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PRIME SUBGROUPS OF ORDERED GROUPS

Jiki RACHUNEK, Olomouc

(Received May 21, 1973)

In this paper some concepts known for lattice-ordered groups (l-groups) are
generalized to ordered groups (henceforth po-groups) and their properties are
investigated.

In the first section prime subgroups of G are studied (for I-groups see e.g. [1],
[6], [7]). Theorem 1.5 gives equivalent properties of prime subgroups of the 2-
isolated Riesz groups. The second section concerns properties of §-polars in G — see
also [5]. (For the basic properties of polars in I-groups see e.g. [4].) A §-polar is
proved io be a directed convex subgroup (hence a dc-subgroup) and the set of
5-polars in the case of 2-isolated subgroups with the property (II) is shown to be
a complete Boolean algebra if it is ordered by inclusion (Theorem 2.6). In Theorem
2.9 a relationship between the dual principal d-polars and the prime subgroups of G
is investigated. In the concluding section the notion of an o-filter and that of an
o-antifilter in a po-set is introduced and the connection between the prime subgroups
of a 2-isolated Riesz group G and the o-filters of G* is described, as well as a property
of o-antifilters of the po-set of all the dual principal polars in G. By means of this
result it has been possible to generalize some results for I-groups contained in [7]
Throughout this paper the terminology of Fuchs’s book [2] has been followed.

Note. A. M. W. Grass has also studied prime subgroups and polars in Riesz
groups (in [9]). However, his results do not coincide with those of this paper.

The author wishes to express his appreciation of valuable suggestions given on this
paper by Professor F. SIK.

1. A directed convex subgroup P of a po-group G will be called prime if for any
two dc-subgroups A, B of G suchthat P 2 A n Bit holds P = A or P 2 B.

Proposition 1.1. If P is prime, A, B dc-subgroups of G,A > P, B > P, then
AN B> P.

Proof. Cleartly AnB=2P.Let AnB=P. Then P2 AnBand thus P2 4
or P 2 B, a contradiction.
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If x,, ..., x, are elements of a po-group G, then we denote U(x,, ..., x,) = {y € G:
y=x, foral i=1,..,n}, Lx,....x,) ={zeG; z<x, for all i =1,...,n}.
For any element x € G we write |x| = U(x, —x).

Lemma. Let A be a directed subgroup of a po-group G. Then A is convex in G if
and only if it satisfies the following condition: if ae A, xe G, |x| 2 |a|, then
xeA.

Proof. Let A be a dc-subgroup of G, a€ 4, xe G, |x| 2 |a|. Since 4 is directed,
there exists ye [a] N A. Therefore y = a, y = —a and by the assumption also
y=Xx,y= —x,i.e. —y < x =< y. Since A4 is convex, x € A. Conversely, let A be
a directed subgroup of G satisfying the given condition. Since A4 is a directed subgroup,
the proof of convexity will be given if we show that ae 4, —a < x < a implies
xeA (see [2, LIL4]). Thus, let ae A, —a < x < a. However, this implies that
azx, a=—x. If now y>2a, y= —a, then y =2 x, y =2 —x. Consequently
|a| = [xl and hence by the assumption x € A.

A po-group G will be called 2-isolated if it holds: If a € G satisfies a = —a, then
a=0.

Note. Any po-group with an isolated order (and thus any I-group) is 2-isolated.
(See Proposition 2.1.)

Proposition 1.2. Let G be a 2-isolated po-group,® + A = G*,[A] a subsemigroup
of G generated by A. Then C(A) = {x e G; |x| 2 |p| = U(p) for some pe[A]} is
the smallest dc-subgroup of G containing A.

