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NON-ANALYTIC LOCAL SPECTRAL PROPERTIES
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E. J. ALBrEcHT, Kaiserslautern and F. - H. VasiLEscu, Bucharest

(Received May 31, 1973, in revised form October 10, 1973)

1. Introduction. Let X be a Banach space and #(X) the algebra of all linear con-
tinuous operators on X. In what follows we shall consider finite systems of mutually
commuting operators T = (T, ..., T,) (Tj€ £(X); j = 1,...,n), often called n-
tuples of operators. The purpose of this paper is to find multidimensional variants of
some results contained in [5], stated there for a single operator. We shall constantly
use definitions and spectral properties of finite systems of commuting operators as
given in [1]. For the convenience of the reader we shall recall some definitions
of [1]. (For n = 1 see also [3].)

If k = (ky, ..., k,), I = (I}, ..., 1,) are multi-indices then we denote
|k| = ky + ... + k,, kl=k!. k!

and
SIkI+ 1l

ozt ... ozkn0zY ... ozl

st

Let I/ be an open subset of C*(C"* = R*"). Denote by ¢™(V, X) (m = 0, 1,2, ...; )
the space of all X-valued functions, defined in V, m-times continuously differentiable,
endowed with the topology of compact convergence of the functions and their deriva-
tives up to the order m. The topology of €"(V, X) (m < oo)is given by the seminorms
{I*|lm.x; K = V compact}, with
(1) la = _ 3 —sup [(@0f) ()]

oslk[+|1|sm k! 1! zek
for any fe #"(V, X). For every compact set K = C", 2"(K, X) will stand for the
closed subspace of all functions f in ¢™(C", X) such that supp f = K. If m < o
then 2"(K, X) is a Banach space, with the norm given by (1.1). We shall write
%"(V) (2"(K)) instead of €™(V, C) (respectively 2™(K, C). If fe€"(C", X) has
compact support, then we shall denote its seminorm given by (1 1), for K = supp f,
simply by | f ]
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1.1. Definition. Let T = (T}, ..., T,) be a commuting finitc system of operators
in Z(X). We say that T is a $™-scalar n-tuple if there exists a continuous algebra
homomorphism U : ¢"(C") -» £(X), such that U(1) = 15 and U(z;)) =T, (j =
= 1,..., n), where z; stands for the function

(1.2) C'sz=(z,...,2,) > z;€C.
Such a homomorphism U will be called a ¢™-functional calculus for the n-tuple T[1].

1.2. Definition. Let T = (T, ..., T,) be a commuting n-tuple of operators on X
and x € X a fixed element. We say that z € C" is in the local joint resolvent set g;(x)
of T at x if there is a neighbourhood V of z and n X-valued functions u;, analytic

in V. such that ) (w; — T;) uy(w) = x for all we V. The local joint spectrum o(x)
i=1

of Tat x is the set C"\ ¢4(x), and o;(x) is a compact subset of C" [1].
Let Tbe an n-tuple of operators on X and F a closed set in C". Denote by

(1.3) X(F) = {xeX; o4(x) = F}.

When Tis a ¢"-scalar n-tuple then any space of type (1.3) is a spectral maximal space
of T (for details see [1]). In this case X,(F) is a closed subspace of X, invariant to T
and to any ¢"-functional calculus of T. Moreover o(T, X (F)) = F, where o(T, X 1(F))
denotes the spectrum of T with regard to X,(F), in the sense of J. L. TAYLOR [8].

In the sequel we shall investigate first what happens if in Definition 1.2 one takes
functions u;, not necessarily analytic, T being a %#™-scalar n-tuple. With the same
conditions, we study then the algebraic character of the structure of the spaces given
by (1.3).

Finally, we show that some indices can be improved in the case of n-tuples of com-
muting scalar operators [4] on Hilbert spaces.

2. More about the local joint spectrum. It seems that a good definition, valid for
n-tuples of commuting linear operators, of the single valued extension property [4]
is very difficult to be given. It is easier to define a notion of local joint spectrum
spr(x), as done in [1] (see also Definition 1.2) and then to verify that the definition
is “‘reasonable enough”, i.e. it has the property:

(2.1) spr(x) =0=x=0.

