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REMARKS ON TOPOLOGIES UNIQUELY DETERMINED
BY THEIR CONTINUOUS SELF MAPS

JIRi Rosicky, Brno

(Received September, 22, 1972)

In this note, some remarks to Warndof’s paper [7] are given. Let a pair (4, &)
denote a topological space, where A is the set of points in the space and o is the
collection of all open sets of the space. Let C(s#, %) denote the collection of all
continuous mappings from (4, &) into (B, #), C(+#) = C(sZ, /). Warndof have
introduced the concept of the generated space and the special space. A T,-space
(A4, o) is generated if for every T,-topology # on A such that C(«/) = C(%),
&/ < A holds. A T,-space (4, &) is generated if and only if {f~'(x)/f e C(s£),
x € A} forms a subbasis for closed sets of (4, &). A (T,-) space (4, &) is (T;-)
special if the only (T,-) topology % on A such that C(s/) = C(%) is the topology
B = 4.

In [5] it is shown that any non-discrete T,-special space is special. Further, any
space (A, &/) containing a two-point set C = 4 with {0, C} #+ o/|C + exp C is
special. If for any two-point set C = A it holds either &//C = {0, C} or &|C =
= exp C, then (4, &) is special if and only if the Tq-reflexion of (4, &), which is
a T,-space, is special. This facts imply that to find all special spaces it is sufficient to
deal with T,-special spaces. Therefore, by a space (topology) we shall always under-
stand a T,-space (T;-topology).

Let <7 be the system of all closed sets of a space (4, &#) and &£° the system of all
clopen sets. It is shown in [5] that &/° = #° must hold in the case C(s#) = C(%).
The closure of X < A in (4, &) is denoted by Cl,(X).

1. Warndof has proved in [7] that the space (4, &), o = {X[card (4 — X) <
< m} U {0} is either special or discrete for any infinite cardinal number m. His
result can be generalized.

Theorem 1. Let (A, s7) be a non-discrete space containing a point p any neigh-
bourhood of which is open. Then (A, £) is both generated and special.
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Proof. Let X €. Define fy : A — A as follows: fx(x) = p for x € X and fy(x) =
= x otherwise. Let Ve o/. If p¢V, one gets fx '(V) =V — X e . If peV, it holds
fx'(V) = VU X e o since VU X is a neighbourhood of p. Therefore fy e C(/).

We have proved that < is generated. Let C(s#) = C(%) for a topology % on A.
Let U be a neighbourhood of p in 4. Then we can find Ve # with peV < U. It is
VU {x} = f, (V) e & for every x e U — V. Therefore U € 4, i.e., any neighbourhood
of pin Z is open in 4. Hence 4 is generated and 7 is special.

Corollary 1. Let & be a proper free filter on a set A. Then the topology # U {0}
is both generated and special.

Corollary 2. Let & be a proper free filter on a set A and x € A. Then the topology
F(F,x) = F vexp(E — {x}) is both generated and special.

If & is a free ultrafilter, then y(,ﬁ//‘ , x) is called a free ultraspace. Free ultraspaces
are precisely the dual atoms of the lattice of all topologies. Magill has shown in [4]
that any completely regular space is a subspace of a generated space.

Corollary 3. Any space (A, ) is a subspace of a generated special space.

Proof.Let a¢ A, B= A U {a}. Define # = o U {4 — XX finite}. (4, &) is
a subspace of (B, %) and (B, %) is generated and special because any neighbourhood
of a is open.

Theorem 2. The topological sum of special spaces is a special space.
Proof: Let(4;, ;) be special for any i € I and (4, &) = Y, (4, &;). Let C(f) =
iel

= C(4%) for atopology # on A. C(s£;) = C(%|A;) because any f e C(7;) is a restric-

tion of a suitable g € C(«). Since C(#) = C(%) and A4, is clopen in &, A; is clopen

in # (see [5]). Therefore # = ) #|A;. Hence C(#|A;) = C(s£)). As o/, is special,
iel :

we have o ; = B[A;, ie. o = AB.

Corollary 4. Any topological space is a quotient of a generated special space.

Proof. Since any space is an intersection of free ultraspaces, one gets that any
space is a quotient of a topological sum of free ultraspaces. This follows, for instance,
from the characterizations of coreflective subcategories of the category of topological
spaces (see [2]). By Corollary 1 any space is a quotient of a topological sum of
generated special spaces. It remains to prove that the topological sum of generated
spaces is generated. However, this follows from [7], Th. 1.5, because a topological
sum of a family of spaces is a subspace of the product of spaces of this family and
a discrete space (see [2]).
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2. Theorem 3. Any space of ordinals is either special or discrete.

Proof. Let « > wg, A = W(x) = {B/p < o} and let &/ be the interval topology
on A. Let & be a topology on A with C(s/) = C(2). o is zero-dimensional and thus
o < 2 (see [4]). Suppose that there exists X € # — 7. Let f be the least element of
the set Cl(X) — X. B is limit.

Suppose that there exists y < f# such that any & e (y, B) N X is isolated. Put V =
=Wl + 1)Uy, ) n X] U (B, a). Clearly Ve . Further 4 — V= (y, B + 1) —
— X e4. Vis clopen in 4 and therefore V is clopen in /. This contradicts to f €
€ Cl4(X) — X. Thus there exists a limit & € (7, f) n X for every y < p.