Proof. Let us first prove that C(4) is a subgroup of G. Let x, y e C(4), i.e. [x| 2
21|p|, |v| 2 |q|. where p,ge[A4]. It holds |x — y| 2 |x| + |y| + |x|. Indeed,
if ze|x| + |y| + |x|, then z = x, + y, + x,, where x;, X, €|x|, y, €|y|. Thus
Xi, X, 2 X, —X; ¥, =y, —y. Since G is 2-isolated, x;, x5, y; = 0 and therefore
X+ +x,2x—y+0=x—y,x; +y; +x, 20+ y —x =y — x. Thus
zZE [x — y|, ie. |x — y| =] |x| + |y| + lx‘ Since in any po-group G U(a,) +
+ U(ay) + ... + U(a,) = U(ay + ... + a,) for any ay,...,q,€G, it follows in
our case that |p| + |q| + |p| = |p + g + p|. We can write |x — y| 2 |x| + |y +
+|x| 2 |p| +|a| +|p| =|p +4q + p|, and since p +q + pe[A4] it is also
x — y € C(A). Let us show that C(4) is directed. Let x, y € C(4). Then |x| 2 |p|,
|¥| = |q|, where p, g € [4]. However, p e |p| and therefore also p € |x|, i.e. p = x.
Similarly g > y. This implies p + g = x, y and since p + g € [A], C(4) is directed.
Finally, if |g| 2 [c|, where g € G, ¢ € C(4), then |g| 2 |c| 2 |p| for some p e [4] and
consequently g € C(A). Therefore (by Lemma) C(4) is convex.

Corollary 1. If G is a 2-isolated po-group, 0 < a € G, then the dc-subgroup of G
generated by a is C(a) = {x € G; |x| 2 |na| = U(na) for a positive integer n}.
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Corollary 2. Let G be a 2-isolated po-group, M a dc-subgroup of G, a > 0. Then
C(M.a) = {xe€G: |x| 2 |p| for some pe[M*, a]}.

Proof. By Proposition 1.2, C(M™*, a) = {x € G; |x| 2 |p| for some pe [M*, a]}.
Obviously M is the smallest dc-subgroup containing M*, hence M = C(M*, a),
which implies C(M, a) = C(M*, a).

Let 0 < aeG, 0 < be(G, where G is a po-group. We denote M,, = C(M, a)n
~ C(M, b). In [3, Theorem 2.3] the set of all dc-subgroups of a po-group G was
proved to form a complete lattice with respect to its order by inclusion, which in the
case of Riesz group G (by [8, Satz 9]) is a distributive sublattice of the lattice of all
subgroups of G.

Lemma. Let G be a 2-isolated Riesz group, M a dc-subgroup of G such that any
two dc-subgroups A, B of G for which A > M, B > M satisfy An B> M. If
now a, be G* \' M, then there exists an element 0 < x € M\ M.

Proof. It holds C(M, a) > M, C(M, b) > M. By our assumption then M,, =
= C(M, a) n C(M, b) > M. By [8, Hilfssatz 6] M,, is a dc-subgroup of G. There-
fore M and M,, are directed and hence M), > M ™. It follows that there exists
0<xeMyu\M.

Proposition 1.3. Let G be a 2-isolated Riesz group, M a dc-subgroup of G such that
for any two dc-subgroups A, B of G satisfying A>M, BoM, AnBo M
holds. If a, b e G* \ M, then there exists 0 < x € (M, \ M) n L(a, b).

