d) = by, T(ay ¢, d) = by;
(iVian) Yoy, dy,ca,dy €8S ¢+ ¢, FlaeS T(a, ¢y, dy) = T(a, ¢z, dy);
or, respectively, '
(ltugnes) Ya,c,deS 3'beS T*(c, a,b) =d,
(lipugnes) T* is well defined;
(lliygnes) Vay, by, az, b, €8; ay £ a, 3lceS THc, ay, by) = T*(c, ay, by);
(ivHughes) Vey,dy, ¢3,d2 €85 ¢ # ¢, 3! (a, b) e S? T*(cy, a, b) =d,,
T*(c, a, b) = d.
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A ternary system (S, T) will be called planar ternary ring if 4#S = 2 and if
(i) — (iVya1y) hold. The above planar ternary rings (S, T), (S, T*) are said to be
Hall-corresponding or Hughes-corresponding to the given frame, respectively. We
see at once that they are isomorphic because (iiy,);) coincides With (igygnes)s (iiipar)
with (iViygnes) and (Vi) With (iliggnes) if We replace Tby T*.

A cartesian frame (with zero) is defined as such a half-cartesian frame (Poos 1ops 7, )
for which there is an element 0 € S such that

() (0,b,c,b),(a,b,0,b)e @ Va,b,ceS.

In virtue of (v') it follows

Va,b,deS; a+0 IceS (ab,cdeQ,
Vb,e,deS; c+0 3aeS (ab,c,d)eQ.

Thus we can introduce mappings T; : S x (S\{0}) x S > S, T3 :(S\{0}) x
x S x S-S by virtue of (Ty(b,c,d),b,c,d)eQ Vb, c,deS; ¢+ 0; (a,b,
Ty(c, a, b), d)e Q Va, b, ce S; a + 0 and denote the preceding ternary operations
T. T* in this context also by T, Ty.

Condition (v') can be re-written as

(Vian) T(0, ¢, b) = b, T(a,0,b) = b Va,b,c€S,
or
(Vitughes) T*(a, 0, b) = b, T*(0,¢,b) = b Va,b,ceS.

Thus (Vyay;) coincides With (Viugnes) if We replace T by T*. The planar ternary ring

(S, T) possessing an element 0 € S with (Vi) is said to be with zero. A frame (Pos

1., 7, l) is called Hall frame if it is cartesian (with Zero 0) and if there exists an

element 1 € S\ {0} such that:

(@) (x,x)*1(0,0)" L (1, 1)* VxeS (Fig 1),

(b) the slope u of any line le £\P, is given by (1, u)* = ((1, )" L1 P,) M
1 ((0, 0" w (1 M 1)), whereas its intercept v is determined by (0,v)" I I
(Fig. 2).

What additional algebraic condition corresponds to the case considered?

0x)" (1,1)"
(x,x)" o)
(1,u)”
(0,0  (x,0" (0,0)™
Fig. 1. Fig. 2.
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It is easily seen that this will be the condition
(Vigay) T(a,1,0) = T(I,a,0) = a VaeS.

Conversely, if we start from a cartesian frame (PCL, le, 7, A) and suppose the validity
of (Vigay) for the Hall-corresponding planar ternary ring (S, T) then for every a € S
we have (a, a)*1(1,0)%, (1, a)*I(a, 0)* This together with (vy,,) implies (0, 0)%,
(1, a)*1(a, 0)* and (0,b)*1(a, b)*. Here the lines (a, 0)*, (a, b)* are distinct and
without intersection point in Z\ 1, (Fig. 3).

The planar ternary ring (S, T) is said to be with zero and unity or more briefly
a Hall ring if there exist elements 0, 1 € S; 0 # 1 such that(vy,,) and (vi) are valid.

Condition equivalent to (viy,);) expressed in terms of T* is

(Viugnes) T*(1, a,0) = T*(a,1,0) = a VaeS.

