Czechoslovak Mathematical Journal

Svatopluk Fucik
Nonlinear equations with noninvertible linear part

Czechoslovak Mathematical Journal, Vol. 24 (1974), No. 3, 467-485,486-487,488-495

Persistent URL: http://dml.cz/dmlcz/101262

Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101262
http://dml.cz

Czechoslovak Mathematical Journal, 24 (99) 1974, Praha

NONLINEAR EQUATIONS WITH NONINVERTIBLE LINEAR PART

SvaTtopLuk Fucik, Praha

(Received August 13, 1973)

1. INTRODUCTION

Many equations of analysis have the abstract formulation as the equation of the
following form

1) AT(x) = S(x) =1,

where T and S are (not necessarily linear) operators acting from a Banach space X
into a Banach space Z and A # 0 is a real parameter. The operator S is supposed to
be completely continuous. If Tis a homeomorphism from X onto Z (i.e., “T behaves
as the identity operator”) then the equation (1) is equivalent to the equation

x= T G [S(x) + f])

and it is possible to use the Leray-Schauder degree theory for completely continuous
mappings. The so-called Fredholm alternative (see e.g. [4, 5, 8]) deals with this
case of nonlinear equations, Borsuk-Ulam theorem about the Leray-Schauder
degree for odd and completely continuous operators is used and it is proved that
under some additional assumptions (the operators T and S are asymptotically
homogeneous with the asymptotes T, and S, — for details see e.g. [8, Chapter 11])
the equation (1) is solvable for any right hand side f € Z provided the asymptotical
equation '

)] A Ty(x) — So(x) = 0 ¢

has only trivial solution. ‘

The situation in the case that the asymptotical equation (2) has nontrivial solution
is very complicated. Nevertheless, it is very important to study this case (to obtain
a complete analogue of Fredholm alternative for linear operators in the nonlinear
setting).

In this paper we give some sufficient conditions for f € Z to be an element of the
range of the operator T — S (Theorems 2.3.10, 2.4.1, 2.5.5), where T is a linear
operator from X onto Z which is not necessarily continuous and invertible and S is
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a completely continuous mapping. Such sufficient conditions imply also the surjecti-
vity of the operator T — S (see Theorem 2.4.1 and Corollary 2.5.6) and yield also
necessary and sufficient conditions on f € Z for the equation T(x) — S(x) = f to be
solvable in the case that the range of the operator T — S is not the whole Z (see
Theorem 2.5.8).

Such a result for boundary value problems for partial differential equations whose
“linear part” has a simple spectrum was given for the first time by E. M. LANDESMAN
and A. C. LAzER [11]. This result was generalized by S. A. WILLIAMS [22] to the case
of multiple spectrum of the linear part. The abstract setting of the method from the
papers [11, 22] is given by J. NECAS in [15], where the range of the operator T — S
acting in a Hilbert space is described. A generalization of the results of [15] is given
in the paper by S. Fu¢ik, M. KuCEerA and J. Ne¢as [7], where also the surjectivity
of T — S, S being the so-called sublinear operator (see e.g. Section 2.4), is studied.
The surjectivity of T — S, where S is the so-called asymptotically linear operator,
is investigated in the paper by S. Fucik [6] All above mentioned papers deal with the
operators defined on the whole Hilbert space. In this paper we prove analogous results
for operators T and S densely defined in a Banach space X with values in a Banach
space Z which provides better possibilities for applications. Moreover, in this paper
the so-called “‘superlinear case” is investigated which is not included in previous
papers.

Proofs of the abstract theorems are given in terms of the theory of bifurcations.
A similar method was used to obtain the so-called Cesari-Lazer alternative lemma
e.g. in the papers of L. CEsArI [2], S. BANCROFT, J. K. HALE and D. Swekrt [1],
J. Locker [12] and also W. S. HALL [10]. Also the papers of M. Sova [20, 21],
where applications to hyperbolic partial differential equations are given, are based
on the same principle. An analogue of the Cesari-Lazer alternative lemma in this
paper is Theorem 2.2.3.

Another version of the “bifurcation” lemma (the so-called equivalence theorem)
together with the Leray-Schauder degree are used in the paper of J. MAWHIN [13]
to establish a coincidence degree theory (the coincidence degree obtained is set-
valued) for couples of mappings (T, S) between locally convex topological vector
spaces where the (not necessarily continuous) Fredholm linear mapping T and the
(not necessarily linear) mapping S satisfy some auxiliary conditions. Note that we
use from this paper the notion of a suitable mapping (see Definition 2.2.1) which is
useful for the formulation of the auxiliary equation (see Theorem 2.2.3). Let us
remark for the completeness that the degree theory for mappings T — S is also
established in the paper of L. NIRENBERG [17], from which the result of E. A. Landes-
man and A. C. Lazer [11] follows.

The abstract results from Part 2 may be applied to the existence of solutions for
various types of boundary value problems for ordinary and partial differential equa-
tions as well as to the existence theorems for nonlinear integral equations. Part 3 is
not intended to be the detailed study of applications but serves as an example of the
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applicability of the main theorems. Therefore the examples of sufficient and necessary-
sufficient conditions for solvability of periodic and boundary value problems for
ordinary differential equations are given under more restrictive assumptions than
necessary and the boundary value problems for partial differential equations are not
solved at all in this paper. This will be perhaps (together with the connection to
previous results) the main subject of a next paper.

2. ABSTRACT RESULTS

2.1. Terminology and notation. Let X and Z be two vector spaces. If T'is a mapping
defined on the set Dom [T] < X with the values in the space Z (we write
T:Dom [T] = X — Z), denote by Im [T] < Z the set of all values of the mapping T,
ie.

Im [T] = T(Dom [T]).

Let

L:Dom[L]c X - Z

be a linear mapping. In this case we shall suppose that Dom [L] is a vector subspace
of the vector space X and denote by Ker [L] the null space of the operator L, i.e.,

Ker [L] = {xe Dom [L] : L(x) = 04}

(O and 0, denote the zero elements of X and Z, respectively).

