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Czechoslovak Mathematical Journal, 24 (99) 1974, Praha 

ON SOME INVARIANTS OF UNARY ALGEBRAS 

OLDRICH KOPECEK and MIROSLAV NOVOTNY, Brno 
(Received December 4, 1972) 

1. PROBLEM 
1.0. Notation. If Л is a set we denote by |Л| the cardinal number of Ä; similarly, 

if a is an ordinal then its cardinal number is denoted by |a|. We denote by Ord the 
class of all ordinals. If a e Ord then v̂ e put W^ = {ß e Ord; ß < oc}; further, the least 
ordinal cofinal with a is denoted by cf a. We denote by N the set of all finite ordinals. 

We shall need some simple results concerning ordinals (see [3] and [4]). 

(i) If cc, ß,y e Ord, oc < ß then у + a < у -^ ß. 

(ii) If oc, ß e Ord, oc ^ ß then there is precisely one ^ e Ord such that oc + ^ = ß. 
We put ^ = -a + ß. 

(iii) If a, J? 6 Ord, oc ^ ß, then a + {-(x + ß) = ß, -oc + {oc + ß) = ß. 

Indeed, the first equation follows directly by definition of —oc + ß. If we put ^ = 
= - a + (a + j5) then a + ^ = a + jSby definition. Then ^ = ß follows from the 
uniqueness of the solution. 

(iv) If oc, ß,y e Ord, a ^ ß < y, then -oc + ß < -a + у. 
Indeed, -oc + ß ^ -a -\- у would imply ß = a + {-oc + j?) ^ a + ( - a + y). = 

= 7 by (iii) and (i). 

(v) If a, jß G Ord, ОС S ß < a + œo then -ос + ß < œQ. 

Indeed, —oc + ß'^coQ would imply ß = ос + {-ос + ß) ^ a + COQ Ъу (iii) which 
is a contradiction. 

(vi) Suppose oc, ß,OE Ord, 0 Ф Г Ç Ord, ß Syfox eacby e Г,о > oc + {-ß •{- y) 

for each у e Г. Let s be the least ordinal greater than all y e Г. Then ^ ^ a + 
+ {-ß + s). 

Indeed, suppose, on the contrary, ö < oc -\- { — ß + e). Since ô > oc -\- { — ß Л- y) 
for at least one 7 e Г we have 5 ^ a which implies the existence of — a 4- ^ and 
- a + (a + {-ß + e)) by (ii). Then -a + Ô < -oc + {oc + {-ß + в)) = -ß + s 
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by (iv) and (iii). It follows ß + {-a + ô) < ß + {-ß -{- a) = g by (i) and (iii). 
Thus, there is at least one JQE Г such that î  + ( - a + ^) ^ Уо- It follows -a + S = 
= —ß + {ß + ( - a + ö)) S -ß + Уо by (iii) and (iv) which implies ^ = a + 
+ ( —a + ( 5 ) ^ a + ( —̂5 + 7o) by (iii) and (iv) which is a contradiction. Thus, 
o^oc + {~-ß -b e). 

Let 00 Ф Ord. If M is an arbitrary set of ordinals then we denote by < the order 
relation on M u {00} such that its restriction < n (M x M) to M is the natural 
order relation of ordinals and that a < 00 for each a G M. 

If (?) is a map of the set A into the set B, (p : A -^ Б, and С ^ A, D ^ В then we 
put (p{C) = {(p{x); xeC}; further, we define (p~^{D) = {x G A; (p{x)eD}. If 
(p : A -^ В is a. map, С я A, then we denote by ^ | С the restriction ç> n (C x JB) 
of (p; it is a map of С into B. 

Let Л be a set, / a map of A into A, f : A -^ A. Then the ordered pair {A,f) is 
called a unary algebra. For a unary algebra {AJ) we p u t / ^ = id^.P^^ = / / " for 
each neN. Clearly, /""^'« = / у " for all n,meN. A unary algebra (AJ) is called 
connected if, for all x, у e A, there are m.neN such that /'"(x) = f\y). If {A,f) is 
a unary algebra and x e Л an arbitrary element then we put [xj^^^y) = {Г{х); neN}. 

We denote by ^ the relation of isomorphism of algebras. 

1.1. Definition. Let {A,f) be a connected unary algebra, xeA. We put Z(x) = 
= {3̂  e Л ; there exists an infinite set N{y) ç N such that/"(x) = y for each n e N{y)}. 

1.2. Lemma. Le^ (^^Z) be a connected unary algebra. Then the following as­

sertions hold: 

(a) IfxeA,y= f{x) then Z(x) = Z{y), 

{b)lfxeA,neN,y= f%x) then Z(x) = Z{y), 

(c) If X, y e A then Z(x) = Z{y). 

Proof of (a). Suppose xe A, y = f{x), z e A, Then z e Z(x) iff there is an infinite 
set M Ç iV such that /"(x) = z for each n e M; we can suppose, without loss of 
generality, that ОфМ. The last condition is equivalent to the condition/""^(j) = 
= / " " 4 / W ) = / " W = ^ for each n e M which is z e Z{y). Thus, Z(x) = Z(j). 

P roof of (b). The assertion (b) follows from (a) by induction. 

P roof of (c). If X, y e A then there exist m,neN such that /'"(x) = f"{y). It 
follows from (b) that Z(x) = Z(/'"(x)) = Z{f\y)) = Z(3;). 

1.3. Definition. Let {A,f) be a connected unary algebra. We put Z(A,f) = Z(x) 
where x e^l is an arbitrary element, R(A,f) = |Z(yl,/)|. Then Z(A,f) is called the 
cycle and Я(^4,/) the rang of ( ^ , / ) . 
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1.4. Lemma. Let {Ä,f) be a connected unary algebra. Then (Z{Ä,f),f | 2(Л,/)) 
is a subalgebra of the algebra {A,f). 

Proof. If xeZ(Ä,f) then there exists an infinite set iV(x) ç N such that x = 
= /"(x) for each n eN(x). It follows /(x) = /'''̂ "^(x) for all n EN(X) which implies 

/(x)eZ(/(x)) = Z(^,/) . 

1.5. Lemma. Let (A^f) be a connected unary algebra and suppose x, y e A. 
Then 

(a) / / n^, П2 e N, Hi ^ ^2 are such that y = /"^(x) = f"^{x) then y = 

(b) X e Z{A,f) iff there is neN - {0} such that f\x) = x. 

Proof of (a). We put П2 - n^ = d; thus, f^^^x) = /"^(x) = y. Let m eiV and 
supposeГ'-^'^Хх) = J. Then/"^-'^" + '>''(x) =/+"^+'"%) =: f{f^^^\x)) = f%y) = 
= ЛГ(х))=Г^'(х) = у. 

Proof of (b). Suppose, for xe A, the existence ofneN — {0} such that/"(x) = x; 
then, by (a), we have x = /'""(x) for each ШЕМ. Thus, we have x = /^(x) for all 
p E {mn; m 6 JV} the latter set being infinite. Thus, XEZ{X) = Z(A,f). 

The necessity of the condition for x e Z(A,f) follows directly from L3 and LL 

1.6. Lemma. Let {A,f) be a connected unary algebra. Then the following 
assertions hold: 

(a) IfxEZ{AJ) then \Z{AJ)\ =mm{nEN - {0};f"{x) = x}. 
(b) R{AJ) < Ko. 

Proof of (a). We put d = min {ПЕМ - {0}; /"(x) = x}. Since XEZ{AJ) we 
have {x,/(x), . . . , / -^(x)} я Z{AJ), by L4. Let us have у e Z{AJ). Then у e Z(x); 
thus, there exists ШЕМ such that/'"(x) = y. Let p, qEN Ы such numbers that m = 
== pd + q, 0 S g < d. Thus, by definition of d and by L5 (a), we have f^%x) = x 
and } ;=Г(х)=Д/^^(х) )=/^(х) . Thus, yE{xJ{x),,..j'''{x)} and we have 
{x,/(x), ...J''\x)} = Z{AJ). Therefore, \Z{A,f)\ = d. 

Proof of (b). If Z{AJ) = 0 then R{AJ) = 0 < KQ. If Z{AJ) Ф 0 then there is 
xEZ{A,f) and {ПЕМ -~ {0}; /«(x) = x} Ф 0 by L5 (b). It follows R{AJ) = 
= min {ПЕМ - {0}; /"(x) = x} < Ko, by (a). 

1.7. Definition. Let {A,f) be a connected unary algebra. We put Л°° = [XEA; 
there is a sequence (х̂ )̂ ;̂̂  such that XQ = x and/(xf+i) = x̂  for each iEN}, A^ = 
= {xEA;f-'{x) = 0}. 
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Let a e Ord, a > 0 and suppose that the sets A"^ have been defined for all x e W^. 
Then we put Л^ = {x e Л - U Л""; f-\x) Я U ^ ^ } . 

1.8. Lemma. Let {A,f) be a connected unary algebra, a, j5eOrd, a < ß. Then 
A^ пА^ = 0. 

Proof. Clearly, A^ ^ A ~ \j A"" which implies Л^ n Л" ç Л^ n (J ^'^ = 0. 
xeWß xeWß 

1.9. Lemma. Let {A,f) be a connected unary algebra. Then there is ^ e O r d 
such that A^ = 0. 

Proof. Let v e O r d be such an ordinal number that \ A \ ̂  K .̂ Suppose Л^ Ф 0 
for each ÀeW^^^^. Then K+i è Z И 1 = I U Л'Ч ^ | л | ^ K, by 1.8 
which is a contradiction. ^^^«v+1 ^^^«v+1 

Thus, there is S G Ord, SeW^^^^ such that A^ = 0. 