When n = 1 and spr(x) = o4(x), the property (2.1) is equivalent to the single valued
extension property [10]. It is fundamental for any operator T having a “good”
spectral decomposition, for example if T is decomposable [3]. Let us notice that the
property (2.1) is also valid for some commuting n-tuples T, if sp;(x) = o(x) (see
[1, Th. 1.2.11]).
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2.1. Definition. Let T = (T}, ..., T,) be a commuting n-tuple of operators in £(X)
and x € X. A point z € C" is in the set o’(x) if there is an open neighbourhood V of z

and u;e €V, X) (j = 1, ..., n) such that ) (w; — T;) u(w) = x for all weV. We
j=1

shall put 6%(x) = C"\ o{¥(x) (for the case n = 1 see [5]).
The method of proof of the next result has been suggested to the first author by
Prof. B. GRAMSCH in a private discussion.

2.2. Lemma. Let K be a compact set in C". Then for any integer ¢ = 2n + m + 1,
the space 2°(K, X) may be naturally embedded into the complete projective tensor
product 9"(K) &, X, where K is an arbitrary compact neighbourhood of K.

Proof. Let ¢ be a fixed element of 27K, X). There is an r > 0 such that K <

2n

< H[-nr, nr], where K stands for an arbitrary neighbourhood of K. Let us consider
1

the Fourier expansion of ¢, namely

(2.2) (1) = Y " F(p),

aeZ2n
where (o, 1[r) = a;t,[r + ... + ay,t,,[r, and

f e 1= p(s) ds

nr

23) i) = (2nr)~2" j

By a straightforward calculus one gets for a fixed a € Z*", o = (ty, ..., 0,),
2n ) ) 2n 0\4

(2.4) (i + Y |o])* Flo) = F, <<1 — ir) sgna; _) "’) ’
j=1 j=1 0s;

where “sgn” denotes the usual signum function.
From (2.3) and (2.4) we obtain

I + %l )] = sup

2n o \4¢
(1 ry sgno; —) o(s)
j=1

0s;

whence ‘
@3) 16+ %l £io)]

where C > 0 does not depend on o.
Now, let  be a function in @"(K) such that y = 1 in a neighbourhood of K.
Then we have

(.2 o)) = () 9(0) = 3, ¢ 4(0) F (o)

IIA

Clelox.
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and we shall show that the right side of (2.2)' can be embedded into the space
2"(K) ®, X. For, let us remark that on account of Leibniz’ formula we get

(2.6) e = Coli o+ X bl " [

According to (2.5) and (2.6) we may write

2n
% 1 [FO] = Col s 16+ Xl o] =
aeZ?n aeZ2n j=
2n
C X i+ Xl ") @]k -
aeZ2n j=1
Since ¢ = 2n + m + 1 then the series

2n
DA
n =
is convergent, therefore
7= I @ F o)

aeZ2n

is an element of 2"(K) &, X and

|2 amk)6.x = Call @]k
where C; > 0 does not depend on ¢, hence the map
(2.7) P(K,X)2¢0 - peI™(R) ®. X

is a natural embedding.
The following result has a similar proof with that of [1, Th, 1.2.11].

2.3. Theorem. Let T = (T, .., T,) be a ™-scalar n-tuple of operators on X and
let U be a €™-functional calculus for T. Then for all xe X and q 2 2n + m + 1
we have

supp U(*) x = G(T“)(x) = o7(x)
(here f > U(f) x is an X-valued distribution and supp U(+) x is its support).

Proof. The inclusion ¢%(x) = o4(x) is obvious from the definition. We shall
show now the inclusion supp U(+) x = o‘®(x). For, let us consider a function f €
€ ¢%(C") such that supp f < ¢¥(x). According to Definition 2.1, for every z € supp f
there exists an open neighbourhood ¥, of z and n functions u; , .., u, . in €%V, X)
such that Y (w; — T;) u;.(w) = x for all weV,. Since supp U is compact [,

j=1
V., is

a covering of the set supp f nsupp U. Let usset V; =V, , u;; = u; ,, (I=1,..p;

Th. 1.2.9], then there is a finite number of points z,, ..., z, such that ¥,

FZOIRRRE)
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j=1,..,n), Vo =C"\suppU and V,,, = C"\suppf. Then {V;,V;,...,V, .} is

a covering of C", therefore we may take a ¢®(C")-partition of the umty, say {h,}7*s,

pt+1

such that supp h, <V, and Z h, = 1. Then we have f = Z h,f Z h,f. On the
other hand, Z(W T))u; ,(w) = x for each wesupp h, (l =1,.., p), therefore

forallwe C" we get
(2.8) F(w) x = ho(w) f(w) x + 12::1 jé:l(wj — T3) f(w) hy(w) u; (W) -