Let Y; be a vector subspace of the vector space Y. Then there exists at least one
algebraic projection T from the space Y onto Yy, i.e., Dom [T] =Y, Im[T] = Y,
anditis T>* =T T=T.

If a subset Y, of the vector space Y contains only the zero point, it will be also
considered a subspace of Y. It is clear that there exists only one algebraic projection
onto such subspace, namely, identically zero mapping.

Let Y be a vector space and let T be an algebraic projection from Y onto Im [T] <
< Y. Then

T°=1y,—-T

(Iy denotes the identity operator in the space Y) is also an algebraic projection
(clearly T° = T) and
Y=Im[T]® Im[T],

i.e., the space Y is an algebraic direct sum of the subspaces Im [T] and Im [T*].
In this case we shall consider (using a suitable identiﬁcation) the space Y to be
a product of the subspaces Im [T] and Im [T¢], i.e.,

Y=1Im[T] x Im [T°].
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2.2. Auxiliary equation. Let

L:Dom[L]c X - Z
be a linear mapping and let
No: X —-Z

be an operator such that Dom [N,] = X. For h € Z set
(1) N,:xeX = Dom[N,]+ Ny(x) —heZ.

We shall investigate the conditions under which there exists x € Dom [L] satisfying
the equation

) L(x) = Ny(x).
Let P and Q be fixed algebraic projections in the spaces X and Z, respectively,
such that

(3) Im[P] = Ker[L],
(4) Im[Q°] =Im[L].

The restriction L of the operator L to P9(Dom [L]) is one-to-one and hence L is
an algebraic isomorphism between P{(Dom [L]) and Im [L] = Im [Q¢]. Denote its
inverse by K (the so-called right inverse of the operator L). We have

] Dom [K] = Im [L], Im[K] = P{(Dom [L])

(5) LK(Z) = I:K(z) =z

for every z e Im [L].
(It is easily checked that K is the umque linear mapping satisfying both (3) and

PK =0.)
It is clear that the relation
(6) KLPY(x) = P<(x)

holds for every x € Dom [L].

2.2.1. Definition (see J. Mawhin [13]). Let U and V be vector spaces. A mapping
T:U — Vis said to be suitable if T_,(0,) = {0}.

A necessary and sufficient condition for the existence of a suitable mapping
between U and V is that the relations V = {0y}, U # {0} do not hold simul-
taneously. Indeed, if V + {OV}, a suitable mapping is given by

T u v if u=% 0y,
0, if u=0¢

with v a fixed non zero element of V.
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Hence we have the following

2.2.2. Lemma. A necessary and sufficient condition for the existence of a suitable
mapping
¥ :Im [Q] - Ker [L]

is that the conditions

() Im[Q] + {0}
and
(8) Ker [L] = {0,}

do not hold simultaneously.

2.2.3. Theorem. Let the conditions (7) and (8) not hold simultaneously and let
Y :Im [Q] - Ker [L]
be a fixed suitable mapping.
Define the family {V,},. o of mappings
V. :Ker [L] x Im [P°] - Ker [L] x Im [P¢]
by
©)  Vei[w o]+ [u — epONy(u + KONy(u + v)), KONy(u + v)] .

Let the operator V,, for some &, > 0 have a fixed point [ug, 0o], i.e.,

Vno(um Uo) = ["07 Uo] .
Then [u,, vo] € Ker [L] x P(Dom [L]) and x, = uy + v, is a solution of the
equation (2).
Proof. Since
vQ N;,(uo + KQ° Nh(uO + Uo)) = Oy,

we have

O Ny(uo + KQ° Ny(uy + vg)) = Oy
and thus
(10) Ny(uo + KQ° Ny(ug + v,))eIm[L].

Moreover, it is
KQ° Ny(uo + vo) = 0o
which together with (10) implies

Ny(ug + vo) € Im [L] '
and

O Ny(up + vg) = 0.
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So
L(ug + vo) — Ny(ug + vo) = L{ve) — Ny(tio + vo) =

= LKQ° Ny(u, + Uo) — Nj(uo + Uo) = Qf Nn(“o + ”o) - Nh("u + Uo) =
= QcNh(uO + Uo) - QNh(uO + UO) - QcNh(uo + Uo) = —QNII(“G + vo) = OZ
2.3. Main existence theorem. To obtain a fixed point of the operator V,, (for

some ¢, > 0) we shall apply the Schauder fixed point theorem for completely con-
tinuous operators.

2.3.1. Definition. Let Y be a Banach space. The mapping
T:Dom[T]cY->Y

is said to be completely continuous, if it is continuous and if for each bounded set
M < Dom [T7] the set T(M) is a relatively compact subset of the space Y.

2.3.2. Schauder fixed point theorem (see e.g. [19]). Let " be a nonempty convex
bounded and closed subset of a Banach space Y. Let

T: A cY->Y
be a completely continuous operator such that
T(A) = A .
Then there exists x, € A such that
T(xo) = Xo -

First we shall give sufficient conditions under which there exists ¢, > 0 and a non-
empty closed convex and bounded subset % of the space Ker [L] x Im [P¢] such
that V, (") = o . For the purpose we shall suppose that X and Z are Banach spaces
with the norms | |x and | ||, respectively.

(11) Let Dom [L] be a dense subset of X and let
L:Dom[L]c X > Z
be a closed operator ,
ie., x,e Dom[L], x, - x in the space X and L(x,) — z in the space Z imply x €
e Dom [L] and L(x) = z.
(12) There exist continuous algebraic projections P and Q with
the properties (3), (4).
2.3.3. Remark. On each subspace of X and Z we introduce the norm as a restriction

of the norm |- ||x and ||+||, respectively. Thus we obtain a normed linear space.
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A necessary condition for a continuous algebraic projection Q with the property
(4) to exist is that Im [L] should be closed subspace of Z. Thus, after introducing the
norm ||+ |z on Im [L], Im [L] is a Banach space. Analogously Im [P¢] is a Banach
space with the norm |- | x.