Let (S, T) be a Hall ring. Then it is usual to introduce two induced binary opera-
tions + g, *7 over S by virtue of

x +rv:=T(x,1,0) VYx,veS,
x cqpu:=T(x,u,0) Vx,ueS.
These operations play an important role in the study of Hall rings and connect them

with the theory of loops (geometrically: this will be a connection between projective
planes and nets).

To describe the definition of + and - geometrically let us introduce the following
notation:

0,0 =:0 (origin)

0,001, =:X (the improper point of x-axis),
P, =Y (the improper point of y-axis),
(11 =:u (unity point),
(1,00m1,=:2 (the improper diagonal point),

((z,00 (0, 1))y M 1, =:Z* (the improper antidiagonal point)
(0,x)* =:P, Vxe S (the representing point of x € S).

Then for all x, v € S we have the well-known expressions P, ., := (P, 10 X) M
NOuzZ)uX)m(P,uZ)uX)m (0Y) and for all x, ue S we have

Pei= (PouX) M QU Z) LY) M
A(P,UuX)MULUY)uo)uX)m(OuY).
(Fig. 4—5).
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r
(O,X":,.V)W (1,1)

0,x)"
. .
(0, V)?r o,u)” P o
0, *(1,u
( x) ,x, x)jT (O,X‘r u ).71'
(0,0)" 0o
Fig. 4. Fig. 5.

Pose a question: What does (Vigyghes) mean geometrically for a given cartesian
frame (P, I, 7, 2)?

The answer is: For every a € S the equation T*(1, a, 0) = a means (a, 0)" I (I, a)*
and the equation T*(a, 1,0) = a means (I, 0)"I(a, a)*. Thus the line (I, 0)" L
Lt (0, )" must have the slope 1 and for a + 0 also (a, 0)" Lt (0, a)" has the slope I
(because of (a, 0)", (a, 0)*I(1, a)* since (0, a)"1(1, a)*) and again for every ae S
(without exception) we obtain similarly (1, 0)* L1 (0, a) = (a, a)*.

Thus we have (Fig. 6—7):

(1) the line (a, 0)* LI (0, a)" has the slope I for all a e S\ {0},

(2) if the line I € # \ P, intersects the line (0, 0)" Lt P, at the point (0, b)" then the
intercept of I will be b,

(3) the line (1, 0)* Lt (0, @)™ has the slope a for all a € S,

(4) any two distinct lines from %\ P, which intersect at the point of [ \{P,}
have the same slope.

s (0,0)”‘

slope 1

- (a,0)” , S
(0,0) (0,0)" (1,0

Fig. 6. " Fig. 7.

Conversely, if we realize bijections 7, A in a cartesian frame (P, I,,» %> 4) with zero 0
so that (1)—(4) are fulfilled for an element I €S {0} then (Vinuges) holds. We
speak then of Hughes frame.
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The geometric sense of operations =+ s, *s, Where (S, T*) is the Hughes-cor-
responding planar ternary ring to a Hughes frame, is the following: Write u + 7. y :=
:= T*(u,1,y) Yu,y€S; u 1. x := T*(u, x,0) Yu,x € S and denote P, := (0, a)"
for every a € S. Then we have at once P,, ., :=(P,ux) (UwY))u(l,r
NP,uU((UuY)m@uX)))M(0uY) Vu,yeS (Fig. 8—9) as well as
Prrwi=(((PruZ9m(0uX)u(UuXx)uP)ml,) (0L Y)Vu,xes.

0,4+ y)™
(0,u)™
(0,u)”
(0,u-x)
( 1,)/)’r U
©,y)"
R (1,0
0,0 (1,07 - 001" (x,0)"
Fig. 8. Fig. 9.

It is interesting that Hughes himself introduces another addition (which we shall
denote here by @) for which x ®7.y := T*(1, x, y) Vx, y € S. This has a very
simple geometric meaning, namely (Fig. 10)

Pigry =((P,uZ)m(OuX)uyY)m(P,uX)uzZ*) (0 Y)
Vx,yesS.

Now what is the geometric meaning of @, with respect to Hall frame?