Notice that hy(w)u; (w)€ @%supp h;, X) (I = 1, ..., p), therefore by Lemma 2.2
we may identify h(w)u; (w) with an element of 2™(K,) &, X, where K, is an
arbitrary compact neighbourhood of supp h;. Since the space 2"(K,) &, X is ob-
viously contained in ¢"(C") &, X, then the relation (2.8) may be considered in the
space "(C") ®, X and it has the form:

(2.9) f®x=hf®x + ?; il(zjf ® Ix = f® T)) (hwy,) »

where z; (j = 1, ..., n) are the coordinate functions given by (1.2).

Let us remark that the map U ® 1, naturally defined on ™(C") ® X, has a con-
tinuous extension U &, 1x from ¢™(C") &, X into Z(X) ®.X [9, Th. 43.6]. If we
denote by J the continuous extension of the map J, : Z(X) ® X — X on the space
LX) ®. X (Jo(X14: ® x;) = Y,4;x;), then the map J(U ®. 1x) is continuous
from ¢"(C") ®, X into X. Notice that for any L= ) 9, ® y, € ¢"(C") ® X we get

JU®1,)(z/ @ 1x ~ f® T) L) =
= JQ(U(z) U(f) U(g)) ® y1 — U(f) Ugr) ® Tyy)) = 0.
Since ‘ﬁ'"(C”) ® X is dense in %’"‘(C") &x X, it follows that
JU @ 1x)(z:/ ®1x —f®T)L) =0,

for all Le ¥"(C") @, X. By applying the operator J(U &, lx) to the relation (2 9)
we obtain

U(f)x = U(f) U(hy) x = 0,
because supp hy N supp f = 0. Consequently, supp U(+) x = o%P(x).

Finally, let us show that ¢,(x) = supp U(*) x. For, let us consider a point w° ¢
¢ supp U(*) x. On account of [1, Lemma 1.2.3] there is an open neighbourhood ¥;
of supp U(+) x, an open neighbourhood ¥, of w® and n functions u(z, w) with the
properties:

(1) for any w e ¥, the function z — u(z, w) € €"(V,);

434



(2) the map w — u/(+, w) (Vo - €"(V})) is analytic;
(3) the following relation holds:

(2.10) jz::l(wj —z)ufz,w)=1 (zeVy, weV,).

Let f be a function in ™(C"), supp f = V;, such that f = 1 in a neighbourhood of
supp U(*) x, therefore U(f) x = x. Then, by (2.10) we obtain

3 (0= T) Ul ) x = x.

Since U is a continuous distribution then the map w -> U(fu,(+, w)) x is analytic
in¥, (j = 1, ..., n), hence w° € 94(x). The proof is complete.

2.4. Corollary. o'P(x) = 0 if and only if x = 0, for every ¢ = 2n + m + 1.
Proof. Indeed, if x = 0 then supp U(*) x = 0.

2.5. Remark. Theorem 2.3 is not exactly the multidimensional version of [5,
Prop. 2.7]. Indeed, if n = 1 we obtain ¢{(x) = o,(x) for any ¢ = m + 3, while
in [5, Prop. 2.7] the same thing is true for ¢ = m + 1.

3. The structure of spectral maximal spaces. Most of the results of this section are
generalizations of the corresponding statements in [5]. Let us also remark that such
problems have been initiated in the one-dimensional case by P. VrBovA [11].

In what follows T = (T}, ..., T,) will be a fixed ¢"-scalar n-tuple and U a %"-
functional calculus for T.

Denote by D, , theset {ze C"; |z, — 4| S r,j = 1,...,n}, where A = (4, ..., 4,)
is a fixed point in C" and r > 0. When A = 0 then we put D, , = D,. Denote also
by dv the Lebesgue measure in C* = R?",

For the further proofs we need the following

3.1. Lemma. For any r >0, r < 1 there is a function ¢, e $*(C") such that
supp @, = D,, |¢,|, £ Mr~%"?" for any integer q Z 0, where M > 0 does not
depend on r. Moreover, the integral

j V() Ul (2 - 2)) dv(3)

converges to U() as r — 0 in the norm operator topology, for any y € €™(C").