+

Proof. Let us consider the subsemigroup M,,. It holds M, = {xe G*; U(x) =
2 U(p) for some pe[M™, a], U(x) 2 U(q) for some ge[M™*, b]}. a, be G* thus
L(a,b) n G + 0 and from ae[M*,a], be[M™*,b] it follows that L(a, b) N
A G* = M,,. Let us next suppose that L(a, b)) n G* = M*. Let x be an arbitrary
element of M, consequently x £ m, +a+my, +a+ ... + m_, + a + my,
xEn +b+n,+b+...+n_;+b+n, where m; (i=1,..,k), n; (j =
= 1,...,1) are elements of M*. Therefore xe L(m; + a + m, + ... + my, n; +
+b+mn, +...4n)nG*. Let us show that xe M*. Let first ye L(m, + a +
+my, +a+...4+m,b)NnG", hence 0 y<m; +a+m,+a+..+m,
y < b. Since G is a Riesz group, y = m; + a; + m) + a, + ... + m; where
0<mj=m; (i=1,..,k), 02a;<a (i=1,...,k—1). (By [2, LV.13])
Since M is convex, mje M* (i = 1,...,k). Further, 0 < a, <y (i=1,..,k — 1),
y < b and therefore 0 < a; < b. Hence a;e L(a, b))n G* (i =1, ..., k — 1), thus
by the assumption a;e M* (i = 1,..., k — 1). Evidently this implies that y is the
sum of elements of M™ and consequently also ye M*. We have 0 < x < m, +
+a+4+...+m, 0<x=n, +b+...+n;. Hence there exist 0 < n; < n; (j=
=1,..,0),0<b;<b(j=1,....,1 — 1) such that x = n} + b, +ny + b, + ...
... + nj. The convexity of M implies that nje M* (j = 1,...,1). For b; (j =
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=1,...,1 — 1) therelation 0 < b; £ x holds, consequently 0 < b; < m; +a + ...
... +m. Then bjeL(m; +a +...+m,b)nG" (j=1,...,1 —1), and fol-
lowing the preceding part we have b,e M™ (j = 1,...,1 — 1). Then x is a sum of
elements of M* and thus x e M* which evidently leads to M}, = M*. However,
by Lemma there exists then 0 < y e M, \ M, a contradiction. Therefore there
exists 0 < x € (M, \ M) n L(a, b).

Proposition 1.4. Let G be a po-group, M a dc-subgroup of G such that for any
two elements a,be G* \M there exists 0 < xe(G*\M) n L(a, b). Then M is
prime.

Proof. Let M 2 A n B, where A, B are dc-subgroups of G and let A & M,
B & M. Thus thereexist0 < ae 4,0 < be Bsuchthata, be Gt \ M. (This follows
from the fact that the subgroups A, B, M are directed.) By the assumption there
exists 0 < x € (G* \ M) n L(a, b). However, then 0 < x < a, and therefore x € 4.
Similarly x € B. Hence x € A n B. But this means A n B & M, a contradiction.

The above reasoning implies

Theorem 1.5. For a dc-subgroup P of a 2-isolated Riesz group G, the following
conditions are equivalent:

(1) P is prime.

(2) If A, B are dc-subgroups of G,A > P, B> P, then An B > P.
(3) If a, be G* \ P, then there exists 0 < x € (P, \ P) n L(a, b).
(4) If a, b e G* \ P, then there exists 0 < x € (G* \ P) n L(a, b).

Let now G be a po-group, S a convex subsemigroup containing 0 of G*. S will be
called prime in G* if it satisfies the following condition: If Q, R are convex subsemi-
groups containing 0 of G*, S 2 Q N R, then S 2 Q or S = R. Denote the set of all
convex subsemigroups with0 of G* by I’ = T’ (G) and the set of all dc-subgroups of G
by I' = I'(G). In [3, Theorems 2.2, 2.3] it is proved that the sets I', I' ordered by
inclusion form complete lattices. Hereby the mapping ¢ : I' — I' given by Ap = A™
is an isomorphism of the lattice I" onto the lattice I" and the inverse mapping is given
by Sp~! = {S). (<S> will always denote the subgroup of G generated by the set S.)
Moreover the infimum in I is determined by the intersection. In the case of a Riesz
group the infimum of a finite number of elements of I' is determined by their inter-
section as well.

Lemma. Let G be a Riesz group. Then a dc-subgroup A of G is prime if and only
if A* is a prime subsemigroup of G*.

Proof. Let M be a prime subgroup of G, M* o A* N B*, where A4, B are dc-
subgroups of G. Then M = (M*> =2 {A* n B*}. Since G is a Riesz group, A N
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NnB* =(An B)*, it holds (A" "B*) ={(AnB)*) = AnB. Hence M 2
2 A N B and therefore M 2 A4 or M 2 B. Hence also M™ 2 4% or M* 2 B*.
Conversely, let M* be a prime subsemigroup of G*, M 2 A n B, where 4, B are
dc-subgroups of G. Then M* 2 (An B)* = A* n B* and hence M™ 2 A" or
M* 2 B*. Consequently also M 2 A or M 2 B.

Theorem 1.6. Let G be a Riesz group. Then for any prime subgroup M of G there
exists a minimal prime subgroup A such that A = M.