1.10. Lemma. Let {A,f) be a connected unary algebra. If S eOrd, Л^ = 0 then 
A^ = 9 for each Л e Ord with the property Я ^ ^. 

Proof. We denote by V(X) the following assertion: A^ = ф. 
Then F(^) holds. 
Let us have ß e Ord, S < ß, suppose that V(X) holds for each Я such that Ö ^ Я < 

< ß. Then и ^^ = и ^^ which implies A^ = {x e A - \J Ä^l / " 4 ^ ) ^ 

С \J А^} = {хеА- и Л^; f~\x) я U ^^} = Л^ = 0. 
AeW> ЛеЖа АеЖ» 

The assertion follows by transfinite induction. 

1.11. Definition. Let {A,f) be a connected unary algebra. Then we denote by 
^{AJ) the least ordinal ^ such that A^ = 0. 

1.12. Lemma. Let (Л , / ) be a connected unary algebra. Then /4°° = A— \J Л^ 

Proof. (1) If X e л — и Л'" then there is an element x' ef^^x) such that 
xeWs{A,f;) 

x' e A ~ и Л". Indeed, if we had x' e \j A"" for each x' e/~^(x) then we 

should have f~^{x) ^ (J Л''. We denote by ^ the least ordinal such that 
yeW»(^A,f) 

f~\x) Ç и A"". Then ^ ^ ^(Л, / ) and x G Л^ by 1.7 which is a contradiction either 
with Л̂ ^̂ '"̂ > = 0 (in the case S = S{AJ)) or with xeA~ \J Л^ (in the case 
S < S{AJ)). ^^w^iA,n 
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We put xo = X and x„ +1 = x'„ for neN. Then/(x„+1) = x„ for neN and x e Л°°. 
Thus A- и A'' я A'^. 

yeW&(A,f) 

(2) Let us have x e Л°° n ( (J A""). Then there is a sequence (x,),g;v such that 

XQ = X and/(x^ + i) = Xi for each i e N, By 1.8, there exists precisely one XQ E Ж^СЛ,/) 
such that XQ e A''^ 

Suppose that we have constructed ordinals XQ > ^i > ••• ^ /̂i ^̂ ^̂ h that x,- e Л"' 
for Ï = 0, 1, ..., n where neN. Then x„+i ef~^{x„) Ç (J Л'' which implies the 

existence of x„+i < x„ such that x„+i e A""''^'. Thus, (x̂ )fejv is an infinite decreasing 
sequence of ordinals which is a contradiction. 

It follows that A"^ ^ A - [J A\ 

1.13. Theorem. Let {A,f) be a connected unary algebra. Then A = \J A"" 
with disjoint summands. ><e> d̂(̂ ,/)̂ (*} 

It is a cosequence of 1.12 and 1.8. 

1.14. Lemma. Let {A,f) be a connected unary algebra. Then ( У 4 ° ° , / | / 1 ^ ) is 
a subalgebra of(A,f). 

Proof. Let us have xe A'^.lt follows the existence of a sequence (x„)„gjv such that 
x„ 6 Л, Xo = X and/(x„+i) = x„ for each neN. We put / (x) = у = y^^ y^ = x„_i 
for each neN - {0}. Thmf(y„+^) = y^ for each neN which imphes/(x) = у e A"^. 

1.15. Lemma. Let {A,f) be a connected unary algebra. Then Z{A,f) ^ A°°. 

Proof. Z{AJ) Ç Л°° holds if Z{AJ) = 0. Thus, we can suppose Z{AJ) ф 0. 
Let us have x e Z{A,f). Then Z{AJ) = Z(x) by 1.3. By 1.1, there exists an infinite 
set N{x) Ç N such that/"(x) = x for each n e N{x). We denote by d the least positive 
element of iV(x). Then Д х ) = x and/'"'^(x) = x for each m e AT by 1.5 (a). We put, 
for each n eN, x„ = f'^(^^~^\x). Then/(x„^i) = f{f^"^'^^^'-^\x)) = Г^'''-''^'-^'(х) = 
= r^''-'\P%x))=r^''-'\x) = x„ for each neN and Xo = / ^ ( x ) = x. Thus, 
xeA"^. 

1.16. Lemma. Let {A,f) be a connected unary algebra, suppose А,1ле P^ ĉ̂ ./)» 
À < fi. Then, for each x e A^, there is an x' e A^ and an neN ~ {0} such that 
r ( x ' ) = X. 

Proof. Let us have x e A^. Then there is v̂  e Ord, X ^ v^ < fi and x^ e A"' such 
that / (x i ) = X. Indeed, if no such v̂  and Xi exist then f'\x) ç (J Л^. Since 

xeA- U ^ " " ^ ^ - U ^ ' ^ w e have x e A^, by 1.7, which contradicts 1.8. 
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If я < Vji we construct similarly V2 G Ord, A ^ V2 < Vj, and X2 G Ä^^ such that 
/(X2) = Xi. As each decreasing sequence of ordinals is finite we construct, after a finite 
number of such steps, some ordinals A = v„ < v„_i . . . < Vj < // and some elements 
Xi G A"' for z = 1, 2 , . . . , n such that/(xf+i) = x̂  for f = 1, 2, ..., и — 1 and/ (x i ) = 
= X. It follows /"(x„) = X, x„e A^, n Ф 0 because n = 0 would imply x = x„e 
e A^ n A^ which contradicts 1.8. 

1.17. Lemma. Let (A, f) be a connected unary algebra, A"^ + 0. Then the 
following assertions hold: 

(a) For each x e (J A^ there exists n(x) e N such that f"^^\x) e Л°°. 

(b) If A — A"^ Ф 0 and x e A — A"^ then there is precisely one IQEN — {0} 
such thatf'~\x) e A - A'^,f%x) e A"^. 

(c) If A — Л°° =j= 0 then there is at least one x e A — A"^ such that f(x) e Л°°. 

P r o o f of (a). We take у e A"^. Then there are m,neN such that /'"(x) = f\y). 
By 1.14, we have/"(y) G A"^ and we obtain the first assertion. 

P r o o f of (b). By 1.12 and (a), for each xe A — Л°°, there exists n{x) e N such that 
f"^''\x) G Л°°. It follows by 1.13 that n(x) > 0. Thus, in the set of natural numbers i, 
0 < Ï ^ n(x), there is the least element IQ such that/ '°(x) e A"^, Clearly, ÎQ > 0 and 
/ ' ^ ~ ^ ( X ) G ^ - Л°°. 

If i > io then i - 1 ^ io 3Lndf-\x) = f-^-'%fXx))e A"^ SLsf^xJeA"^ and 
(A'^J I Л^) is a subalgebra of {A J) by 1.14. Thus,/^-^(x) фА- A"^. 

If i < IQ then/*(x) Ф yl°° on the basis of the minimality of IQ-
Thus, io is the only element ieN - {0} such tha t / ' "^ (x) eA-A"^, f\x) e Л°°. 

P r o o f of (c). We take an arbitrary z eA — A"^. By (b), there is precisely one 1*0 ^ 
GiV - {0} such that f'~\z)eA - Л°°, f\z)eA'^. We put x = / ° " ^ ( z ) . Then 
X G A - Л^, / (x) = / ° (z) G Л°°. 

1.18. Definition. Let {A, f) be a connected unary algebra. We define a map S{A,f) : 
Л ~> Ord u {00} by the condition S{A,f) (x) = x for each xe A"", xe ^^(л,/) ^ 
u {00}. S{A,f) (x) is called the degree of x. 

1.19. Lemma. Let {A,f) be a connected unary algebra. Then the following 
assertions hold: 

(a) If x^ A is such element that S{A, f) (x) Ф 00 then S{A, f) (/"(x)) ^ 
= KAJ) (Л:) + nfor each neN. 

{b)lfxeA , X G W^^jy are arbitrary elements then ^A^ n [^](л,/)| = 1* 
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Proof of (a). If n = 0 then S{ÄJ) {f%x)) = S{Aj) (x). Let n eiV and suppose 
S{Aj){r{x)) ^ S{Äj){x) + п. We put a == S{Aj){r-'\x)). If a = сю then 
a > S{AJ) + n + l . I f a < oo then/"+i(x) e ^"and/"(x) е / ' ^ Г ^ ' Ч ^ ) ) ç U A^, 

Thus, S{AJ) {f%x)) < ОС and a ^ S{AJ) (/"(x)) + 1 ^ 5 ( ^ , / ) W + n + 1. We 
have proved the assertion (a). 

P roo f of (b). Suppose, on the contrary, l̂ "" n [x](^,j)| ^ 2; let y, z e A''n 
n [x](^^^), у + z. Then there is n eiV - {0} such that either/"(y) = z or/"(z) = y. 
In the first case, we have x = S{AJ){Z) ^ S{Aj){f"{y)) Z S{Aj){y) + n> 
> S{A, f) (y) = X, by (a), which is a contradiction. Similarly, the second case leads 
to a contradiction. We have proved the assertion (b). 

1.20. Lemma. Let {A,f), (Л^,/^) be unary connected algebras, (p : A -^ A^ an 
isomorphism of {AJ) onto (Л*,/*). Then ^{AJ) = ^(A*,/*), </)(v4̂ ) = Al for 
each X e W^f^^j) ^ {^} ^^d (p{Z{A,f)) = Z(y4*,/*). 

Proof. For each a eOrd we denote by F(a) the following assertion: (p(A'') = Л^. 

The following conditions are equivalent: 

(i) xeA"" 

(ii) f{y) = X for no у G Л 

(iii) f^{z) = (p{x) for no z e Л^ 

(iv) (p{x)eAl. 