2.3.4. Remark. By the previous remark and using Closed Graph Theorem
we obtain immediately that the right inverse K of the operator L (for definition
see the relation (5)) is a continuous linear mapping from the space Im [L] onto
P¢(Dom [L]) = Im [P]. Denote by |K| the norm of this mapping.

Analogously as in Remark 2.3.3 we obtain from the assumption (12) that the sub-
space Ker [L] is closed (this follows also from the assumption (11)). Moreover, we
shall suppose

(13) the dimension of Ker [L] is finite.

2.3.5. Remark. From the assumption (13) it follows that it is possible to introduce
the inner product (-, -) on the space Ker [L] such that
e Ker [L] (u, )" = [[u]

is a norm equivalent with |+||x on Ker [L]. Denote by c* the norm of the identity
mapping from the space (Ker [L], |||-|||) into (Ker [L], || ). Thus it is

lulx = e*{|fu|l]
for each u € Ker [L].

We shall suppose that the mapping
Noy: X > Z
satisfies the following condition:
(14) there exist o, = 0, B = 0, § = 0 such that
INo()]lz = a0 + Bl x|
for each xe X .

It is clear that the operator N, defined by the relation (1) satisfies for each x e X
the inequality

VX))

IIA

@, + Blx[% .
where
o, = ao + ||h]2-

For easier formulation of the next result we introduce the assumption
(15) the conditions (7) and (8) do not hold simultaneously.

Thus there exists a suitable mapping

Y :Im[Q] -» Ker [L] .
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Moreover, suppose
(16) there exist 9, = 0, 3, = 0, 0 = 0 such that
[W@)]x = 81 + 82z, zeIm[Q].

2.3.6. Lemma. Let heZ, ke(0,1), 0o >0, a=0, b=0, n=0. Suppose
(11)—(16). Let the following implications hold:

(17) 0€<0,00>, ueKer[L], |u|x<e, velm[P],
lolx = a + be" = [KQ° Ny(u + v)[[x < a + be";
(18) N = {(YOQN,(tw + t"v), w) : we Ker [L],
velm [P, [[w]| = 1, |o]|x £ ak™"eg" + bk7",

1€ Ckoofc*, gofc*)} = infR =y >0.
Set

f.= {[u, v] e Ker [L] x Im [P] : |||ull| £ eofc*, |v]x < a + bég} .

Then A" is nonempty, bounded, convex and closed. Moreover, there exists ¢, > 0
such that

(19) Vo) <
Proof. The properties of the set # are evident. To prove (19) it is sufficient to

show
A: ueKer[L], |ulx <0, velm[P],

lo]x < @ + bal = |KQ° Ny(u + v)|x < a + bel.
B: ueKer[L], |ulx<o0,, velm[P],
Jo]x £ a + bl = ’Hu — &Y QNy(u + KQ°Ny(u + v))m < Qofc*.

The implication A is included in the assumption (17). We prove the validity of the
implication B for some ¢, > 0. Let ¢ > 0. Clearly

lu — e @ Ny(u + KQ° Ny(u + v))|2 =
= [|[ull[> = 26(WQ Ny(u + KQ° Ny(u + v)), u) +

+ [V Ny(u + KQ° Ny(u + v)|?
and

(vo N,;(u + KQ° Ny(u + v)),u) =

=Q(¢QN,,<QE +QnK_Q‘L“+v)>, l_‘>

0 Q" Y

1\

Yo

for an arbitrary u e Ker [L],
0o/c*y. Thus

[ul| = 0, veIm [P] [lv]x < a + be}, ¢ & <koofc”,
lu — ey @ Ny(u + KQ° Ny(u +v))[|* =
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< 0% = 2epe + &2[e*(9: + 3:[Q]° [Ni(u + KQ°Ny(u + 0))[2]* =
< 0% — 2ey0 + [c*{9, + %[0 (o + Bllu + KQ°N,(u + v)|5%)}]* =
< (0ofc*)* — 2ey koo[c* + e’ [c*{8, + 9,[Q]°.
oy + Bloo + a + bad)’) 1] .
This implies that for every ¢ > 0 satisfying
2ykoq
c*[e*{9, + 8,[ 0| (o + Bloo + a + beb)’)’}]?

and for each ¢ € (koo|c*, go/c*> and [u, v] € Ker [L] x Im [P¢] satisfying Mum =0,
[v]x < a + bol it is

e g =

(20) llu — ey Q Ny(u + KQ° Ny(u + v))||| £ 0ofc*.

For [u, v] e Ker [L] x Im [P<], ||lul|| £ koo[c*, |

v|x £ a + bol) we have

ey ([l — e @ Ny(u + KQ° Ny(u + v))lf| =
= kQO/C* + ec*('gl + 92"Q|

%o + Bloo + a + baB)’)’) < gole*

provided

(1~k)Qo
o .
SRR T LT 90l G+ Bleo + a + bad)Y)

The inequalities (20) and (21) prove the validity of the implication B for g, =
= min (g, &,).

Denote v = ||K/ | Q°|| and

c(é):{l’ 0= 1

2°1 0 §5>1.

If velm [P°), |[v]x < a + be" and u e Ker [L], |

ufx < o then

IKQ* Ny(u + v)|x < v[Ny(u + v)]2 =

< vy, + v o(9) [ullk + vB <(9) o]k =

< vay, + vB e(8) 0® + vB c(8) a® + v c2(S) b .
Put '

r(e) = vy + vB c(8)e” + vB ¢*(8) b%™ — ba", z(a) = a — vB *(8) a’.