Write u @7 v := T(I,u,v) Vu,veS and this means (Fig. 11)

Pioro = (P, uX)ymUuY)wo)ym il )uP)m(ULY)X)m
MOuUY) Vu,veS.

(0, x+r y)™
i r
(0,utv) (1,us.v)
(O,Y)W .’X, )')JT
(0,x)" 0,u)”
,v)" (1,0)"
g
(0,0" (x,0) (0,0)"
Fig. 10. Fig. 11
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Let (#, Z,1) be a projective plane and 0 = #. We shall say that the point A€ @
is oval point of @ if there exists just one a € & with A I a, #(0 N a) = 1 (the so called
tangent line) and if #(I N 0) =2 for all e £\ {a} with AIIl. Now let 0 = &
have three pairwise distinct oval points 1, X, Y (set also Y =: 0) with tangent lines
1, tx, ty. Asty + ty, the point ty M ty must exist (Fig. 12). Define a frame (P, [, 7, 1)
as follows (Fig. 13—14): P, :=Y, I, := X LY, S := 0\ {X}; further choose two
permutations a, § of S such that « interchanges X, Yand fixes I and f fixes X, Y. Then
for all x, ye S put (x, y)*:=(y W X) M (x* 1Y) and for all u,veS; u =+ I put
(u, v)* := (0, v)" L ((I L u’) M 1,) whereas for every ueS we put (u, I)*:=
:=(0,v)" L (¢t M 1,). It can be readily verified that (P, l,, 7, 4) is a cartesian
frame, so that its Hall-corresponding planar ternary ring (S, T) is with zero and the
set {(x, x*) | xe S} U {0, 0} of points of the projective plane over (S, T) contains
three mutually distinct oval points 0, oo, (1, 1) the tangent lines at the first two being
(0,0) and 0. We shall speak of a generalized oval frame. In case that @ is oval this
frame is well-known, see for instance [1].

ty
t
1
tY 0
X
ten ty
Fg. 12.

Fig. 13.

In the conclusion we introduce several examples of generalized oval frames for
which the set @ is not an oval.
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(after oral communication given by G. Tallini in 1969). Let (2, %,1) be the
projective plane over the planar ternary ring (R, T) with T:(a, b,c) > a.b + ¢
where (R, +, *) is the field of all reals. Then @ := {(x, 1/x)| x € R} U {0, oo}
is an oval. We shall change it into the set @ := (0~ {(=1, —1,)}) U {(0, 0)}.
Now 0, o, (1, 1) are distinct oval points of ¢ with tangent lines (0, —1), —1,
(=1, 2). The lines through the point (0, 0) intersect @ generally in three distinct
points so that @ is not an oval.

Start in the same plane with the same oval 0. Leave 0, := {(x, 1/x) | x € R,
x >0} U {0, 0} unchanged but replace @,:= {(x,1/x)|xeR, x <0} by
a polygon with sides of the same length but non-parallel to the lines with slope —1
and with vertices on 0,. Denote this new set by @. Then 0, oo, (1, 1) are distinct
oval points of @ with tangent lines (0,0),0,(—1,2). Here 0 is not an oval because
it contains segments.

Now let (2, £Z,1) be the projective plane over the planar ternary ring (Q, T)
with T:(a, b,c) > a. b + c where (Q, +, *) is the field of all rationals. We use
one result of A. Barlotti from [2] about the existence of 2-curves in (2, Z, I)
with prescribed set & of all exterior lines and with prescribed set 7 of all tangent
lines such that & N Z = 0 and such that for every [ € & \ & there exist infinitely
many points on [ with the property that no line from (&€ n ) \ {I} passes through
them. Choose & := {(u,0)|ue Q, u <0}, 7 :={(0,0),0,(—1,2)} (Fig. 15).
Then the requirements of Barlotti are fulfilled so that there exists a 2-curve 0
in (2, £, 1). Tangent points on the lines (0, 0), 0, (—1, 2) with respect to 0 are
the only oval points of @. The construction is complete.

BN

T = ftototy) \ %

Fig. 15.
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