Proof. Let us show that for any prime subsemigroup X of G* there exists a mini-
mal prime subsemigroup Y such that Y = X. Let now S, (1 € A) be a decreasing chain

of prime subsemigroups of G* and let S = () S,. S is a convex subsemigroup with 0
Aed

of G*. Let us show that it is prime. Let S 2 Q n R, where Q, R are convex subsemi-
groups with 0 of G*. Then any S, (1 € A) fulfils S; 2 Q@ N R, hence every S, satisfies
S, 2 Q or S, 2 R. If every S, satisfies both S; 2 Q and S; 2 R, then S = Q,
S 2 R. Let A, be such that S, 2 Q, S;, £ R.Then, of course, S; 2 Q holds also

for S, = 8S,,- Hence S = N S; 2 Q holds. This means that the set of all prime sub-
pry\

semigroups of G is inductive, thus there exists for any prime subsemigroup X a mini-
mal prime one contained in X. Since the lattices I" and I are isomorphic, there exists
also (by Lem_ma) for any prime subgroup 4 of G a minimal prime one contained in A.

2. In this section we shall study 6-polars in a po-group G. A §-polar (see also [5])
is a generalization of a polar in an /-group. Let us first introduce some concepts and
notations. We shall subject G to the following conditions:

(I) For each x € G, |x| = 0 holds.
(IT) For each x € G there exists x v —Xx. (x v —x denotes sup (x, —x) in G.)

(M) If a,b,x€eG satisfy a,b = x, —x,0, then there exists re G such that
a,b=r=x,—x,0. (See [5])

G is said to be regular if the existence of inf (x, y) in G* implies the existence of
inf (x, y) in G for x, y € G*. Clearly now ¢ = inf;+ (x, y) implies ¢ = inf; (x, y).

Proposition 2.1. A po-group with an isolated order is 2-isolated.
Proof. Let a = —a, and consequently 2a = 0. Since G is isolated, a = 0.
Proposition 2.2. Any Riesz group satisfies the condition (M") and is regular.

Proof. Letinf;+ (x, y) = cand x, y = a. Then there exists b € G such that x, y >
2b=c,a. Since b=0, ¢ =infs:(x,y) 2 b= a and therefore infs- (x, y) =
= infg (x, y).

Lemma. If a po-group G is 2-isolated and if there exists x v —x for an element
x €@, thenx v —x =2 0.
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Proof. It holds x v —x > x, x v —x =2 —x, and consequently also x =
> —(x v —x). Hence x v —x = x = —(x v —x) and because of G being
2-isolated, we have x v . —x = 0.

Proposition 2.3. A 2-isolated po-group G satisfying the property (1) has the
property (M’).

Proof. Let a, b, x€ G such that a, b = x, —x,0. Thena, b =2 x v —x =2 x, —X
and by Lemma x v —x = 0 holds.

Let now G be a po-group, x, y € G. x, y will be called disjoint (notation xd ).
if there exist a, b € G* such that a e |x|, be|y|,a A b = 0.(a A b denotes inf (a, b)
in G.) We denote for 0 = A = G, A° = {xeG:adx for all ae A}. If A° + 0,
then it will be called a 5-polar of the set A. We denote A% = (A°)° for A° + 0.
If 4° = 0, then A < A®. If 0 = A = G, 0 + B < G such that A° + 0 & B’, then
A < B implies B’ = A°. Clearly then A4° = 4% for A% + Q. Further, 0 + A < G
is a 6-polar in G if and only if A = A%,

Remark 1. If a 2-isolated po-group G satisfies the condition (1), then A° + 0 for
any 0 £ A < G.

Proof. Since G satisfies (I), |a| + 0 for each a € G and since G is 2-isolated it

follows that |a| =< G*. However, then u A 0 = 0 for each u e |al.

Remark 2. It is obvious that the notion of d-polars and that of polars in I-groups
coincide.

Proposition 2.4. If G is a Riesz group or a 2-isolated po-group with the property
(IT) then any 6-polar in G is a convex subgroup of G.