Indeed, (i) and (ii) are equivalent by L7 and (iii) and (iv), too. If f{y) = x for no 
у e A and there is z e A^ such that /*(z) = (p{x) then f((p~^{z)) = 9"'^(/*(z)) = 
= (p~^{q)(x)) = X because cp'^ is an isomorphism; we have a contradiction. Thus, 
(ii) implies (iii) and, similarly, (iii) implies (ii). 

It follows that F(0) holds. 
Let j5 > 0 be an ordinal, suppose that V{y) holds for each у < ß. It follows 

Ф( и ^ 1 = и Al, 
xeWß xeWß 

The following conditions are equivalent: 

(i) xeAf" 

(ii) XEA- \JA\ f~\x) ^ \J A"" 
xeWß xeWß 

(iii) (P{X)EA^ - и Al, fi\(p{x)) ^ [J Al 
xeWß xeWß 

(iv) (p{x)EAi, 
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Indeed, (i) and (ii) are equivalent by 1.7 and (iii) and (iv), too. If x e A ~ \J 4" 
>C€Wß 

then (p{x) e (p{A - \J A"") = (p[A) - (p{ \J Л"") = A^ - (J ^ ï by induction hypo-
xeWß xeWß xeW ß 

thesis because <p is a bijection. If/~^(x) Я: \J A^ then each у with the property 
yteWß 

f(y) = x is in \j A"^. Let us have an arbitrary z ef^^{(p(x)). Then ^(z) = (p(x) 
xeWß 

and f{(p~^{z)) ~ (p~^(f^{z)) = <p~^((p(x)) = X because (p~^ is an isomorphism. It 
follows (P~\Z)E U Л"" which implies z e (p{ \J A"") = (J Al. Thus, fi\(p(x)) Ç 
ç- [ ] A^ xeWß xeWß xeWß 

xeWß 

We have proved that (ii) implies (iii). Similarly, (iii) implies (ii). 
Thus, the validity of V{y) for sdly < ß impHes that of V{ß). 
We have (̂ (Л )̂ = A% for each a e Ord. Especially, A"" = 0 iff Al = 0. It follows 

S{AJ) = S{A^J^). 
If X G Л°° then there is a sequence {Xi)i^^ such that XQ = x and /(x^+i) = x̂  for 

each ieN. It follows (p(xo) = <p(x) and/*(ç>(xi+i)) = < (̂/(̂ :i + i)) = (p{xi) for each 
Ï e iV. Thus, ф(х) G A^. Similarly, x e A, (p{x) G A ^ imply x G Л ^ . We have ^(.4^) -
— Â"^ 
— / 1 ^ . 

We have proved (p{A'^) = A% for each x G И^О(А,/) ^ {OO}. 
If X G Z{AJ) then there is n GiV - {0} such that/"(x) = x by 1.5 (b). It follows 

f:{cp{x)) = (p{r{x)) = (p{x). Thus, ( P ( X ) G Z ( ^ ^ , A ) by 1.5 (b). Similarly, x G Л, 
ç{x) G Z(^^, /^) imply X G Z ( ^ , / ) . 

We have proved (p{Z{AJ)) = Z{A^J^). 

1.21. Remark. Let {A,f) be a connected unary algebra. Then the ordinal ЦА,/) 
and the cardinals lA""], x G 1̂ д(л,/) ^ {oo} and R{A,f) are preserved under isomor­
phisms, i.e. they are invariant, by 1.20. 

If {A,f), {B, g) are connected unary algebras then the numbers R{A,f), R{B, g) 
and functions S[A,f), S{B, g) enable to construct all homomorphisms of {A,f) 
into (Б, g). Thus, a very natural problem arises: 

1.22. Problem. Let A be a set, ReN, S : A -^ Ord u {oo} a map. Find necessary 
and sufficient conditions for the existence of a complete unary operation f on A 
such that {A,f) is connected and R{A,f) = R, S(A,f) = S. 

2. AUXILIARY CONSTRUCTION 

2.1. Definition. Let {A,f) be a connected unary algebra with the property Л°° Ф 0. 
Then {A,f) is called an co-algebra. 

2.2. Definition. Let {A J) be an oo-algebra. Then we put E{AJ) = /"X^"") - ^^' 
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2.3. Lemma. Let {A,f) be an œ-algebra. Then the following assertions hold: 

(a) E{AJ)^0iffÄ-Ä- Ф0. 
(b) If X e A — Л°° then there is precisely one По EN such that f"\x) e E{A,f). 
(c) If^{AJ) > 0 is an isolated ordinal then 0 Ф Л^̂ '̂-̂ -̂̂  с E{AJ). 

Proof of (a). The necessity of the condition is clear. 
Let us have Л - Л^ Ф 0. Then, by L17 (c), there is x e A ~ A"^ such that/(x) G 

EA"^. Thus, X E E{A J). 

Proof of (b). The existence of precisely one ПдЕМ with the property /"°(x) G 
E E{A,f) is equivalent to the existence of precisely one HQ GAT with the properties 
/"°(x) Ф У4°°, /"°"*"^(X) G Л°° which is equivalent to the existence of precisely one /Q G 
G AT - {0} such thдitf''~\x)фA'^,f\x)EA'^. The last assertion holds according 
to L17(b). 

Proof of (c). Л^(^'Я-1 Ф 0 follows from the definition of S{AJ). If x E Л^^^'Я-^ 
then S{AJ){f{x)) > S{AJ)(x) = S{A,f) - 1 by 1.19 (a). It follows S{AJ) (/(x)) = 
= 00 which implies / ( X ) G ^ ° ' . It follows xEf'^A"^) and we have A^^"^'-^^'^ Ç 
с / -^(Л^) . Further, Л^(^'/>-1 n yl°° = 0 by 1.13.1t follows Л^^ '̂-̂ '̂̂  ç 
^f-^A"^) - A"^ = E{AJ). 

2.4. Definition. Let {A,f) be a non empty connected unary algebra. Then it is 
called a cone iff^A"") = A""^^ for each x E W^^AJ) such that x + 1 ф S{AJ). 

2.5. Examples. 1. A connected unary algebra {A,f) such that Л°° = Л Ф 0 
is a cone. 

2. The unary algebra (iV,/) where /(n) = w + 1 for each n G AT is a cone. 
3. If (m„)„ĝ  is a non-increasing sequence of cardinals such that ш„ Ф 0 for each 

ПЕМ and that there is ПОЕМ with the property m„^ = 1 then there is a cone (J5, g) 
such that |ß"| = m„ for each n G AT. 

Indeed, we take mutually disjoint sets B„ such that \В„\ = m„ for each n G Â . We 
put В = [j B„. For an arbitrary n EN, we take an arbitrary surjection g„: B„ -^ 

neN 

~> Б„+1; such a surjection exists because the sequence (m„)„eiv is non-increasing. We 
define the map g : В -> В in such a way that g \ B„ = gn- Then (B, g) is a unary 
algebra. Clearly, |Б„| = 1 for each n ^ По- If x, j ; G Б then there are m, ПЕМ such 
that X G Б^, J G Б„. There is pEN,p^ max {m, n, HQ}. Then â^ "̂'"(x) G Б^, Ö'^""!)') ^ 
G Вр, Since |Б ,̂| = 1 it follows g^~'^{x) = е^''""^. Thus, (Б, ö') is connected. Clearly, 
Б" = Б„ for each n G AT and g{B'') = ö'l̂ «) = 9п{Вп) = Б„ + 1 = Б"+^ which implies 
that (Б, ö̂ ) is a cone such that |Б"| == m„ for each и G iV. 
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2.6. Lemma. Let {A,f) be a cone. Then 9(A,f) g a>o-

Proof. (1) Let X e Л, n eiV be such element that S{A,f) (x) -f ^ e Ж^и,/)- We 
put S{A,f){x) = x; then x e A^. By 2.4, we have /"(x) e Л*"^" which implies 
S{AJ) (rix)) = x + n = S{A,f) (x) + n. 

(2) Let X 6 Ord, % ^ COQ; we prove that A"" = 0. Indeed, suppose, on the contrary, 
yeA"". Let us have AeOrd, Я < COQ- Then À,<x and, by 1.16, there exist 
zeA^ and neN - {0} such that /"(z) = y. By (l), we obtain x = S{A,f) (y) = 
= S(^ , / ) ( /" (z) ) = S{AJ){z) + n = À + n<coo which is a contradiction. 

Thus, 0(Л, / ) = min {x e Ord; A"" = Щ й Щ-

2.7. Definition. Let {(Л,-,/^); i e / } be a non empty system of mutually disjoint 
oo-algebras. Let (ß, g) be a cone which is disjoint with all oo-algebras (Л^,/^), i el. 
Let Ф : и E{AiJi) -> В be an arbitrary map. (If (J £ ( ^ / , / 0 = 0 then cp = 0.) 

ie / ieJ 

Then и {Ai,f^ Ф (Б, g) denotes a unary algebra (C, /Ï) such that С = ß u 
iel <p 

u и (^i - ^ r ) and that, for each x e C, 
IGl 

h{x)=-
fi{x) if X e {Ai — Af) — E{Ai,f,) for some i el 

ф) if x e U £ ( 4 i , / 0 
ie/ 

^(x) if X e ß . 

2.8. Remark. Let (C, /г) = U (^i,/i) ® {B, g) be a unary algebra defined in 2.7. 
i e / (p 

If X e Л^ - Л?" for some i el then h~^{x) = /7^{х). 