Proof. There is a function ¢ € #°(C"), ¢ = 0, supp ¢ < D, and [¢(2) dv(1) = 1
[6]. Consider now the function ¢,(z) = r~2" ¢(z/r). Then we have

(3.1) Ia,‘,,(p,(z)l < Mk‘,r’z"_”"_“I ,
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for any multi-indices k, I, |k| + || £ g. When r < 1 we obtain easily
lo.ll, = Mrma=2,

where M > 0 depends only on ¢.
Since the integral

f W(2) o,(i — 2) dv(l)

converges to ¥ in the topology of ¥™(C") as r — 0, then by the continuity of U one
obtains

uQﬁ@%u-amw)=

= j W(2) Ulp(2 — 2)) dv(2) - U(Y),
for any y € €™(C").

3.2. Lemma. Suppose that there is an integer q = 1 and an element x € X such
that for any ) € o4(x) thereexist y; ;€ X (j = 1, ..., n)such that y (2, — T;))* y; ; =
n j=1
= x. Denote by Y; = {y; = (y1.00 - Yui)s 2. (4; — T,)" v, = x}. Then there is an
j=1

open polydisc D such that D noy(x) + 0, a constant C > 0 and x; = (x; ;, ..
- X, ;) €Y, with max ||x; ;|| £ C, for A running a dense subset B of D N a(x).
1<jsn

Proof. Consider the sets

By = the closure of {4 € o,(x); inf max [x; ;| < N}.
x€¥, 1Sjsn
Obviously, GT(x) = UyB,, therefore by Baire’s theorem there is a By, which has a non-
void (relative) interior. We take now C = N, + 1 and an open polydisc D such that
0 + D nogx) = int By, = o7(x) and then we may choose x,€Y, such that
max ||x; ;]| < C, for A running a dense subset of the set D N a4(x).

15jsn

3.3. Theorem. Let T = (Ty, ..., T,) be a €™-scalar n-tuple. If q is any integer
such that ¢ = 2n + m + 1 then

N 30— Tyx ={o}.

leCn j=1

Proof. Let us remark first that we have

(32) N (- Tyx=x.

2¢a(T,X) j=1
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Indeed, if A ¢ o(T, X) then the functions

wiale) = =2 B = =t (= 1,m)

are infinitely differentiable in an open neighbourhood of (T, X) = supp U [1, Cor.
I.2.12], for every ¢™-functional calculus U of T (which is considered fixed in the
sequel). Then U(u; ;) is well defined for any j and we have

E

L (% = Tt U(w;0) = 1y
=1
In particular, we have (3.2).
In order to prove our theorem it is sufficient to show that
N 20 -T)yx={0.
lea(T,X) j=1
Assume that there is an x € X such that x + 0 and
(3.3) xe N Y@, -T)YxX.
leo(T,X) j=1
Denote by D the disc given by Lemma 3.2 and take x; = (x, ..., X, ;) such that
Y (4 — T))*x;, = x and max ||x; ;| £ C for all A€ B, B chosen according to the
j=1 1<)

=J=n
same lemma. Let us take a function ¢ € %‘”(C") such that suppp <« D and ¢ = 1

in a nigehbourhood of 1,, where 4, is a fixed point in D N ¢4(x). Therefore U(p) x =
4 0 because otherwise 1, € o7(x); moreover, o{(U(®)x) = a,(x) nsupp ¢ (see
[1, Th. 1.2.14]). Denote by y;, : the vector U(p) x;,, for A€ B and let us choose

viaeX(=1,.. n)suchthatZ(,l ~ T)?y;.; = U(p) x for all 4 e C"\ B, which

is p0551ble on account of (3.2) and (3 3). Let us choose also a point u(2) = (u 1), ..
., I(4)) in B such that Dy, ;) = D, ;, whenever D, ; N o1(U(p) x) # 0.
On account of the estimation (3.1) we have

|o(1(2) = 2t o2 = )| =

<z <k> (’:) S0P [o-sa- (1) = 220t = 2| 5

zeDy 2

<) (k) sup |0e-y(1(A) — 2,) dea2 — 2)| <

zeDy 5

s

< ( By I+ sl pp = 2n=tsl =l < G pa= 20 Ik~
<k
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whence we get
(34) ” 'Zl(ﬂj(),) —_ zj)q (pr(/’[, — Z)nm < Cra—2n—m ,
=

where C = 0 does not depend on r.