Proof. Since in both cases G satisfies the condition (M’), the proposition holds
by [5, Hilfssatz 12].

Let now G be a po-group, a € G. Denote a* = U(a,0), a~ = —U(—a, 0).
Lemma 1. Let G be a po-group, a € G. Then for each element x € at there exists
y€a~ such thata = x + y.

Proof. Let x € a*. Then there exists y € G satisfyinga = x + y,ie.y = —x + a.
Further, —x £ 0, —x £ —a and therefore —x + a < a, —x + a < 0 which means
that yea™.

Lemma 2. Let G be a 2-isolated po-group with the property (11). Then a subgroup A
is a dc-subgroup if and only if it satisfies the following condition: if a€ A, x € G,

|x| = |a|, then x € A.
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Proof. Let 4 be a subgroup with the given property. Let 0 < x < a € A. Then
'.\'| =} |a| and thus x € A. Consequently A4 is convex. Since G has the property (II),
there exists a v —a for each element a € A. Since G is 2-isolated it followsa v —a e
ea”. Clearly |a| = |a Y —a|, hence by the assumption a v —a € A. By Lemma [
there exists y e a” such that a = (a v —a) + y. A4 is a subgroup, hence y € A. The
element a can be therefore expressed as a difference of two positive elements of A,
which implies that A4 is directed. In any po-group the converse inclusion holds in

accordance with the Lemma of Proposition 1.2.
Proposition 2.5. A o-polar of a 2-isolated po-group G with the property (II) is
a dc-subgroup of G.

Proof. Let A° be a 5-polar. Let us show that C(4°") = A°. Let then x € C(4°") =
={yeG:|y 2 Ipl for some pe A°*}. By Lemma 2, x € A% holds. Conversely, if

x e A’, then for each ae A there exist x, €|x|, a, €|a| satisfying x;, A a, = 0.
In G there exists X, = x v —x = inf|x|. Let us show x4 e 4°*. Clearly x, €|x|.
Thus 0 < xo A a; < x; A a; = 0 for x4 € |xo|, a, € |a]. Therefore x, € A’*. From

this we obtain x € C(4°*).

Theorem 2.6. Any o-polar of a 2-isolated po-group G with the property (1) is
a de-subgroup of G. The set A = A(G) of all é-polars in G is a complete Boolean
algebra with respect to its order by inclusion. An infimum in 4 is formed by inter-
section.

Proof. Clearly § is a symmetric binary relation which is antireflexive. (A relation §
is antireflexive if from x & x for an x € G follows x § y for each y € G.) Define a rela-
tion < on G as follows: x < y < |‘<| > Iy[. The relation < is a quasiorder, i.e., it is
reflexive and transitive. The smallest element in this quasiorder is 0. Indeed, if
ae ]x|, thena =2 0,ie.a€ ]0] Consequently [0[ > |x| for all x € G.

To prove that the set 4 ordered by inclusion is a complete Boolean algebra with the
infimum in the form of intersection, it suffices by [5, p- 85] to show that the relations &
and < satisfy the following conditions (x, y, z € G):

LLx0y, x<y=x<0;
2.x0y, z<y=x0z
3. x non é y = there exists z € G such that znon <0,z <x, z < y.

1. Let x&y, x < y. Then there exist a € |x|, be|y| such that a A b = 0. Since
|x| 2 |y|, a,be|x| and therefore 0 = a A b = x, —x. Consequently x = 0,
that is |x| = |0]. Hence x < 0.

2. Let x 8y, z < y. It means that there exist a € |x|, b e|y| such that a A b =0
and at the same time |z| 2 |y|. Thus be|z| and a A b =0 for ae |x|, belz
hence x 0 z.

)
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3. Since G satisfies (II), there exists x v —x for each x € G. If x § y, then there exist
aelx|, b e |y| satisfying @ A b = 0. Then for xo = x v —x, yo =y v —y we
have 0 < xo < a, 0 < y, < b and therefore xo A y, = 0. Consequently, for
a 2-isolated po-group with the property (II) x 6 y holds if and only if (x v —x) A
A (y v —y) = 0.1f x non § y, then there exists 0 < c € G such that x v —x >
2¢c, yv —y=c Hence || 2 (x|, || 2|y, || € [0, ie. e<x, <y,
cnon < 0.