2.9. Lemma. Let (C, /Î) = U (^i»/i) © (^, â̂ ) be a wnary algebra defined in 2.7. 
i e l <p 

Then (C, /i) ÏS a connected unary algebra. 

Proof. (1) Let X e С be arbitrary. Then there is meN such that й'"(х) e B. Indeed, 
if X e ß then we have nothing to prove. 

If X e Ai — Af for some iel then, by 2.3 (b), there is precisely one meN such 
that / r (x) G E{AiJ^. It follows, forn eiV, n < m, that/?(x) ф Af, since f"{x) e Af 
would imply/ r (x) = fT~\f-{x)) e Af by 1.14 which is a contradiction as Af n 
n £(Л,-,/,) = 0. Thus, Ойп<т implies Д х ) e A, - Af - E{A,J,). It follows 
/î"(x) = Л ( х ) for each n, 0 ^ n < m and especially /i'""^(x) = / р ^ ( х ) е Л , . -
~ Af - E{AiJt) which implies /г'"(х) = Я ( х ) e £(Л,-,/,.) and h^'-^x) = /i(/i'"(x)) = 
= ;</r(x)) = ^(/r(x))Gß. 

(2) Let us have x, у e C. Then there are n,meN such that h\x) e ß, /г'"(у) e В 
by (1). Since (ß, g) is connected there are p, q e N such that g^(/z"(x)) = g%h"'{y)) 
which implies /г^''"(х) = g'{h\x)) = ^«(/i'"(y)) = /г'̂ "*''"(у). Thus, (C, h) in connected. 
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2.10. Lemma. Let {С, h) = [j{Ai,fi)@(B,g) be a unary algebra defined in 
iel (p 

2.7. Then the following assertions hold: 

(a) / / iel and xe Ord then A^ = C" n A^. 

(b) C^ = Б°°. 

(c) Z{Q h) = Z{B, g). 

(d) Putting l{x) = {iel; x < ^(.4^,/^)} for each xeW^ch) ^'^ have С с 
ç (ß - Б« )̂ u и (Л, - AT). 

iel{x) 
(e) Же pur SI = sup X^i , / f ) . / / S^ ^ X < 5(C, /г) Йеп C^ ç ß - Б^ . 

(f) / / ï ' e / then S[Ai,f^ is the least ordinal greater than 5(C,/i) (x) for all 
xeE{A„f,). 

(g) If xe С — C"° and there exists i el such that 0 ф /(~*(x) = £(Л,-,/,) </геи 
5(С,/1)(х) = 5(Л,,/,). 

(h) Ifiel,xe Ord anJ C ' ç Ai - Af then С" = Л^ 

P r o o f of (a). Let i e / be an arbitrary element. If Л^ — Л^ = 0 then И^^СА /̂*) = 0-
It follows A'l = 0 and C ' n Л,- ç С n Л,- ç Л^ - Л^ = 0. 

Thus, we can suppose Ai — Af Ф 0. We have A^ = C^ n Ai because x e Л^ 
iff X 6 Ai and /Г^(^) = 0; by 2.8, it is equivalent to x e Ai and /z~^(x) = 0 which 
means xeC^ (Л Л,-. 

Let us have Д G Ord, Я > 0 and suppose Л^ = С n Ai for each x e FP̂ . Then 

(•) и -̂ = и (c^ П Л,) = Л, n ( и ĉ ) 

and 

(**) Ai- \) A^l^ {Ai n С) - (Л, n ( и C^)) = ^ , n (С - и C^) . 

It follows that, for xeC, the following assertions are mutually equivalent: 

(i) xeA\ 

Cû)xeA,- и Alf;\x)^ и AI 

(in) xeAi-- и ^ i , ft"'W ^ и ^£ 

(iv) X 6 Л ,̂ X e С - и C^ /i"X^:) Ç Л^ n ( U С"") 

(v) хеЛ^, х б С - и С^ h-\x) ç (J С^ 
хбЖя хеТГя 

(vi) xeAiOi С^, 
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Indeed, (i) and (ii) are equivalent by 1.7, (v) and (vi), too. Clearly, XE C, x e A^^ 
implies x e Ai - Af which implies h'^x) = f7^{x) by 2.8. Thus, (ii) and (iii) are 
equivalent. Since h~^{x) = /ГЧ^) — ^i 0^) ^^^ W ^^^ equivalent. The equivalence 
of (iii) and (iv) follows by (*) and (**). 

We have proved A\ = C^ n Ai. The assertion (a) follows by transfinite induction. 

P r o o f of (b). Let us have x e C°°. Then there is a sequence (x^gjy such that XQ = x 
and /î(xft +1) = Xfc for each keN.lf x^e В for all keN then g{xk+1) = h(xk+1) = Xf^ 
for all /c G iV which implies x G Б°°. If there is keN such that х^ф В then x,,e A^ — 
— Af" for some i el. Clearly, for each / ^ /c, we have XIE At. Thus, for all I eN, 
I ^ k, we obtain/^(x^ +1) = /г(х;+ j) = x .̂ It follows X;̂  G Л ̂  which is a contradiction. 
Thus, X G Б°" and C°° с Б°°. 

If X G Б°° then there is a sequence (х̂ )̂ е]у? ^k^ В ^^^ ^^^^ /< G iV such that XQ — x 
and g{xk+i) = x^ for each keN. It follows h{xk+i) = x^ for each keN. Thus 
X G С * . 

We have proved C°° = Б^ . 

P r o o f of (c). Let us have x e Z[C, h). Then there is n eN -- {0} such that h"{x) = 
= X, by L5 (b). Then Z{C, h) ^ C^ = B"^ ^ В by (b) and 1.15 which implies xeB 
and [л:](с,/,) ^ B. Thus, /г"(х) = g"(x) which implies x G Z(B, g), by 1.5 (b). 

Suppose X G 2(Б, ^). Then there is n GiV - {0} such that g\x) = x, by 1.5 (b). 
We have h\x) = ^"(x) = x which implies x e Z{C, h). 

Thus, Z{C, h) = 2(Б, g). 

P r o o f of (d). Let us have iel - 1{^У By (a), it follows C^ n Л,- = Л^ = 0 
because >̂  ^ ^ (^^Л) . By (b), we have C" ^ С - C^ = {B - B^) и (J {A^ - Af) 
which implies (d). '̂ ^̂ ''̂  

P r o o f of (e). We have C' ^ (B - B^) u U ( ^ — Af) by (d) where/(1) = 
iel(À) 

= {iel; Я< ^ ( ^ Р Л ) } . Since S{AiJr) й ^i й ^ for each iel we have l{X} = 0 
and C^ ^ В ~ B"^. 

Proof of (f). Since E{AiJi) s U ^ t . then, for each x e E{AiJ^), there is 

Я G Ж^(^,,/,) such that x G ̂ f ^ C^ by (a). It follows S{C, h) (x) = Я < 5(Л,.,/,-). 

Suppose the existence of Ŝ G Ord, ß < K^bfi) ^"^^ that 5(C, /z) (x) < ß for each 
X G £(Л^,/,). Then there is j ; G Л? = Л, n C^ by (a). Then y e A^ ~ Af. By 2.3 (b), 
there is precisely one и G AT such that/f(y) с£(Л^,/^). Clearly, fi{y)eAi - Л* for 
j = 0, 1, ..., n. It follows /i"(j;) = f';{y) and Ŝ = S(C, /i) (j) ^ S(C, h) (y) + n^ 
S S{C, h) {h\y)) = S(C, h) {Л{у)) < j5 by 1.19 (a), which is a contradiction. 

Thus, S{Ai,f^) is the least ordinal greater than 5(C, h) (x) for all x e £(Л^,/,). 
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Proo f of (g). LQtyeE{AiJi) be arbitrary. Then x = h{y) which implies S{C, h)(x) = 
= S(C, h) {h{y)) > S{C, h) (j;) by 1.19 (a). It follows S(C, h) (x) ^ ^(Л,-,/,) by (f). 

Suppose 5(C,/i)(x) > ^(Л,.,/,-). Then there are z 6 C, n e N -- {0} such that 
5(C, h){z) - ^ (^ i , / 0 and /z"(z) = x, by 1.16. We put t = /i"-^(z). Then h{t) = 
== /i"(z) = X which implies t e E{A,J,). It follows о(Л,.,/,.) = S(C,/z) (z) ^ 
^ S{C, h){z) + n ~ 1 й S{C, h) {h"'\z)) = S(C, h) (t) < ^{A^j;} by 1.19 (a) and 
(f) which is a contradiction. 

Thus, 5(C,/i) (x) = S{Ai,f,). 

Proof of (h). We have C" = C" n {A^ - Af) ^ C" n A-, = Л? ç C^ by (a). 
It follows с - Л^ 

2Л1. Definition. Let 0 ф M ç Ord, a eOrd. Then we put M ^ a if j5 g a for 
each ß e M. 

2Л2. Lemma. Let (C, /i) = U {^hft) ® {^^ o) be a unary algebra defined in 2.7. 

We put ^j = sup S{AiJ,), then C^' ^ В - B°° and we put 
iel 

mm {n E W^^B,g)l B"nC^^ ^0} if C'^ Ф 0 
№ ^ ) if Ĉ ^ = 0. 

/ / m G IF (̂B,̂ ), m è n* Гйвп S{C, h) (ß'") ^ ^^ + (m - n*). 

Proof. C^' ^ В - J5^ by 2.10 (e). 

Let us have m e W^^ßg^^, m ^ n*. Then n* ^ m < ^(i?, 6̂ ). We denote by V{m) 
the following assertion: S{C, h) {B"^) S ^i + {m - и*). 