According to (34) and Lemma 3.2 we have now for ¢ = 2n + m + 1 the following
estimation:

(35) I3 (5 = TR U0, = 2) vl =

i=1

= ”Jé:l(ﬂj(l) = T U(o2 = 2)) yiuwl =

éél [U(rA2) = T)) 0l = 2)) Yju]) = Cars

where C; does not depend on r.

Let us consider a function x in *(C"), with compact support, such that y = 1 in
a neighbourhood of ¢(T; X). Then we may write
(39) [ 2.6 = Ty viod = 2) i ) -
i=
= [y vies ~ ) vie) <),

and the left side is integrable as being equal to the right.

According to Lemma 3.1,
67) j 22 U(o( — 2)) U(g) x dv(A) = U() U(g) x = U(@) %

Notice that if D, ; n or(U(p)x) =0 then U(p A — 2))U(p) x =0 (see [1,
Th. 12.14]), therefore we have for ¢ =2n +m +1 and V, = {weC%
dist (w, o,(U(e) x) < 1},

\ <

l—<_- Czra

(9) I3 6y~ T Ul = 510000

=

| #0305 - Ty vt = 2) i 0t

where we have used the estimation (3.6). From (3.7), (3.8) and (3.9) we obtain
U(p) x = 0, which is a contradiction; the proof is complete.
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3.6. Proposition. Let T be a €™-scalar n-tuple and q > 1 an integer such that

N 24 - TFX=<{0}.

seCn j=1
Then for any closed F = C" we have

XA =n Y0 - T)YX.

A¢F j=1

Proof. Since T|X(F) = (T, | X4(F), ..., T, | X{(F)) is a ¢™-scalar n-tuple on
X 7(F), then we have by (3.4)

X,(F)= N V(/ - T)"XT(F)c:n Z(/l -T)X.

A¢o(T ,X1(F)) j=

Conversely, let x be in Z (4; = T;)* X and consider ¢ € €°(C") with compact
A¢F j=

support, such that ¢ = lina nelghbourhood of F. Let U be a ¥™-functional calculus

of T. Then y = U(1 — ¢)x e X(supp (1 — ¢)). Since x = Z(A T, x; , for
any A ¢ F, then we can define

) Ul ~—¢)x;, A¢F
Yin =
Uu; ;) y AeF,
where uj, (2)=(0; - zJ) |) — 2?9 (see the proof of Theorem 3.5). Then we
have Z(A — Ty, = y, for any A€ C", hence from our hypothesis, y = 0.
j=1

We get then x = U(e) x for any ¢ = 1 in a neighbourhood of F, therefore x € X ;(F)
(see [1, Th. 1.2.16]).

3.7. Corollary. With the conditions of Theorem 3.5, for any integer q = 2m +
+ 2n + 1 and any closed F = C" we have

X (F)=n Y4 -T)X.
2¢F j=1
3.8. Remark. When n = 1 then Theorem 3.5 coincides with [5, Th. 3.3].

4. The case of scalar operators on Hilbert space. Throughout this section X will be
a Hilbert space and T = (T, ..., T,) an n-tuple of commuting scalar [4] operators
(i.e. a ¥°-scalar n-tuple). In this case we are able to prove that the minimal index
given by Theorem 3.5 can be improved. We obtain our result by usmg a similar
method with that of [ 7], extended to several operators.
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4.1. Theorem. Let T = (Ty, ..., T,) be an n-tuple of commuting scalar operators
on the Hilbert space X. Then for any integer ¢ = n

N Y- T)yx = (o).

JeCn j=1
Proof. On account of [4, Th. XV.6.4], there exists an invertible operator S € 2(X)
such that S‘ITJ-S = N is normal for every j = 1, ..., n. It is clear that we have only
to show
n
(4.1) N X (4 — Ny = {0},
AeCn j=1

with N; commuting normal operators (j = 1, ..., n). On account of [4, Th. X.2.1]
there exists a spectral measure E on C" such that N; = [z; dE(z) (j = 1, ..., n).