One can easily see that for the implication (17) to be valid it is sufficient to prove
the existence of ¢, > 0 and a, > 0 such that r(g) < z(a,) for each g € <0, o).
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Studying the dependence of the functions r and z on the parameters 6, 7, a, b, 8
we obtain the proof of the following

2.3.7. Lemma. Let he Z, b 20,7 20,6 20,a 20,0 + M, = (0, ).
Then for each g e M,, u e Ker [L], [ux < 0, veIm [P], |v]|x < a + bo" it is
|KQ°Ny(u + v)|x < a + bo"

provided one from the following conditions is fulfilled:

5 n b, h a B om,
I =0 n=20 b=20 aza| p=0 (0, o0)
II (0<dé<1| 6<n b>0 a>a, B>0 (0, )
M 0<dé<1| d=n b>p a>a, B>0 | (0,)
IV |[0<éd <1 =1 0<b<vp a> a, B>0 0,0y,
V [0<d<1|0<d<y b>0 a>a;| B>0 [(0,0,.
VI [0<é<1 n=0 b=0 a>as;| B>0 0,05,
VII 6=1 n>1 b>0 a>a, 0 <p<v' (0, )
VII| 6=1 n=1 év%(fffﬁ)_l a>a,0<p<v? (0,)
IX 0=1 O<n<l1 b>0 a>a50<ﬂ<v_1(0,g3,a>
X | =1 |0<p<l, b>0 a>as0<p<v'(0,0 >
XI | 8=1 n=0 b=0 a>as0<p<v1(0,00.
XII| 6>1 0<n b>0,|h|z<hola=as| B>0 |(0,04
XIT| 6>1 n=0 |b=0,|h|z<ho a=as| B>0 |(0,01.0)
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where
a; = Vo,

max {r(¢) : 0 € €0, )},

sup {a > 0: z(a) < va},

a, =a)(l —vp)™t,

as =ay(1 —vp)7",

T I

01, = inf{o > 0:r(e) > z(a)},

02,0 = [(=(a) = vou) V81",

03,4 = (a(l = vB) = vau)|(vB + vBb - b),
(a(l = vg) — vou)VB,

v—l(vﬁCZ(é))I/(l—d) . [51/(1—5) _ 56/(1—6)] — .

a;

as

If

Il

04,:1
ho

Lemma 2.3.7 yields a good criterion for the validity of the implication (17) from
Lemma 2.3.6. Sufficient conditions for the validity of the implication (18) will be
given in next Sections. Now, application of the Schauder fixed point theorem requires
the knowledge of conditions under which the mappings {V,},., are completely
continuous.

On the vector space Ker [L] x Im [P], we introduce the norm of the product of
Banach spaces, thus obtaining a Banach space.

We shall suppose:

(22) there exists a continuous suitable mapping
Y :Im [Q] - Ker [L]
satisfying the assumption (16).

2.3.8. Lemma. Suppose (12)—(14), (22) and
(23) the mapping KQ° N, :X — Im[P°] is completely continuous ;
(24) the mapping N, :X — Z is continuous .

Then for every ¢ > 0 the mapping

V, :Ker [L] x Im [P°] - Ker [L] x Im [P<]

defined by the relation (9) is completely continuous.
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Proof. Clearly V, is continuous. Let

M < Ker [L] x Im [P?]

be a bounded set. Then the set PVE(M) is bounded and closed and since we suppose

(13), it is a compact subset of Ker [L]. The set P°’KQ° N,(M) is compact by the
assumption (23). Since the product of compact sets is a compact set we obtain our
assertion.

2.3.9. Remark. Let us note that if the following assumptions are introduced

(25) N, is a completely continuous mapping ;

(26) K: Im[L] - Im [P°] is completely continuous :

it is easy to check that either assumptions (11), (12), (25) or assumptions (12), (14),
(26) imply the assumption (23).

Now we are ready to state the basic result of this paper, the proof of which follows
from 2.2.3, 2.3.2, 2.3.6, 2.3.7 and 2.3.8.

2.3.10. Theorem. Let X, Z be Banach spaces, let
L: Dom[L] <X - Z

be a closed linear operator with the domain Dom [L] dense in the space X and
closed image Im [L] in the space Z and with a finite dimensional null space
Ker [L]. Suppose that there exist continuous algebraic projections P and Q with the
properties

Im[P] = Ker[L], Im[Q°] =Im[L].

Let Ker [L] = {0y} and Im [Q] # {0} not hold simultaneously, let
¥ :Im[Q] — Ker [L]

be a continuous suitable mapping and suppose that there exist 3, = 0, 3, = 0,
0 = 0 such that

[W)lx = 90 + 9|27
for each zeIm [ Q].

Let Ny : X > Z, Dom [N,] = X be a continuous mapping and suppose that there
exist g =0, = 0,0 = 0 such that

[No(x)]2

IIA

w + Blx|k
for each x € X.

Let
K :Im [L] - P9(Dom [L])
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be the right inverse of the operator L and suppose that the mapping

KQ°Ny:X — Im[P]
is completely continuous.

Let the constants a, b, , 0, n and h € Z satisfy one from the conditions I — XIII
from Lemma 2.3.7 and let k € (0, 1) and ¢, € M,.

If
inffR=7y>0,

where M is the set introduced in Lemma 2.3.6, then the equation
L(x) = No(x) = h
has a solution x € Dom [L].
2.4. The case of Ker [L] = {Oy}. In this Section we shall suppose
Ker [L] = {04} and Im[L]=2Z.

Thus we can assume P and Q to be the null mappings and obtain continuous algebraic

projections with the properties (3), (4). Moreover, there exists only one suitable
mapping

Y :Im[Q] — Ker [L],

namely, the identically zero mapping which clearly satisfies the assumption (22). The
mapping V, defined by the relation (9) has in this case the form

V,:X - Dom|[L],
V,:v + L' N,(v).
Since the set N defined in Lemma 2.3.6 is empty, it is
infRt = o

and the assumption (18) is automatically fulfilled. The above reasoning and Theorem
2.3.10 yield

2.4.1. Theorem. Let X and Z be two Banach spaces, let
L:Dom[L]=X > Z
be densely defined closed linear operator such that

Ker[L] = {04} and Im[L]=2Z.
Let

No:X—-Z
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be a continuous mapping, Dom [No] = X, and suppose that there exist ay = 0,
B =0,6 = 0 such that

INo(x)]z = o0 + Blx%
or each xe X.