Then Vin"^) holds: Suppose, on the contrary, the existence of уо 6 Б"* such that 
S(C, h) (jo) > ^i- By 2.10 (b) S{C, h) (уо) Ф oo. By 1.16, there is z e C^' and По e 
EN ~ {0} such that /i"°(z) = ^ "̂"(z) = уо which imphes n* ^ S{B, g) (z) < 
< S ( ß , ^ ) ( z ) + nogS(5 ,^ ) (^"° (z ) ) = 5(ß ,^)( jo) = w* by 1.19 (a) which is 
a contradiction. Thus, S{C, h) (ß"*) й ^i-

Let us have к E W^^^-^, к ^ n*. Suppose that F(/c) holds and that /c + 1 e PF (̂ß,g). 

Let us have у бБ^+^ Then h'^y) ^ B^ и \J E{AiJi) because (B, g) is a cone. 

By 2.10 (f), we have S{C,h)[E{A,J)) < B{A,J^ й. ^j й ^i + {k - n^) for 
each i e / . The validity of V{k) means S(C, /i) (ß^) ^ ^j + (/с - n*). It follows 
5(C, /î) {h~^{y)) ^ ^^ + (/c - n*). According to the definition of 5(C, /г) we obtain 
S(C, /i) (>) ^ ^^ + (/c + 1 - П*) which is F(/c + 1). 

It follows by induction that V{m) holds for each m E W^(^B,g) with the property 
m ^ n*. 
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2.13. Theorem. Let (С, h) = \J (A^j;) @ {В, g) be a unary algebra defined 
iel <p 

in 2.7, let Sj and n* be defined by 2.12. Then 

Proof. (1) Suppose П* - S{B, g). 
If iel, xe Ж^(л,,/о then 0 + Л^ = C^ n Л^ by 2.10 (a) which imphes C"" Ф 0. 

It follows S{C, h) > % for each x e W^^^^j^y It follows S{C, h) ^ ^{A^J,) which 
implies ^(C,/i) ^ Sj. 

Suppose d(C, /г) > »j. By 1.10, there is x e С such that S{C, h) (x) = Sj which 
implies C^̂  Ф 0. It is a contradiction with the fact n* = S{B, g)-

Thus, S(C, h) = ^ j . 
(2) Suppose n* < i9(J3,ö'). 
Then C^̂  Ф 0 and there exists at least one x e Б"* such that 5(C, /г) (x) = Öj. 

Let us have n e W^^B,g)^ n ^ n*. By 1.19 (a), we have S(C, ft) (ft"""X^)) ^ ^̂ / + 
+ (n - n*). Since {B, g) is a cone and x e Б"* Ç Б we have /7"""*(^) = ö'"~"*W e 
G^"""*(^"*) - B\ Thus, by 2.12 we have S{C, h){B'') ^ 5/ + (^ - n*) which 
implies S(C, ft) (ft" ' ' '*^) u h + {n- n*). It follows S(C, ft) (ft"~"*W) = ^/ + 
+ (и - n*). 

Thus, for each neW^^^^g^ n ^ n"", we have 5(C, ft) > S(C, ft) (ft"-''*(^)) = 
= ^j + (n - n*) = ,9̂  + ( -П* + n) which implies ^(C, ft) ^ ^/ + ( - « * + ^(Б, gf)) 
by 1.0 (vi). 

Suppose &{C, ft) > 5j + ( -П* + S{B, g)). We put % = ^j + ( - n * + 5(Б, ^)). 
By 1.10, there exists у e C, Since x > ^ j , there is z e C^̂  and|/i G AT - {0} such 

that ft"(z) = y, by 1.16. It follows C" ^ В - Б°°, C^̂  ç Б - Б°° by 2.10 (e). It 
follows the existence of m e W^(^B,g) such that y e Б'". Since z e Б we have g\z) = у 
which implies S{B,g){y) = S{B, g) (g'^iz)) ^ S{B,g){z) + и by 1.19 (a). Clearly, 
z e C^' implies и* ^ ^(Б, Ö') (Z) < 5(Б, f̂) (у) = m. By 2.12, we have Sj + ( - n * + 
+ ^(Б, ^)) = % = 5(C, ft) (y) ^ ^j + (m - n*) = Sj + {-n^ + m). It follows 
- n * + S{B, g) = -Sj + (9j + (~n* + ^(Б, g))) g - ^ ^ + (^, + {-n* + m)) = 
= - n * + m by 1.0 (iii) and (iv) which implies S{B, ^) = и* + ( - n * + S{B, g)) ^ 
^ n* + ( -П* + m) = m by 1.0 (iii) and (i). Thus, 3(Б, g) S m which is a contra­
diction. 

It follows ^(C, Й) = 5j + ( -П* + а(Б, ^)). 

3. NECESSARY CONDITIONS 

3.1. Lemma. Let ( Л , / ) be a connected unary algebra. If |л°°| < KQ fften 
Z{AJ) = A^andR{AJ)^ \A'^[ 

Proof. By 1.15 we have Z{AJ) £ Л°°. 
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Let us suppose |Л°"| < KQ. We prove Л^ Ç Z{ÄJ). It holds if A^ = 0. Thus, 
we can suppose Л°° Ф 0. Let us have x e Л°°. Then there is a sequence {x^)isN such 
that/(xf+i) = Xf for each i eN and XQ = x. Clearly, x̂  G У1°° for each i eN. From 
the finiteness of Л°°, it follows the existence of i, j EN, i < j , such that Xf = Xj. We 
prove by an easy induction that /"(x„) = x for each neN. It follows /'(х^) = x = 
= f\^j) = Г{^д' ^^ P^^ d = j - i > 0. By 1.5 (b), we have x e Z{A,f) because 

f%x) = f{f{x,)) = r{x,) = X. 
We have proved Z{AJ) = A"^ which implies R{AJ) = |Л^|. 

3.2. Lemma. L ?̂ {A,f) be a connected unary algebra, suppose Я,/x e PF (̂̂ y), 
À < fi. Then the following assertions hold: 

(a) Ifx,ye A\ x' eA\m,nEN ~ {0}, /'"(x') = x, /"(x') = j r/ien x == y. 

(b) If(p:A^->A^ is a map such that, for each x e A^, there exists n{x) eN — {0} 
with the property f^^^\(p{xy) = x then cp is injective. 

Proof of (a). Let us have x, y e A\ x' EA\m,neN - {O}, f"'{x') = x, Д х ' ) = 
= у. Suppose m^n. Then x =/'"(x') =/^""(/"(x')) =/'"""(у). Thus, Л~"(у) = 
= xeA\ f%y) = yeA" which implies x = j ; by L19 (b). 

Proof of (b). Suppose that (p : A^ -^ A^ is such a map that, for each x e Л ,̂ 
there exists n{x) eN - {0} with the property /"^''^^(x)) = x. Let s,teA^ be such 
elements that (p{s) = (p{t). Then there exist n{s), n{t) eN — {0} such that s = 
= f"^'\(p{s)\ t = f"^'\(p{t)) = f"^'\(p{s)y Then, by (a), we have s - t and (b) holds. 

3.3. Lemma. Let {A,f) be a connected unary algebra, suppose X, fie И̂ 5.(л,/)» ^ S 
S 1л> Then Щ й \Л^[ 

Proof. By L16, there exists a map cp : A^ ^ A^ such that, for each x e A^, there is 
n{x)eN — {0} such that /"^""X^W) = ^- ^У -̂̂  (^)' ^̂ ^̂  ^^P ^̂  injective. Thus 

3.4. Lemma. Let (^,/) be a connected unary algebra and a a limit ordinal with 
the property a S ^{Af)- If (^»/) ^^ ^^ co-algebra suppose a < &{A,f). Then 
lA^'l ^ ]cf a|/(?r each x e W^, 

Proof. If a = 0 then we have nothing to prove as W^ = 0. 

Suppose a > 0. 

(1) Suppose first a Ф 9(Л,/). Then x G Л« implies f-\x) с \J A\ xeA-
- и A"". ""^^^ 

yeWoc 
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Let X eW^hQ an arbitrary ordinal. Then there is an ordinal ÀeW^, À > x and an 
element y e A^ such that f{y) = x. Indeed, if such Я, y do not exist then there is an 
ordinal /leW^ such that f~^{x) Ç U A\ Further, XEA- U ^ " ^ ^ - U - ^ ' 

which implies x e Л^ in contradiction to 1.8. 

(2) Let {><V)VBW,,^ be an arbitrary increasing sequence of ordinals such that 
sup x^ = a. By (1), there is an ordinal Цо e Ж„, /lo > XQ and an element x„ e A^"" 

such that/(x^o) = x. 
Let Q e Wcfa be an arbitrary ordinal and suppose that we have constructed, for each 

ordinal V < ^, an ordinal fi^ such that x^ < fi^ < oc and an element x^^ e A^" in such 
a way that (iUy)̂ ^̂ ^ is an increasing sequence. Then sup pi^ < a because ^ < cf a 

and cf a is the least ordinal cofinal with a. Thus, we can take an ordinal ц^ e W^ 
such that IIQ > x^, /x̂  > sup fx^ and an element x^^ e A^^ such that/(x^ J = x, by (1). 

veTTe 

By transfinite induction, we obtain an increasing sequence of ordinals (/̂ у)убГсга 
and a sequence of elements {^iiXeWofa. ^^^^ that/(x^^ J == x for each v e W^^^. Further, 
we have a = sup x^ ^ sup pi^ g a; thus, sup //̂  = a. 