Let M be a cube in C" (i.e. a Cartesian product of n equal squares in each of C’s)
containing the spectrum o(N, X) of N = (N, ..., N,), which is equal to the support
of the spectral measure E. As in Theorem 3.5, it is sufficient to show that

N Y- NyX={0}.

ieM j=1

Assume that x belongs to () Y, (%; — N;)? X. We shall construct a sequence {M,}

deM j=1
of Borel sets in C", having the properties:

10 Mo = M;

2° the closure of each M, is a closed cube with the sides parallel to the axes (in R*");
3° each M, is one of the 22" closed cubes obtained by halving the sides of M, _;
4 |x|* = 2% B(M) x|

Suppose the set M; is constructed for all j < k. Let K, ..., K,2. be disjoint Borel
sets such that their union is equal to M, and the closure of each K is equal to one of
the closed cubes obtained by halving the sides of M,.

Since
104 xJ* = ¥ JB(K)

we have
27| E(My) x| < [|E(K,) x|*

for at least one j,. Let us take My 4y = K;,. Then we have

[x[* = 22| E(My) x|* = 224D E(My ) x|* -

Denote by w the only point of () M,. Since we M then there exist x;e X (j =
k=0
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= 1,...,n) such that ¥ (w, — N;)*x; = x. Then we can write:
Jj=1
[l = 2| E() x| = 2 T [ EOM) (w; = Ny x, | =
5

= 2nknz <E(Mk) (wj - Nj)‘l Xj, (W,- — NJ)" xj>1/2 _

/12

o= 2"" (j |w; — z;|*7 CdE(2) x;, x,>> =
j=1 M
n 1/2
=2y <j Iw; — 2> <dE(2) x;, xi>) =
Jj=1 MiN{w)

=2 ,él(dkyj)" (v (M~ {wh)'?

where dy ; = max |w; — z;] = 27*d, d being the length of the diagonal of the projec-
zeMje
tion of M onto its j*™ complex component and v;(M\ {w}) is the variation of the

measure {E(+) x;, x;> on the set M, \ {w}. Since the sets {M; \ {w}} form a decreasing
sequence with void intersection then v,(M, \ {w}) tends to zero as k — oo, for each
j =1,..., n. Finally, let us notice that

2% 3 (dy ) (oM D)) < 20794 max (o(Me~ ()2 = 0,
i=1 15jsn

therefore x = 0 and the proof is complete.

4.2, Corollary. Let T be as in the previous theorem. Then for any closed subset
F < C" we have
#F) =N Z (% - Tyx,
A¢F j=
for any q = n.

4.3. Remark. When n = 1 then we obtain the result of [7].

4.4. Example. We want to show that the minimal index g for which the relation
(4.1) holds is equal to n, therefore Theorem 4.1 provides the best possible index.

Let X be the Hilbert space of all square integrable scalar functions on Dy =
={zeC"|z| £1,j =1,...,n}, with respect to the Lebesgue measure dv.

Consider the n-tuple T = (T, ..., T,), with (T;f) (z) = z; f(z) (j = 1, ..., n) and
take the function h(z) = 1. For an arbitrary w e C" let us define

gy = —L = ).

;= 2" Y i =z
k=1

441



Let us show that g;w € X- We have

0@ = (2 o = 22

where C is a constant with respect to w and z. Take r, > 0 and consider the set

IIA

C(kzilwk -z,

B(w, ro) = {zeC" le — z;]* < rj}.
Then

(42) L‘Igf,w(Z)Iz av < j 0,2 dv + j GRS

Notice that the first integral of the right side is finite; therefore we have only to show
that the second one is finite too. Indeed, we have

j (D)2 dv < C j (X |we =z ndv = € j (3 |z~ dv =
B(w,ro) B B(0,r0) k=1

(w,ro) k=1

D{\B(w,ro)

IIA

Il

C J J' r?722 "L dr do = (C[2) w(S) 13,
SJ0

where r = (Y [2/?)"/? and do is the Lebesgue measure on S = {ze C" ¥ [z|* =
k=1 =1
= 1} (=C" = R*"); therefore the right side of (4.2) is finite and g, belongs to X.

Finally, we have for all we C", ze D,

(w; = T 9,(2) = h(z) -

™M s

Jj=1

Consequently, 0 + he N Z (w, =Ty 'x

weCn j
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