Let the mapping
L!Ng: X > X

be completely continuous and let h e Z.
Then there exists at least one x, € Dom [L] satisfying
L(xo) = No(xo) — h
provided one from the following conditions is fulfilled:

A. 5 €0, 1) (the so-called sublinear case), h is arbitrary;

B. & =1 (the so-called asymptotically linear case), p < |L™*||™*, h is arbitrary;
C. § > 1 (the so-called superlinear case), h € Z is such
that

[l < L2 (L7 B @)D [5105 — $910-9] _ g
Proof.

ad A. Choose n > o.
ad B. Choose n > 1.
ad C. Choose n = 0.

In these cases, the condition II or VII or XIII from Lemma 2.3.7 is fulfilled and so
our assertion follows from Theorem 2.3.10.

2.5. The case of Ker [L] + {O4}. If Lis a linear mapping between the vector
spaces X and Z we denote its cokernel (i.e., the factor space Z[Im [L]) by Coker [L].
2.5.1. Definition. A linear (not necessarily continuous) operator
L:Dom[L]cX > Z
is said to be a Fredholm mapping if the following conditions are fulfilled:

(i) Ker [L]is of finite dimension m = 0;
(ii) Coker [L] is of finite dimension p = 0;
(iif) Im [L] is a closed subspace of Z.

The index of a Fredholm mapping L will be defined as usual by
Ind[L]=m - p.

It follows from Definition 2.5.1 that there exist continuous algebraic projections P
and Q with the properties (3), (4). Let us fix one couple of such projections.
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Up to this time, we have known nothing about the existence of a continuous
suitable mapping

Y :Im[Q] - Ker [L].
We shall prove

2.5.2. Lemma (see J. Mawhin [13]). Under the assumptions
(27) L:Dom[L] « X — Z is a Fredholm mapping ;
(28) m>0;
there exists a continuous suitable mapping
Y :Im[Q] - Ker [L]
satisfying the condition (22).
It can be chosen one-to-one if and only if Ind [L] = 0 and this condition is also

necessary and sufficient for the existence of a linear suitable mapping .

Proof. If Ind [L] <0, ie., p > m, it follows from Brouwer’s invariance of
domain theorem (see e.g. [19]) that there exists no continuous one-to-one mapping
from Im [Q] into Ker [L]. However, due to the fact that m > 0 in this case, the
mapping defined by

(29) yié= fla.fi""milaixi + (f: a,?) Xm »

i=

with [¢,,...,¢,] and [x,, ..., x,,] being any bases in Im [ Q] and Ker [L] respectively
(note that the spaces Im [Q] and Coker [L] are isomorphic), is clearly continuous
and suitable and satisfies the condition (22).

On the other hand, if Ind [L] = 0, we can take for y the linear one-to-one mapping

) Vi geen Yo

For the last assertion of our lemma observe that a linear mapping is suitable if and
only if it is one-to-one.

2.5.3. Remark. In the sequel we shall consider suitable mappings defined by the
relations (29) (if Ind [L] < 0) and (30) (if Ind [L] = 0).

The inner product in the condition (18) in Lemma 2.3.6 has the form
p
(31) WONy(tw + 1), w) = 3 [ONy(tw + 1"0)]; w;
i=1
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provided Ind [L] = 0 and

(32) (WON(tw + 170), w) =§:[QN,,(W )], +

p
+ (X [ONy(tw + t0)]F) w,, .
provided Ind [L] < 0, where

ON,(tw + t"v) = Zp [ON,(tw + t")]; &

and

Linearity of the suitable mapping i defined by the relation (30) implies in the case
Ind [L] = 0 that the necessary condition for the validity of the implication (18) is
Ind [L] = 0,i.e. m = p.

2.5.4. Definition. Let
L:Dom[L]c X —>Z

be a Fredholm linear mapping with Ind [L] = 0 and Ker [L] # {O0y}. Let

No: X - Z

be a nonlinear operator and let
®:S={weKer[L]:w=) wx, Y w}=1} >R,
i=1 i=1

be a lower semicontinuous function. Let # = 0 and r > 0.

The function @ is said to be a weak (n, r)-subasymptote of the operator Ny with
respect to Ker [L] if there exists 7, > 0 such that

;Z": [ONo(tw + t"0)]; w; = &( ilwixi)
provided t = 15, ve X, |[v]x S randweS.
2.5.5. Theorem. Let X, Z be Banach spaces, let
L:Dom[L]cX > Z

be a densely defined closed linear operator with Ind [L] = 0 and Ker [L] + {04}.

Let
No:X - 2Z,
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Dom [Ny] = X be a continuous mapping and suppose that there exist ay = 0,
B =0,0 = 0 such that

INo(x)[|2 = o0 + Bl x[%
for each xe X.
Let
K :1m[L] - P{(Dom [L]) = Im [P€]

be the right inverse of the operator L and suppose that the mapping

KQ°Ny: X = X
is completely continuous.

Let n = 0 and r > 0. Suppose that & is a weak (n, r)-subasymptote of the opera-
tor N with respect to Ker [L]. Let h e Z.

Then the equation
L(x) = Ny(x) — h
is solvable in Dom [L] if

m

Y [on], wi < () wix;)
m i=1 i=1
for each ) wx; €S, where

i=1 m

Qh = Z [Qh]l éi )

i=1
provided one from the following conditions is fulfilled:
A (sublinear case): 6 =0, 1 =0, f =0, r > v(oy + | h]2);
B (sublinear case): 0 <6 < 1,5 <n, >0, r>0;
C (sublinear case): 0 <6 <1,5=n, >0, r>0;
D (asymptotically linear case): 6 =1, n > 1, r > 0;
E (asymptotically linear case): 6 =1, =1, 0 < <v7 ', r>0.