(3) Let xeW^hQ arbitrary. By L16, for each v e W^^^ such that fi^ > x there exists 
y^eA"" and n^eN ~ {0} such that Г\у^) = x̂ ,̂ . We put X = {x^^; v e Ĥ 'cf«, 
X < / i j . Clearly, v, v' e Pf̂ fa. ^ + ^'. ^ < /̂ v. /^v'. imply ÂV + î v- because (мя)АбГсга 
is an increasing sequence. It implies x^^ ф x^^. by L8. Suppose y^ = y^,, щ S ^v" 
We put d=n,.-n, and we have x,^, ==/"^'(У,,) =/"^^^(j;,) == Д Г ( у , ) ) = 
= f^{x^^. Then, for J = 0, we have x̂ ^̂ ' = x̂ ,̂  which is a contradiction. Thus, d > 0 
and x , \ = f\xj = / ' " Ч / Ы ) = / ' " ' W which implies x = / (x ,^ , ) = 
= fif~\x)) = f\x). It follows from d > 0 that x e 2 (Л , / ) by L5 (b); thus x G Л°° 
by L3 and L15 which contradicts L13. Thus, y^ Ф y^r. 

We have proved that there exists an injection of Z into A"". Clearly, | x | = |cf a|. 
Thus I Л'*! ^ |cfa|. 

(4) Suppose now a = â{A,f). By our hypothesis, {A,f) is an oo-algebra. Let 
{B, g) be a cone such that В = B"" и B"^ where | Б ^ | = 1, |Б^ | = L Let ç : E{AJ) -^ 
-> Б^ is the only map of E{A J) onto Б ^ We put I - {!}, A^ = AJ, = / , (C, /i) = 
= D [ÄiJ,) ® {B, g). 

ieJ q) 

By 2.9, (C, /i) is a connected unary algebra. We define Bi, n* by 2.12. Clearly, 
d, = Э(Л,/). If X e ß" then S{C, h) (x) = S ( ^ , / ) by 2.10 (g) and we have x e C^' 
which implies n* = 0. Clearly, 9{B, g) = I. It follows S(C, h) = 9(Л, / ) + 1 by 
2.13. Thus, a = д(Л, / ) < 9(C, й). For each xeW^, we have [С] ^ |cfa| by (l), 
(2), (3). By 2.10 (d), we have С я {B - В") u (Л - Л") = В" и (Л - Л=°). As 
we have seen, S(c, /j) (x) = »(AJ) for x e ß". It follows С Я A - A^. By 2.10 (h), 
we have С = A". Thus l/l"] g |cf a|. 
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3.5. Lemma. Let {Ä,f) be a non empty connected unary algebra which is not an 
co-algebra. Then the following assertions hold: 

(a) ^[A,f) is a limit ordinal cofinal with OJQ. 

(b) If ЯбЖ^(^^-) is such an ordinal that \Ä^\ < Ко then there is such an ordinal 
l^^^»u,f) that \Ä^\ = 1. 

P roo f of (a). Suppose that S{A,f) is an isolated ordinal. Then there is x e A such 
that S{AJ){X) = SIAJ) - 1. By 1.19 (a), we have S{AJ){x) < S{Aj){f{x)). 
If S ( ^ , / ) ( / ( x ) ) e O r d then S{AJ){f{x)) ^ 9{AJ) which is impossible. Thus, 
S{A,f) (/(x)) = 00 which contradicts the hypothesis A"^ = 0. Thus, S{A,f) is a limit 
ordinal. 

Let X e Л be such an element that S{A,f) (x) = 0; such an element exists because 
^{A,f) > 0. For each к e 1^д(л,/) Ibere is an element y^e A such that S{A,f) (y^) = 
= X. Since {A,f) is connected there are m^, n^eN such that/"' '(x) = /"""{Ух}- Ву 
1.19 (a), we have 8{А,/){Пх)) = 8{А/){Пу,)) ^ x. Thus {S{AJ){f\x))\,^ 
is a sequence of the type OJQ such that W^(^AJ) is cofinal with this sequence. 

P r o o f of (b). Let us have Я e И^а(л,/), И 1 < ^o- If И^| = 1 then we have nothing 
to prove. Suppose \A^\ ^ 2, let x, у e A^ be such elements that x Ф y. As {A,f) is 
connected there are n,meN- {0} such that /"(x) = /""(y) = z. Since A°° = 0 
there is À^ e W^^^AJP >̂ I > A such that z e Л'̂ Ч By 1.16, there is a map (p : A^^ -^ A^ 
such that (p(z) = x and that, for each t E A ^ \ there is /c e iV — {0} such ihdii f\(p{if) = 
= t. By 3.2 (b), this map is injective. 

We prove that у ф (p(A^^). Suppose, on the contrary, the existence of z' e A^^ with 
the property (p(z') = y. Then there is p G iV - {0} such that f\y) = f\q>{z')) = 
= z' e A^\ We have/'"(j;) = z e Л^\ It follows z = z' by 3.2 (a) which implies x = 
= (p{z) = (p{z') = у which is a contradiction. Thus ç : A^' -^ A^ is not a surjection. 
Since A^ is a finite set we have \A^\ > \A^^\. 

We proceed similarly with the set A^\ À^ G ^НА,Л as A^' is a finite set. Since ^(Л, / ) 
is a limit ordinal, we obtain, after a finite number of steps, an ordinal fi e W^^jy 
such that |Л^| = 1. 

3.6. Definition. Let a G Ord and suppose that {m^ew^^ioo} is a sequence of car­
dinals. We put 

critfm^ - I ^ ^ ^ W if '^^ооФО 
cru [т^)^^цг^^^^^ - ^ 

[W^ if m^ = 0 . 
3.7. Definition. Let Г Ç Ord u {oo} and suppose that {m^\^p is a sequence of 

cardinals. This sequence is called suitable if the following conditions are satisfied: 

(1) Г = И^и {oo} for some a G Ord, the sequence (m^)^^^^ is non-increasing and 
m^ =1= 0 for each xeW^. 
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(2) If m00 = 0 then (a) a is a limit ordinal cofinal with COQ, (b) the existence of ÀeW^ 
with the property m^ < KQ implies the existence of iieW^ with the property 

m^ = 1. 

(3) For an arbitrary limit ordinal /i e crit (m^)^^^^^!^} and for an arbitrary ÀE W^ 
we have Ш;̂  ^ |cf/^|. 

3.8. Theorem. Le^ (^?/) ^^ ^ ^^'^ empty connected unary algebra. Then the fol­
lowing assertions hold: 

(a) / / |Л°°| < Ко r/ien К ( Л / ) = |Л°°|. 
(b) Т/ге sequence {\Ä^\)xeW9^A,f)^{^} ^^ suitable. 

Proof, (a) follows by 3.1. The property (1) of 3.7 follows by definition of ^{AJ) 
and by 3.3, the property (2) of 3.7 follows by 3.5 and the property (3) of 3.7 follows 
by 3.4. 

3.9. Lemma. Let a e O r d , let (m^X^^^^^^^ be a suitable sequence of cardinals 
with the property m^ = 1. If ß e W^ then (т^);,еж^^{оо} is a suitable sequence with 
the property m^ = 1. 

Proof. The sequence {ni}^xeWpu{au} satisfies the condition (l) of 3.7. The condition 
(2) is satisfied trivialy as m^ = l.lf ße crit {m^X^j^^^^oo} then ja й ß which implies 
цесгИ{т^\^цг^^^^У Thus, for each limit ordinal /г écrit (m^);,e^^^(oo} and each 
ÀeW^wQ have m^ ^ |cf ju| which is (3) of 3.7. 

3.10. Lemma. Let a e O r d , let (?1̂ х)хеж«и{оо} be a suitable sequence of cardinals 
such that m^ = 0. We put m'^ = m^ for each к e Pf«, m'^ = 1. Then (т )̂хеж^и{оо} 
is a suitable sequence for each ß eW^. 

Proof. The condition (1) of 3.7 is satisfied by the sequence {ml,)^eWßu{oo)^ the con­
dition (2) of 3.7 is satisfied trivially as m^, = 1. Clearly, ß e W^ implies ß e 
e crit (т,),етг.и(оо} which implies crit {m^ew^^ioo} = Щ ^ {ß} ^ ^a = 
= crit (mXBW.KJiooy If jue crit {m%^Wßu{oo} is a limit ordinal and ÀeW^ then /x e 
G crit (т )̂̂ етг«и(оо} which implies |m;| = | тя | ^ |cf/г|. Thus, the condition (3) 
of 3.7 is satisfied by the sequence {m'^)xeWß^{oo}' 

3.11. Lemma. Let a e O r d , let (т )̂̂ етг«и{оо} be a suitable sequence of cardinals 
such that m^ Ф 0. We put m^ = m^ for each xe W^, m'^ = 1. Then {mXeWa.^{^} 
is a suitable sequence. 

Proof. {m'Xew^u{oo) satisfies obviously the condition (l) and (2) of 3.7. Clearly, 
crit (m;)^^^^^^^j = W^Kj {a} = crit (т )̂̂ етг«и{оо}- Thus, if iiecni{mXeW.^{^) ^^ 
a limit ordinal and Я G Pf̂  then /z G crit (m;,)̂ e,̂ v̂.{oo} and m^ = "^A è \^^ A' ^^^^^' 

('Wx)x6TF«u{oo} satisfies the condition (3) of 3.7. 
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4. SUFFICIENT CONDITIONS 

4.1. Lemma. Let (C, h) = [J (Л^-,/,) ф (Б, g) be a unary algebra defined in 2.7. 
iel q> 

We put SI = sup9{Ai,f,). We suppose that 0 ф Б° с C^\ Then the following 
iel 

conditions hold: 

(a) И* = 0 where n* is defined according to 2.12, ^(C, h) = Sj + S{B, g) and, if 
we put n(x) = -~~-9i + X for each x with the property Sj ^ x < S(C, h) then 
{n{x); Sju>c< S(C, h)} = W,^s,gy 

(b) C" = E'^^'^for each x, Sj ^ x < S{C, h). 