Proposition 2.7. Let G be a 2-isolated po-group with the property (1), A (A€ A)
o-polars in G. Then
Adi=N45=(U4), VA =(U4”.
Aed AeA ied Aed AeA
Proof. 1. The proposition concerning the supremum follows from the fact that
for any d-polar 4% in G, A% is the intersection of all 5-polars in G containing A.

2. Let ye( U 4,)°. Thus for each ae | 4, there exist elements a, € |a
ied Aed

such that a, A y; = 0, therefore y € () 43. The converse inclusion follows from the
Aed

properties of complements in a Boolean algebra and from the proposition on the
supremum:

, v eyl

AAS = (VAYY = (U AP = (U AP = (UA).
Aed Aed ieA Aed 2eA

Let G be a po-group. Any d-polar a® = {a}’ in G where a € G, will be called a dual
principal §-polar; similarly a é-polar a® = {a}* will be called a principal 5-polar.
The set of all dual principal é-polars in G will be denoted by IT%(G).

Lemma. If in a 2-isolated po-group G there exists x v —Xx for an element x € G,
then x* = (x v —x)°.

Proof. Let y € x’, then there exist y, € |y|, x, € |x| such that x; A y; = 0. From
x v —x 2 0 it follows that (x v —x) A y, = 0 and hence ye(x v —x)’. Con-
versely, let ze(x v —x)’, then there exist z; €z, x, €|x v —x| such that
z; A X, = 0. Since x, = x v —x, it is x, = x, —x. Consequently, z € x°.

Proposition 2.8. If G is a 2-isolated po-group with the property (II), then for each
two elements a, be G

b =[av —a)+(bv -b].
Thus the set IT°(G) ordered by inclusion is a A-subsemilattice of the lattice 4(G).

Proof. Because of the Lemma it suffices to consider positive elements. Let a, b €
eG*. If xe(a + b)’, there exist x; € x|, ¢, e|a + b| such that x; A ¢, = 0.
Since ¢, = a + b itis also ¢; = a, b. Therefore x € a® N b°.
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Conversely, let yea’ n b’ ie., let y,, y, € ], ai€lal, b, |b| exist such that
YiAay =y, Aby=0.8ince yo=yVv —y20, yoAra, =y, Ab, =0. a
Ac=DbAc=0 implies (a + b) A ¢ = 0 for any po-group G and a, b, c € G.
(See [5, Hilfssatz 2].) Thus in our case yo A (a; + b,) = 0 and since a, + b, =
2a+b ye(a+0)

We shall now point to the connection between the dual principal é-polars and the
prime subgroups.

Theorem 2.9. Let G be a 2-isolated Riesz group, P a prime subgroup of G. Then
it holds: If ae G\ P, then a® < P.

Proof. Let P be prime, a ¢ P. If u € a’, then there exist u, € |u], a, € |a| such that
u, A a; =0, hence L{uy, a;) n G* = 0. If u % 0, then u, > 0, a; > 0. Further
—a; < a < a; and since a¢ P, a, ¢ P. Let us show that u, € P. Indeed, if u, ¢ P,
then by Theorem 1.5 L(u;, a,) 0 G* =% 0, hence u; A a; = 0 could not be valid.
Since —u; <u Zu,,ueP.

Note. For I-groups the converse implication is satisfied as well. (See [6, Theorem
2.3].) It remains an open problem whether the converse theorem for 2-isolated Riesz
groups is valid or not.

3. In this section we introduce the notion of an o-filter and that of an o-antifilter
of po-sets and we shall point out their connection with prime subgroups of po-groups.
We shall thus generalize some results valid for I-groups treated by F. Sik in [6]
and [7].

Let M be a po-set. A subset @ + F = M will be called an o-filter of M, if

1. L(a, b) n F # 0 for each a, be F, i.e., F is I-directed.
2. IfaeF, xe M such that a < x, then x e F.
3. The smallest element of M (if it exists) does not belong to F.

