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SPITZ IN /-GROUPS 

F. PEDERSEN, Carbondale 

(Received February 3, 1973) 

For the purpose of this paper, (G, + ) will denote an abeUan lattice ordered group 
(/-group). The class of /-groups under consideration is all /-groups which can be 
represented by an /-group of real valued functions on a set X. For such a representa­
tion the set X may be chosen to be any subset of the maximal /-ideals of G with the 
property that Ç\X = {O}. This study is motivated by the question, how much connec­
tion is there between the topologies on X induced by G and the structure of G? 
Thus, assume G has a representation as an /-group of real valued functions on a set X, 
where X is a set of maximal /-ideals of G. 

Definition. (Stone Topology) For Л ç G, let Л{А) = { M e Z : Л ф M}. The 
topology л for X is given by {A{Ä) : Л С G } . 

The only difficulty in verifying that J is a topology is showing that А{Л) n А{В) = 
= A{Ä n в). This follows from: 

i) А{Л) = A(C{A)) where c{Ä) is the /-ideal generated by A, 

ii) Maximal /-ideals are prime /-ideals [see 1, Theorem 3.2]. 

The following are some additional facts about A. 

a) A base for A is given by {A{g) : g e G^} and each A(g) is just the co-zero set 
of the function g. 

b) Ifg^e G+, then A{g) n A{h) = A{g л h). 
c) If x,y e X, then there exists g, he G^ such that x e A{g) y e A(h) and g A h = 

= 0. Thus, the topology A is Hausdorff. 
d) IfX is the set of all maximal l-ideals of G, it does not follow that X is compact 

in the A topology. Just consider the l-group of all real valued functions on N (the 
natural numbers). 

e) / / G contains the constant functions on X, then allfe G are continuous in the A 
topology. Moreover, if g e G^, then g~^{a, b) is the co-zero set of some bounded 
function in G^. > 
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Outline of a proof. Let 0 ^ a < b and denote constant functions by constants. 
A{{g - a) V 0) = {MeX : д{М) > a}. A{{g - b) A 0) ^ {M e X : д{М) < b]. 
Let /?! = (^ - a) V 0 and /12 = \{g - b) A 0|. Since /tj, /12 ^ 0, A{hi) n A{h2) = 
= A{hi A /12). Moreover, A^h^ л /̂ 2) = о ' Ч ^ ' ^)* 

N o t e . This result gives a condition for A to be the same topology as the weak 
topology. 

f) Ä compactification of A can be obtained by using R the ring generated by G 

and considering the maximal ideal space of R. 

g) / / the space of all maximal l-ideals is connected in the A topology, then G is 

cardinally indecomposable as an l-group. 

Definition. G has a basis if for each 0 < g e G, there exists 0 < Ь e G such that c{b) 
is totally ordered and b ^ g. Jf c{b) is totally ordered and 0 < b, then b is called 
a basis element. 

h) / / G has a basis, then there exists a space X of maximal Uideals where the A 
topology is discrete. 

i) / / G can be represented on a space X of maximal l-ideals where the A topology 
is discrete and G contains a non-zero constant function over X, then G has a basis. 

Outline of a proof. One may assume that G is divisible and G contains the rational 
constants. The weak topology is stronger than A, thus the weak topology is discrete. 

[xo] -={xeX: \f{x) - fi{xo)\ < ijn for i = 1, ..., /c} . 

Let Г1 be a rational constant such that \fi{x^ — г |̂ < ijlnk. Define gi = ft — r ,̂ 
then \gi{x^\ < Ijlnk for i = 1 , . . . , k. Moreover [̂ ^̂ (x) - gi{xo)\ = |/^(х) - /^(хо) | . 
Let h(x) = |ö^i(x)| + .. . + lö'fcWI- ^(^0) < ^l^n. For x Ф XQ, there exists i such that 
\gi{x)\ ^ l/2n. Thus, it follows that/г(х) ^ l /2nforx ф XQ. 5 = ijln - [l/2n л /z] 
will have the property that B(xo) is greater than zero and Б(х) equals zero for all 
X Ф XQ. 

SPITZ AND LOCAL CONNECTEDNESS 

Definition. An element O Ф б r e G ' ^ i s a spitz if g cannot be written as the join of 
two positive disjoint elements of G [see 2, section 1]. 

Lemma l.IfO<g and A{g) is connected, then g is a spitz. 

Proof, g = g^ V g^, gi A g2 = 0. 1̂(0̂ 1) u A{g2) = A{gi v 0̂ 2) = ^{9), and 
A(gi) n A{g2) — 0. Therefore either g^ or ^2 is zero. 

Lemma 2. / / G is a complete l-group, then A{g) is connected for each spitz g e G. 
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Proof. A{g) ==U uV, и nV=0. For each xeU, let g^ > 0, A{g^) ç U, and 
gx{^) > 0, Since ng^ix) ^ б'W for some neN, we may assume that gx{x) ^ ö'W-
Since (g^ л ^) meets the same requirements, we may assume that g^ S 9- Let 
W 9x = ^1 ï̂̂ d V^jc = ^2- Then hi V h2 = g and /î  л /̂ 2 = 0, which implies 

that of is not a spitz, unless I/ or Fis empty. 

Theorem. / / G is a complete l-group, then the following are equivalent: 

(a) The A topology is locally connected. 
(b) Every 0 Ф ^ G G"̂  is the join of spitz. 

Proof. Suppose the A topology is locally connected. Let A(g) = U. For every 
y eU let Vy be chosen so that y e Vy, Vy is connected, and Vy ^ U. Consider a fixed y. 
For each xeVy let g^ > 0, A{g^ Ç F̂  and О̂ ,̂(Х) > 0. Let g^ A g = h^. y h^ = h 

xeV 

exists and A(h) = Vy. /i is a spitz by Lemma 1. Now for each y eU we choose h y such 
that hy is a spitz /гу(з;) = g{y) and hy ^ g. Then у hy = g. 

yeU 

Suppose each g e G'^ is the join of spitz. Each zl(/i) for h a spitz is connected by 
Lemma 2. Therefore A{g) is the union of connected open sets, for each 0 < g e G. 
Since the A{g) form a base for the topology A, Ah locally connected. 
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