P r o o f of (a). If 0 Ф ß^ Ç C^' then n* = 0 by 2.12. It follows ^(C, /г) = ^, + 
+ ( _ „ * + ^(^^ ^)) ^ ^^ + ^(j5^ g^^ |,y 2.13. 

Further, ÏÏ ^i^x < S{C, h) then n{x) = -3j + x < -Sj -h ^(C, h) = S{B, g). 

On the other hand, if n < S{B, g) then n = -Sj •¥ {Sj + n) where ,9̂  ^ г9̂  4-
+ п<^1 + S{B, g) < 9{C, h). 

P r o o f of (b). (1) For each m < S{B, g\ we have S(C, /i) (Б'") ^ öj + ( - n * + 
+ m) = ^j + m by 2.12 and (a). Further, xeB"^ implies the existence of y e Б^ ^ 
Ç C^̂  such that /i^(y) = Ö''"(J) = ^ because (Б, f̂) is a cone. It follows S(C, /z)(x) = 
= 5(C, /z) (/î (}^)) è 5:(C, /i) (y) + m = ^j + m by 1.19 (a). Thus, S(C, /i) (Б'") = 
= ^j + m for each m < ^(Б, g). It impHes, for each x, Sj S ^ < ^{C, h), that 

(2) ^j ^ X < ^(C, h) impHes C^ ^ Б - Б°° = (J ^" by 2.10 (e). It imphes 

с = Cn и J5" = и (C*'+"W n B") = C*'-""«"' n B"^"^ by (a) and (l). It 

follows С" ç Б"̂ '*>. 
Thus, we have C^ = Б"̂ '̂ ^ for each %, ,9̂  ^ x < ^(C, /Ï) by (l) and (2). 

4.2. Lemma. Let {A,f) be an co-algebra such that S{A,f) > 0 is an isolated 
ordinal {B,g) a cone disjoint with (AJ) such that B^ Ф 0, \В^\ ^ ]Л^^^'-^^"^|. 
Then the following assertions hold: 

(a) There exists a surjection ф : ^^(^'•^)~i -^ в^ which is a restriction of a sur-
jection (p :E{AJ)-^ B^. 

We put I = {1}, ^1 = Л, / i = / and let (C, h) = \J (Л^,/^) 0 (Б, g) be a unary 
algebra defined in 2.7. »ei ç» 

(b) (C, /i) ÏS a connected unary algebra. 

(c) ^(С,й) = 5(Л, / ) + Э(Б,^). 
(d) C" = A'^for each x < S{AJ), a = Б"('^>/ог each x, ^ ( ^ / ) ^ x < ^(C, h) 

where n{x) is defined according to 4.1 (a), C^ = B"^. 
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P r o o f of (a). Since S{A,f) > 0 is an isolated ordinal then 0 Ф ^^(^'/)-i ç 
Ç E{AJ) by 2.3 (c) and since |^^(^ ' / )- i | ^ |j50| ^^^^^ tĵ ^^e is a surjection i/̂  : 
^HA.f)-i _^ ßO ^jiic]^ js ^ restriction of a surjection cp : E(A,f) -> B^. 

Proof of (b). (C, /г) is a connected unary algebra by 2.9. 

P r o o f of (c). If x e ß ^ then there exists z e Л^^^"^^"^ such that h(z) = \!/{z) = 
= (p{z) = X. Since Л^(^'^>-1 Ç C^u,/)-i by 2.10(a) we have 5(C,/i)(z) = ^(Л, / ) -
- 1. It follows S(C, h) (x) = S{C, h) {h{z)) > S{C, h) (z) = S{AJ) - 1 by 1.19 (a) 
because x ф B"^ = C^ with regard to 2.10 (b). Since g"\x) = 0 we have h~\x) = 
= (p~\x) я A - A"^ = и ^'^ ^ и С"* by 2.10 (a). Further, xeC -

- \J C"" because S{C, h) (x) ^ 9{AJ), It follows x e C^^^'^^ which is x e C^̂  

because 9j = sup ^(Л,.,/,.) = 9{AJ), We have proved ß° ç C^^ 
»6 / 

It implies 5(C, /i) = 5^ + 5(5, ^) = S{AJ) + S(B, ^) by 4.1 (a). 

P r o o f of (d). We have proved B^ ç C^', It follows J5 = Б ^ u (J B"" = 
fneW9.(B,g) 

= C°° u и c^(^'/)+'« by 2.10 (b), 4.1 (b) and 4.1 (a). Thus, C" ^ A - A"^ for 
meW^(B,g) 

each X < ^{AJ) which implies C^ = A"" for each x < »{A J) by 2.10 (h). 
Further, a = Б"<''> for each x, 5(Л, / ) g x < 5(C, /i) by 4.1 (b). 
Finally, C^ = Б°° follows by 2.10 (b). 

4.3. Lemma. Let {[Al,f^)•, iel} be a set of mutually disjoint co-algebras such 
that S{Ai,fi) > 0 for each iel. We put 5/ = sup9(^;,/,.) and l{x) = {iel; 

iel 

^ ^ ^HAiji) f^^ ^^^h X < Sj}. We suppose that, for each x < Sj, there is a cardinal 
m^ ^ max {|j|, KQ} such that |Л^| = m^ for each i el(x). Let {B, g) be a cone 
disjoint with all co-algebras {Al,f^) such that \В — Б°°| = |/|. Then the following 
assertions hold: 

(a) There exists a surjection cp :\J E(Ai,fi)-^ В ~ B"^ such that, for each 
iel 

X e В — B"^, there is {precisely one) i el such that (p~^{x) = E{Ai,f^. 
Let (C, li) =^ \) {Ai,fi) @ (Б, g) be a unary algebra defined in 2.7. 

iel (p 
(b) (C, h) is a connected unary algebra. 
(c) Let I = W^for some limit ordinal a and suppose that Б — Б°° Ф Б^ implies 

Of = coo and (p{E{Ai,f^ = B^ for each i eL If{9{Ai,fi))içi is an increasing sequence 
then i{C, h) = 9j. 

(c') / / there is an co-algebra {A,f) such that (Л^,/^) ^ {^,f) for each iel 
then 5(C, h) = S{A,f) + S{B, g). 

(d) IC'I = m^for each x < Sj, C°° = Б°". 
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(d') / / there is an oo-algebra {A,f) such that (^/,/f) = {A,f) for each iel 
then ^j < S{C, h) andjor each x,SjS^ < K^, h), C^ = Б"<̂ ^ where n{x) is defined 
according to 4.1 (a). 

P roo f of (a). If iel then S{AiJi) > 0 which imphes A^ - Af + 0; it follows 
E{AiJ,) Ф 0 by 2.3 (a). Let i/̂  : / -^ Б - Б°° be a bijection; we put (p{t) = ф(1) for 
each iel and t e E{AiJ,). Then cp : U Е{А^,/,) -» Б - Б°° is a surjection with the 

iel 

property: for each х е Б — Б°°, there is (preciselly one) iel such that (p~^{x) = 
= E{A,J,). 

Proo f of (b). (C, h) is connected unary algebra by 2.9. 

P roo f of (c). (1) We put {ci} = (p{E{AiJi)) for each i e / . If x e Б - Б^ is 
arbitrary then, by (a), there is (precisely one) i e I such that Ci = x. Thus, В — B"^ — 
= {eiMel]. 

(2) We prove that S'(v4,/)(^f) = ^(Л,,/,) for each i e / = И .̂ Indeed, if Б - Б"̂  = 
= Б^ then, for each iel, е^еВ"^ and h~\e^ = (p~\e,) = E{AiJ,) by 2.7. Thus, 
S(C,/z)(eO = ^(^-,/ .) by 2.10(g). 

We suppose that Б - Б ^ Ф Б^. Then / = W^^ and {е̂ } = В' for each i e L The 
assertion S(C, h) (^,) = S{Ai,f^) (i e l ) will be proved by induction. 

If I = 0 then Co e Б^ and, by 2.7 and 2.10 (g), S{C, h) [e^) = H^oJo)-
Let ieI-{0} and suppose S(C,/z) (е^.^) = ^(^f_i, /f_i) . By 2.7, we have 

h-\e,) = E{A,J,) u Б^-^ = E{A,J,) u {̂ ,_ J . By 2.10 (f), it follows ^{A^J,) = 
= min {a eOrd; a > S{C, h) {E{AiJi))} (see 2.11). Further, (^(Л,-,/,)),е/is increasing 
and it implies S{Ai,f,) > ^{А^_^,/^_,) = S{C, / i)(ei-i) . Thus, S{AiJi) = 
= min {aeOrd; a > S{C, /i)(£(^,.,/,)u{e,_ J ) = min {aeOrd; a > S{C, /i)(/i-^(e,))} = 
= 5(C,/î)(^,). 

(3) By (1) and (2), there exists, for each xeB - B°^,iel such that S(C, h) (x) = 
= 5(^f,/i). Further, we have S{Ai,f,) Ф ^^ for each iel because {^{AiJi))^ is 
increasing and |/| ^ KQ. Thus, 5(C, /г) (x) Ф ^j for each xeB - B"^. It follows 
C^' = 0 and П* = ^(Б, ^) by 2.12. We obtain г9(С, /i) = ^^ + ( - n * + ^(Б, f̂)) = ^r 
by 2.13. 