Proof. Since the function

m

w -+ O(w) — Z [Oh]; w;

i=1

is lower semicontinuous and the set S is compact, the assumptions of our theorem
imply the existence of y > 0 such that

B(w) — él[Qh]i W=y

on S. Choose a > 0,0 < b <r, ke(0,1)and ¢, > 0 such that

ak™" " + bkT" < r.
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Then the conditions from Lemma 2.3.7 are fulfilled, namely:

A=1, B=1, C=1III, D= VII, E= VIII.
By Definition 2.5.4 there exists t, = kgo/c* such that g, = ¢, and

(WON(tw + "), w) = &(w) — Y [Qh];w; 27> 0
i=1
for each w e Ker [L], !iiwl“ =1, velm[P°], [|v|]x < r and t = t,. Thus we obtain

our assertion from Theorem 2.3.10.

2.5.6. Corollary. Let all assumptions of Theorem 2.5.5 be fulfilled and, moreover,
let every positive constant be a weak (n, r)-subasymptote of the operator N, with
respect to Ker [ L] (we suppose only the conditions B, C, D and E). Then the equation

L(x) = No(x) — h
is solvable for each he Z. :

Theorem 2.5.5 gives us sufficient conditions for the solvability of the equation
considered. The following definition of “maximal subasymptote’ will be used in the
formulation of necessary and sufficient conditions.

2.5.7. Definition. Let
L:Dom[L]c X > Z

be a Fredholm linear mapping with Ind [L] = 0 and Ker [L] # {O4}. Let Ny : X —
— Z, Dom [N,] = X be a nonlinear operator. Suppose that

®:S - Ry
is a lower semicontinuous function.

The function @ is said to be a weak asymptote of the operator N, with respect
to Ker [L] if for each ¢ > 0 and r > 0 there exists #, > 0 such that for t > 1,, ve X,
[o]x £ rand we Sitis '

15 f0utow -+ 0w — 000 <.

It is easy to see that if @ is a weak asymptote of the operator N, with respect to
Ker [L] then for any d > 0 the function

w+> B(w) — d
is a weak (0, r)-subasymptote of the operator N, with respect to Ker [L].

484



2.5.8. Theorem. Let the condition A from Theorem 2.5.5 be fulfilled. Moreover,
suppose that ® is a weak asymptote of the operator N, with respect to Ker [L]. Let

m

Y [Q No(x)]i wi < B(w)

i=1
m
for each xeX and w =Y wyx; € S, where

i=1

O No(x) = [ Nofx)]: &
Suppose he Z.

Then the equation
L(x) = No(x) — h
is solvable in Dom [L] if and only if

3 [0 wi < 0w (3, (0] & = 0

foreachw =Y wx,eS.
i=1

Proof. Sufficiency follows from Theorem 2.5.5 and the remark before. If the
equation considered is solvable in Dom [L] then for any solution x, € Dom [L] it is

No(xo) — heIm [L]
and thus
Q No(xo) = Qh,

ie.,

#() > T [0 Nxo)l wi = [0, w.

2.5.9. Remark. Many equations involving a linear operator
L:Dom[L]c X - Z

are such that there exists a vector space Y with the property (using the Riesz identi-
fication)

(33) XcyY, z*cY
(the asterisk denotes the adjoint space) and
(34) Ker [L] = Ker [L¥]

(L* : Dom [L*] = Z* — X* is the adjoint operator).
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Since we suppose that Lis a closed densely defined Fredholm linear operator (and
according to the assumptions (33), (34) the operator L has index zero) it is

(35) Im[L] = {zeZ:{(w* z); =0, w*eKer[L*]},

(see e.g. K. Yosipa [23, § 7.5]), where {w*, z); denotes the value of the continuous
linear functional w* € Z* at the point z € Z. Note that &,, ..., £, is a basis of Im [Q]
According to the relation (35) and with respect to the assumptions (33) and (34) we
can suppose that the basis x;, ..., x,, of Ker [L] has the property

&z =20y (Lj=1,...,m)

(6;; denotes the Kronecker symbol, 8;; = 1, §;; = 0 for i = j). Then for z € Im [Q]
we have

z= ‘Zl<xi, Z>Z él’

and thus the relation (31) may be written (h = 0) in the form

M=

(36)

[Q No(tw + 10)]; wi = 3 (xis @ No(tw + 176)>5 w; =
1 i=1

i

]

WiX;, QNO(IW + l"U))z = <Q*(.leixi), No(tW + I”D)>Z =

= {Q*(w), No(tw + t™0)>5 .

Il
'/\
i

Hence

(37) T [0 No(tw + )]s w; = Cw, No(tw + 0)>.
i=1

3. APPLICATIONS

3.1. Periodic solutions of nonlinear differential-difference equations. Let T (the
period) be a positive fixed number and let g(s, u) be a continuous function on R,
such that

(1) a(s + T u) = qls, u)

for every [s, u] € R,. Let 7 € Ry. Let us consider the differential-difference equation

@ %) = gls. x(s = 9).
The class of equations (2) includes also ordinary differential equations (take z = 0).
A T-periodic solution of (2) will be a solution x(s) such that

(3) x(s + T) = x(s)

for every s € R;.
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To apply the abstract results from Part 2 to the existence of a T-periodic solution
of the equation (2) put

X=2=Cy,

where Cy is the Banach space of all continuous and T-periodic functions x (i.e.,
satisfying (3)) with the norm

Ixllcr = sup [x(s)| = sup_|x(s)| .
seRy 5e(0,T>
Moreover, set
Dom [L] = {xe X : isfrom the class C'}, L:x+> x.
It is easy to see that Dom [L] is a dense subspace of the space X,
L:Dom[L]c X > Z

is a closed linear operator,

Ker [L] = {x € X : x is a constant function}

Im[L]:{zeZ: jrz(s)ds=0}.

0

and

For fe C; set

1 T
of) = P(f) = _j £(5) ds.
T),
Thus
Im[P] = Ker [L], Im[Q°] =Im[L]
and P, Q are continuous algebraic projections in the spaces X and Z, respectively.
Suppose that there exist «y = 0, f = 0, § = 0 such that
(4) las, w)| = o + Bluf”
for each [s, u] € R,. Define
No :x+ (s, x(s — 1)) .
The mapping N, : Dom [N,] = X — Z satisfies

INo()[z = &0 + Bllx[%
for every x € X.