Define f : A — A as follows: f(y) is the least element of the set {{/y < {, { limit,
(e Cl(X)} fory < B, f(y) = y otherwise. Let y; <y, < B + 1. Clearly f (v, v,)
is convex. Let & be the least element of f ~!(yy, y2). To verify that f ~*(yy, y,) € o it
is sufficient to show that J is isolated. Suppose that ¢ is limit. If é e Clﬂ(X), SO
6 = f(6) € (yy, y,)- Hence y; + Lef !(yy,72), ie. d =y, + 1, a contradiction.
Therefore & ¢ Cl,,(X). We can find y < § such that (y, 6 + 1) n Cl(X) = 0. Hence
f(y) = f(8), a contradiction. If B <y, £ 7,, it holds [~ (y;,7,) = (y1, 7,) € .
In the case y, < B <7y, we have f~'(y;,72) = '(y, B+ 1) U S (B, 7,) € .
We have proved that f € C(&).

Let y < B. Since there exists a limit £ € (y, f) N X, one gets that f(y) < f. Since
f(y) € Cl/(X), it follows from the definition of f§ that f(y) € X. Therefore f~!(X) =
=XUWPp),iecd—(XuWPp)es Itis{f} =[4—-XoWPB]nWB+1)e
€ 4. Hence {p} is clopen in 4, i.e. in &7, a contradiction.

Theorem 4. Any ordered space is generated.

Proof. Let 4 be a chain, =/ the interval topology on 4. Let a € A. Define f(x) =
= x v a for every xe A. Let [b,c] be a closed interval. If a ¢ [b, c], it holds.
S b, c] =[b,c] or 0. If ae[b, c], we have f~'[b, c] = (c]. Therefore f is con-
tinuous. It is (a] = f ~'(a). Analogously it may be proved that [a) is a preimage of
a in some f € C(«/). Thus « is generated.

Theorem 5. Any infinitely distributive complete lattice A is generated in its
interval topology.

Proof. Let a € A. Define f(x) = x v a for every xe 4. Let te A. f~!(t] = 0
for a £t and f7'(¢f] = (¢f] otherwise. Since ( A x) va= A (xva)=t, it

xvazt xvazxt

holds f~'[t) = [ A x). Therefore f is continuous. It is f~!(a) = (a]. Dually we

xvazxt

can show that [a) is a preimage of a in some f € C(+#). Therefore o/ is generated.

3. A space (4, ) is called upper special if the only topology % on A such that
o = # and C() = C(%) is the topology B = . (A, &) is called full if it has
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no isolated points, and the only topology # on A without isolated points such that
o = # and C(£) = C(4) is the topology # = o/ (see [7]). We define a space
(A, o) to be limited if the only topology # on A such that o/ < %, /° = #° and
C(«#) = C(%)is the topology # = .

Lemma 1. Any full space is limited and any limited space is upper special.

In [3] a space (4, /) is defined to be a V-space if for any points p, g, x, y € 4,
where p # g, there exists f € C(«/) such that f(p) = x and f(q) = y. (4, ) is a weak
V-space if for any two different points p, g € 4 and any non-empty set P & A, there
exists f € C(+/) such that f(p) e P and f(q) ¢ P. Sneperman has proved in [6] that
if (A, o) is a completely regular space containing an arc (B, &//B) and &/’ a topology
on A with C(«') = C(«), then o/'|B is an arc. This result can be generalized.
A space is called &-regular if it is a subspace of a product of copies of (S, &) (see [1]
and [2]).

Theorem 6. Let (S, ¥) be a connected, generated, limited and weak V-space.
Let (A, &) be an P-regular space, S = A and L[S = &. Let o' be a topology
on A such that C(.sz/) = C(&f’). Then .sz{’/S = .

Proof. Since & is generated and &/ & -regular, one easily gets that 7 is generated,
too. Therefore o/ < o', i.e. ¥ = '[S. Let Ze o/'[S. Let # be a topology on S
with the subbasis {f(Z)[fe C(¥)} u &. It holds & = # and C(¥) = C(%).
Assume first that 4 is connected. Then & = % because & is limited and therefore
Z € &, which completes the proof.

Suppose that # is not connected. Then there exists a clopen set X € #° with
0+ X=+S. Let xeX and yeS — X. Since & is &-regular, there exists hy €
€ C(o, &) with hy(x) + hy(y). Since & is a weak V-space, there exists h, € C(&)
with hyhy(x)eX and hyhy(y)¢X. Put h = hyhy. It is he C(o£, &) = C(4) =

=C(sf'). Let Ye B. It is Y = U[Ymnf !(2)], where Y;€ S and f, , € C(&) for

ielandk = 1,2,...,n. Thush™'(Y) = u [A7'(Y) n n h=f oM Z)]) fixh € C(£) =
= C(«") and therefore h™'(Y) e o'. Thus he C(&f’ .%’) Hence h™'(X) e («)° =

= /% ie. h™'(X) n Se°. Since & is connected, x € h~(X) and y ¢ h™'(X), we
get a contradiction.
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