An o-antifilter of M is defined dually.

Evidently, in lattices we obtain in this way filters and antifilters in the ordinary
sense.

o-filters and o-antifilters exist in any ordered set M that contains elements different
from the smallest one. If, for example, a € M is different from the smallest element,
then the set F, = {xe M; a < x} (4, = {ye M; y < a}) is an o-filter (an o-anti-
filter) of M. The maximal elements in a by inclusion ordered set of all o-filters (o-anti-
filters) of a po-set M will be called o-ultrafilters (o-ultraantifilters). Clearly, a set-
union of an increasing chain of o-filters (o-antifilters) of M is again an o-filter (an
o-antifilter). Therefore any o-filter (o-antifilter) of M is contained in an o-ultrafilter
(o-ultraantifilter) of this set.

The following theorem is a consequence of Theorem 1.5.
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Theorem 3.1. Let G be a 2-isolated Riesz group, P a dc-subgroup of G. Then P
is prime if and only if G* \ P is an o-filter of the po-set G™.

Proof. Let P be prime, a,be G" \P. Then there exists 0 < x eL(a, b) n
N (G*\P), hence G* \ P is [-directed. Let ae G*\P, xe G", a < x. If xe P,
then 0 < a < x, hence ae P*, a contradiction. Finally, 0 is the smallest element
inG*,0e P,hence 0 ¢ G* \ P. This means that G* \ P is an o-filter of G*. Converse-
ly, let G* \ P be an o-filter of G*, a, be G* \ P. Then (G* \ P) n L(a, b) # 0 and
consequently there exists 0 < x € (G* \ P) n L(a, b). This means that P is prime.

Theorem 3.2. Let G be a 2-isolated Riesz group and P a dc-subgroup of G such
that G* \ P is an o-ultrafilter of G*. Then P is minimal prime.

Proof. If there exists Q prime, Q < P, then G*\P < G\ Q. G*\P, G"\Q
are by Theorem 3.1 o-filters of G* and since G* \ P is an o-ultrafilter, G* \ P =
= G* \ Q must hold. Hence P* = Q% and since P, Q are directed, P = Q. Con-
sequently, P is minimal prime.

Note. For I-groups # 0 the converse implication is satisfied, too. (See [7, Theorem
7.5].) It remains an open question whether the converse theorem for the 2-isolated
Riesz groups is valid or not.

Theorem 3.3. Let G be a 2-isolated Riesz group, IT°(G) the set of all dual principal
polars in G ordered by inclusion. Let x be an o-antifilter of IT° (G). Then Ux is
a dc-subgroup of G.

Note. Jx is a set-union of elements of x considered as subsets of G.

Proof of Theorem 3.3. Let x, y € Ux. Then there exist a’, b° € x such that x € a°,
v e b’. Since d-polars are dc-subgroups of G it holds: if ¢® 2 a’, ¢® 2 b°, then
¢® 2 (a’ b’y. Since x is an o-antifilter of IT%(G), there exists at least one d-polar
d® € x such that d®° 2 <a’, b°). (Since U(a®, b°) n x =+ 0.) Then <a’, b°y = Ux and
hence |Ux is a subgroup of G. Further, let again x, y e Ux, x € a’, y e b%, a°, b° € x.
IfzeG, x <z <y, d® 2 <d b®), d°ex, then x, y e d®, hence ze Jx. It means
that {(Jx is convex. Finally, since d’ is directed, there exists ze€ d’, z = x, z = y and
therefore (Jx is directed as well.

Note. Some results of this paper concern the class & of all 2-isolated po-groups
with the property (II). Let us show that the class £ of all I-groups is a proper subclass
of 6.

Let Z be the linearly ordered additive group of all integers and let G be the sub-
group of the direct sum Z @ Z that is formed by exactly all elements (a, b) e Z @ Z,
where a + b is an even number. In [5, Beispiel 111] F. Sik has proved that G is not
a Riesz group (thus G is not an I-group). Hence for (a, b) = (—a, —b) it holds
(a, b) = (0,0) and for every x = (a, b) there exists x v —x = (|a|, |b|).
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