Thus for arbitrary x € X we have (see 2.5.3)

1 T
®) (YQ No(x), w) = }-J. q(s, x(s — 7)) wds,
0
where w = +1.
Now Theorems 2.5.5 and 2.5.8 imply

487



3.1.1. Theorem. Suppose (1) and (4) with p = 6 = 0. Let there exist, for each
seRy,

© lim s, 8) = 0,09,
(7 éliinnq(s, H=a_{s).

Then the equation (2) has a T-periodic solution provided

®) Lra_(s) ds <0 < j:a+(s) s
(or

®) J :a_(s) ds >0 > J:a+(s) ds).

If we suppose, moreover, that

) a_(s) <4q(s,u) < a.(s), seR,, ueR,
(or
9) a_(s)=q(s,u) = a(s), seR,, ueR,)

and the strict inequalities hold for a set of s € R, which has positive measure, then
the condition (8) (or (8")) is also necessary and sufficient for the existence of T-
periodic solution of (2).

Proof. Suppose (8). From remarks before Theorem 3.1.1 and from Theorem 2.5.8
it follows that it is sufficient to show:

A. The mapping
KQ°Ny:X »Im[P]c X
(K is the right inverse of the operator L) is completely continuous;

B.

1 T
— | a.(s)ds, w= 1
TJ.O +()

D:w+

H:[—a-(s)] ds, w= 1

is a weak asymptote of the operator N, with respect to Ker [L]:

C.
[ON(x)]; wy < ®(w,), xeX.
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(ad A). From the Arzela-Ascoli criterion of compactness it follows that the map-
ping K : Im [L] — X is completely continuous. Moreover, the mappings Q° and N,
are continuous and bounded. This implies the assertion A.

(ad B). From (6), (7) and (4) it follows that the functions a., a_ are L-functions.
Suppose that @ is not a weak asymptote of the operator N, with respect to Ker [L].
Thus there exist ¢ > 0, a sequence v, € X, [[v,]|¢, < rand a sequence t, € Ry, lim t, =
= 00, such that either n= @

o] e+ s = )05 = o) 2

7 [T =t ot = o a5 - (-] 2.

From Lebesgue’s Dominated Convergence Theorem we obtain a contradiction.

The assertion C is obvious.
Note that assuming the condition (8') we consider the equation

=x'(s) = —q(s, x(s — 7))

and use the same argument.

3.1.2. Theorem. Suppose (1) and (4). For each s € R,, let there exist

(10) limg(s, &) = +0, q(s,8) 20 for £20
(or o

(10) lim 9(s,8) = =0, q(s,&) <0 for ¢20),
(11) lim (s, &) = —c0, 4(s.£) <0 for £=0
(or o

(11) gim (s, &) = +o0, q(s,¢)20 for &£0).

Then the equation (2) has a T-periodic solution provided one from the following
conditions is fulfilled:

A (sublinear case): 0 < 6 < 1;
B (asymptotically linear case): 6 =1, 0 < p < 1.

Proof. By contradiction, using the Fatou lemma we can prove that every constant
is a weak (1, r)-subasymptote of the operator N, with respect to Ker [L], where
n € (3,1) in the case A, n = 1 and r < 1 in the case B.
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The superlinear case is solved in Theorem 3.1.3 the proof of which follows im-
mediately from the reasoning before Theorem 3.1.1, from Theorem 2.3.10 and from
Remark 2.5.3.

3.1.3. Theorem. Suppose (1), (4) with 6 > 1 and
(12) 0< oy < T—I(Tﬁ 22(5—1))1/(1—5) [51/(1 =d) __ 66/(1—6) - 21—656/(1—6)] :
(13) there exists y > O such that

q(s’ u) g Y 4(5, —u) é -7
for each se R, and u e {1y, 1,), where
7, < {T—lﬁ—l 2“"[(Tﬁ 22(6—1))1/(1—6) (51/(1—6) _ 56/(1—6)) — Tao]}”" —

~ (TP5 22(a~1))1/(1—5)
and

7, g {T‘lﬂ—l 21"5[(Tﬂ 22(6—1))1/(1—5) (51/(1“5) - 56/(1—6)) — Tao]}1/6 +
T (Tps . 226y A=8)
Then the equation (2) (or the equation

@) —x(s) = qls, x(s — 7))

has a T-periodic solution.

3.1.4. Remark. Analogously as in Theorem 3.1.3 we can solve the second order
ordinary differential equation

(or

x" = f(s, x, x')
=x" = f(s, x, x'))

under periodic boundary conditions
x(a) = x(b), x'(a) = x'(b),
where f is a continuous real valued function on {a, b) X R,. Note that
X = {xeC%a, b) : x(a) = x(b), x'(a) = x'(b)},
Z = C{a, b),
Dom [L] = {x &€ X : x is of the ;:lass c?,
L :x+x"(or L:x+ —x"),
No:x+f(+, x(+), x'(+)) .
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If the function f does not depend on the last variable then we can give immediately
the analogue of Theorems 3.1.1 and 3.1.2.

3.2. Classical solutions of boundary value problems for nonlinear second order
ordinary differential equations. Let us consider the second order ordinary differential
equation

(14) x" = f(s, x, x')
(or
(14) —x" = f(s,x, %),

where f : {a, b) x R, — R, is continuous. If £,, &, are fixed real numbers, a solution
of the boundary value problem for the equation (14) (or (14)) will be a mapping
x :{a, b) - R, of class C* which satisfies (14) (or (14’)) and the boundary conditions

(15) x(a) = &, x(b)=¢,.
Analogously as in J. Mawhin [14], the application of Part 2 is possible if we put
X = C%¢a, by with the norm |x|y = max { sup |x(s)|, sup |x'(s)|}.
se{a,b) se{a,b)
If C<a, b) is equipped with the norm
[zl = sup |=(s)],
sea,b)
then the norm in the set Z = C{a, b) X R, is given by

lzlle + lyal + |2 -
Dom [L] = {x € X : x is of the class C?},
L :x+[x", x(a), x(b)] (or L: x> [—x", x(a), x(b)]),
Ny:x+ [f(" X('), x,(.))’ Sar éb] .

Moreover, Lis closed, Ker [L] = {Ox}, Im [L] = Z, the right inverse K : Z — X
of Lis completely continuous (this is an easy application of Arzela-Ascoli theorem)
and N, is continuous and maps bounded sets into bounded sets.

We shall suppose that there exist ¢ = 0, § = 0, 6 = 0 such that
(16) |£(s, . v)| < ¢ + p[max (Jul, |o])]’
for se{a, b) and [u, v] € R,. Thus

INo(¥)]|z = oo + B[lx[% »
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where i
ay = ¢ + |&| + || -

Now we apply Theorem 2.4.1:

3.2.1. Theorem. The problem (14)—(15) (or (14')—(15)) has a solution if one
from the following conditions is fulfilled:

A (sublinear case): €0, 1);
B (asymptotically linear case): 6 = 1, f < [max ((b — a)?,2)]7";
C (superlinear case): § > 1,
ay < [max (b — a)?,2)]7" (max ((b — a)?,2) p22¢-V)H0U=2,
[ — goia-o

3.2.2. Example. As an example of the superlinear case we shall consider the bound-
ary value problem

(17) —x" =x>-—h,

x(0) = x(1) = 0.
It is easy to see that f = 1,6 = 3, uy = || ¢. Then from the part C of Theorem 3.2.2
we obtain that (17) has a solution provided

Ihfe < 127167172

The existence of a solution of (17) for “a small right hand side h” follows also from
the theorem about the local diffeomorphism (see e.g. J. DIEUDONNE [3, Theorem
10.2.5]) since the mapping

xeX+ —x" — x>eC0,1>
has invertible Fréchet derivative at the origin of the space
X = {xe C*0,1) : x(0) = x(1) = 0} .

An analogous upper bound for “the smallness” of ||h| ¢ as in this example may be
obtained by the method of the upper and lower solutions which is explained in the
paper of K. ScumiTT [18]. It seems that it remains an open problem whether the
boundary value problem (17) has a solution for any right hand side h e C({0, 1)
(see also [8, Appendix VII]).

Note that it is possible to generalize the result from this example to the problems

—X” — x2n+1 — h’

x(0) = x(1) =0,
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n a positive integer, or more generally to the equations
x" 4+ x F(x*,t) = h

studied for example by Z. NeHARI [16] and G. B. GUSTAFSON - K. ScHMITT [9].

3.2.3. Remark. Other existence theorems for boundary value problems for higher
order ordinary differential equations may be obtained from the papers [6, 7, 15].

3.3. Remarks. I. The existence of a solution of boundary value problems for
nonlinear (partial or ordinary) differential equations in the sublinear or asymptotically
linear case under the assumption of the existence of weak asymptotes or weak sub-
asymptotes is established in the papers [6, 7, 15]. The proofs in these papers are
based on a Hilbert space analogue of Theorems 2.5.5 and 2.5.8 for a selfadjoint
bounded linear operator L. The same idea can be also applied to nonlinear integral
equations of the Hammerstein type.

II. It is possible to apply existence theorems 2.5.5 and 2.5.8 (and also Remark
2.5.9) to boundary value problems for partial differential equations of the type

N
—Au + g(u) =) %,
i=1 0X;

where f;€ L,(Q), 1 < p < 2 (“very bad right hand sides”).

III. Analogously asin Theorem 3.1.3 we can apply the superlinear case to boundary
value problems for partial differential equations as well as to nonlinear integral equa-
tions provided the linear part has simple eigenvalues.

IV. If the operator N, has a weak asymptote with respect to Ker [L] equal to zero
then the solvability of the equation
L(x) = No(x) — h

cannot be obtained by applying Theorem 2.5.8 but we must go back to the general
Theorem 2.3.10. A typical example is the problem

X
18 X"+ x= - h,
(18) 1+ x?

x(0) = x(n) = 0.

To solve (18), we put
X = {xeC%0, 7y : x(0) = x(x) = 0},
Z = C0, 7>y,
Dom[L] =X, L:x+x" +x
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and
No:x+> _x(_)__ .
1+ (")
Then
Ker[L] = {Asint:1€eR,},

Im[L] = {zel:f z(r)sintdt = 0}.
0
The mappings

Q:ZHZSIHTJz(r)sianT, ze CL0, ),
7

0

P:x-o»asll—llj‘ x(t)sintdr, xeC*0,n)
n 0
are continuous algebraic projections in the spaces considered and Im [P] = Ker [L],
Im [Q°] = Im [L]. For each x € X it is

INo()]l2 = 4

and it is easy to see that the mapping N, : X — Z is completely continuous. So the
mapping KQ° N, : X — Im [P°], where K is the right inverse of L, is completely
continuous and HK“ = %. According to Remark 2.5.3 it is

sint dt,

2 (™ tw+o(7)
No(tw + v), w) = — = AT
(O Nofw + o), w) nuL RN
where f = +1, w = psint.

Since the condition I from Lemma 2.3.7 is fulfilled with a = 2 + 4| k|, we shall
investigate the set 9 introduced in Lemma 23.6. Let § = (9a* + 16a + 9)~!
(i.e., (34a*)™ £ 6 £97"). For |v|x £ a, p =1 (and analogously for u = —1),
Q+a)ys ' <t<2a+1)6""itis

n : n—é L] n
% tsm.t + U(T) sintdr = 2 / + / + / =
nJol + (tsint + v(7))? z\J; o s
9
gf_& 2(a+1)+a5 cosd —0O% =
b 6% + [2(a + 1) + ad]?
ggé 2(a + 1) + ad (1-0% -5l = 81 4a — 3 — o(a).
n | 6% +[2(a + 1) + ad]? 17a*n 1 + [19a + 1]?

Thus (by Theorem 2.3.10) the boundary value problem (18) is solvable provided

2 J‘ h(7) sin t dt

TlJo

< of2 + 4]Als)
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