P r o o f of (c'). ^i = supd(^,.,/,.) = S{AJ) by 1.20. Further, B^ Ф 0 because 
iel 

Б - Б°° Ф 0 and we have 5(C, h) (x) = ^ ( ^ , / ) for each x e Б« by (a) and 2.10 (g). 
It implies Б° ç C^'. We obtain n* = 0 by 4.1 (a) and ö(C, й) = ^j + ( - п * + 
+ 5(Б, ^)) = ^(Л, / ) + ^(Б, ^) by 2.13. 

P roo f of (d). We put (p{E{AiJ,)) = {^J for each i e J; then Б - ^"^ ^ U [^i](c./o 

by (a). Let us have x < S,. We put m* = ]€" n{B - ß-»)]. Then С n {B - ß°°) Ç 
£ и ( С n [ej(c.ft)) which imphes m* g X К' ' n [e;],c,,)| § |/ | because 1 ^ n 
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^ bi](c.h)\ ^ 1 by 1.19 (b). We have с Ç {B - B») u (J (^г - Af) by 2.10 (d) 
iel(x) 

which implies С = С гл {{В - В*) и (J (л^ - Af) = {С п{В - В"»)) и (J Л,-

with disjoint summans by 2.10 (a) and 1.13. It follows [С"! = m* + X И?! = 
îel(y) 

= m* + |l(x)| m^ = m^ because m^ ^ Ko. m^ ^ |/| ^ |/(>t;)|, m^ ^ |/| ^ m* and 
/(x) + 0. 

ôc _ Б°" follows by 2.10(b). 
P r o o f of (d').^(C, h) = ^(Л, / ) + d(ß, д) = Si + S{B, g) by (с') and 5(Б, f̂) > О 

because Б - Б°° Ф 0. It follows ^^ < ^(С, /г). Further, we have proved 0 ф Бо £ с^^ 
in the proof of (с'). It implies C* = Б"(̂ > for each x, Sj ^ >( < ^{C, h), by 4.1 (b). 

4.4. Definition. Let us have a e O r d , let {т^^^цг^^^^^ be a suitable sequence of 
cardinals, {A,f) an co-algebra. Then (Л , / ) is said to have the property (ß) with 
respect to the given sequence if jS e W^, S(A,f) = ß and [А""] = m^ for each x e Wß, 

4.5. Lemma. Let us have a e O r d , a ^ 2, let (т̂ );<бЖ«и{оо} be a suitable sequence 
of cardinals with the property m^ ^ 1. / / , for each ß e W^, there is an co-algebra 
having the property [ß) with respect to the given sequence then there exists a con­
nected unary algebra {A,f) such that 9{A,f) = a and \A''\ = m^ for each xe 
e Жд u {GO}. 

Proof. (I) If a is an isolated ordinal then m^ = 1 because m^ Ф 0 by 3.7. Thus, 
there exists a — 1 e Ord because a ^ 2 and an oo-algebra {A,f) having the property 
(a — 1) with respect to the given sequence. 

Two cases can occur: 

(1) Suppose m^ ^ KQ for each x e Жа-i-
Let {[Ai,fi); i el] be a set of mutually disjoint oo-algebras such that {Ai,f^ ^ 

^ (A,f) for each i el and |/| = m^_^. Let (Б, g) be a cone disjoint with all agebras 
{A,Ji) such that Б = B^ u Б°^, |Б^ | = m^_i, | Б ^ | = 1. 

Then &{AiJ^) = S{AJ) = a - 1 > 0 for each iel by 1.20. Further, we have 
S J = sup S(Ai,fi) = S(A,f) = a — 1 and, for each x < a — 1, m^ ^ m^_^ = 

iel 
— \l\ which implies m^ ^ max {|/|, KQ} and |Л^| = m^ for each i el = l{x) (see 4.3). 

iel 
Finally, we have \В — Б°°| = \В^\ = m^_i = |/|. Then there exists a surjection 
(p : и E{Ai,fi) -^ В — B"^ such that, for each x e В — Б"", there is (precisely one) 

iel 
iel such that (p~\x) = £(Л^,/,) by 4.3 (a). We put (C, h) = U {AiJ^) ® (Б, Ö'). 

By 4.3 (b), (C, h) is a connected unary algebra and 5(C, /i) = ^{A,f) + 9(Б, ^) -
= (a - 1) + 1 = a by 4.3 (c') because 9(Б, g) = 1. 
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By 4.3 (d), we have 1^1 = m^ for each >t: < a - 1. By 4.3 (d'), we obtain C" ^ = 
= Б^ because 3{C, h) = a. It implies |C^~^| = | Б ^ | = m^_i. By 4.3 (d), we obtain 
\C-\ = |Б«^| = 1 =: m^. 

We have constructed a connected unary algebra (C, /t) with the following proper­
ties: S(C, h) = a, 1^1 = m^ for each xeW^u {oo}. 

(2) Suppose the existence of XQ ^ ^ a - i such that m^^ < KQ. 

Then a ^ 2 implies a — 1 ^ 1. Clearly, a — 1 E crit (т̂ )̂ еИА^̂ (оо}' If a — 1 were 
a limit ordinal then we should have m^̂  ^ |cf (a — 1)| by 3.7 (3) which is a contradic­
tion to the finiteness of m^ .̂ Thus, a — 1 is an isolated ordinal. 

Let {B, g) be a cone disjoint with {A J) such that В =^ B^ и B"^ and |ß° | = 
= ш „ _ „ | Б - | = 1. 

S{A,f) = a — 1 > 0 is an isolated ordinal and we have B^ Ф 0, \В^\ = m^_i g 
g m^_2 = |v4^"^| = |Л^^ '̂-^>"^|. Then there exists a surjection ф : yi^(^'^^~^ -> B^ 
which is a restriction of a surjection ^ : E{A, f) -> ß^ by 4.2 (a). We put / = {1}, 
A,=AJ,= f, (C, h) = {J {A„ / ,) e {B, g). 

iel 

By 4.2 (b), (C, h) is a connected unary algebra. Clearly, S{B, g) = I which implies 
S{C, h) = S{AJ) + S{B, g) = {oc- 1) + 1 = (x by 4.2 (c). 

Further, C^ = Л'̂  for each x < a - 1, C^"^ = Б ^ C°° = B^ by 4.2 (d) because 
ЦС, h) = ос. It follows JC"! = m^ for each xeW^u {oo}. 

(II) Suppose that a is a limit ordinal. We put / = W^^^, Then there exists an in­
creasing sequence of positive ordinals {ßi)iei such that sup j^^ = a. For each iel 

iel 

there exists an oo-algebra (Л,.,/^) having the property (ßi) with respect to the given 
sequence. We can suppose, without loss of generality, that the oo-algebras {Ai,fi) 
are mutually disjoint. 

The set {{Ai,f^); iel} of oo-algebras has the following properties: ^(Ai,f^) = 
= ß. > 0 for each i el; Sj = sup S{Ai,fi) = sup ßi = a; if we put l{x) = {г el; 

iel iel 

xe W^^^.j.^ for each x < a (see 4.3) then, for each iel{x\ we have |Л^| = m^ 
because {А^,/^) is an oo-algebra having the property (ßi) with respect to the given 
sequence. 

Two cases can occur: 

(i) Let us have m^ = 1. Since (w^)^^^^^^^} is a suitable sequence then 
crit {m^XeWoc^iœ} = ^a^ W ^^^^ ^У 3.7 (з), we have m^ ^ |cf a| = |/| for each 
X 6 W^, Thus, for each x < a = ^ j , we have m^ ^ max {|/|, KQ} because |/| ^ KQ. 

We take a cone (В, g) disjoint with all oo-algebras ( ^ Р Л ) such that В = B^ и B"^ 
where |ß^| = |/| = |cf a|, |J5^| = L 

Thus, JB - Б ^ = Б ^ and \В - ß°^| = |/|. 
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By 4.3 (a), there exists a surjection cp : (J E{Ai,f^ -> Б — ß * such that, for each 
16/ 

xeB — 5°°, there is (precisely one) iel such that (p~^{x) = E(Ai,f^). We put 
(c , / i ) = u ( ^ . . / i ) e ( ß , ^ ) . 

iel <P 

Then (C, h) is a connected unary algebra by 4.3 (b). Further, S{C, h) = Sj = oc 
by 4.3 (c). 

Finally, l^^l = m^ for each x < 3j = a, |C°°| = | ß ^ | = 1 = m^ by 4.3 (d). 

Thus, we have constructed a connected unary algebra (C, /i) such that S(C, h) = a 
and 1̂ *1 = m^ for each x eW^u {ooj. 

(ii) Let us have m^ = 0. Since (m )̂;,g|̂ ^̂ (̂oo} is a suitable sequence we have cf a = 
= CDQ by 3.7. 

Two cases are possible: 

(1) Suppose m ,̂ ^ KQ for each x e W^. 

Then, for each x < a = ^ j , we have m^ ^ max {|/|, KQ} because |/| = |cf a] = 

= hol = N'o-
Let (ß, g) be the cone (constructed in 2.5, 2) such that |ß"| = 1 for each n eN. 

Suppose that {B, g) is disjoint with all cx)-algebras (Л;,Л). 
Thus, ß°° = 0 and \В - ß°°| = |ß | = Ко = |/|. 
We take, by 4.3 (a), a surjection cp : (J ^(^г»Л) -^ ^ such that ф(£(Л,,/,•)) = Б' for 

iel 

each J e / = 1^,, = N. We put (C, /z) = (J (^/,/f) Ф (ß, ^). 
ieJ (p 

Then (C, /t) is a connected unary algebra by 4.3 (b) and ^(C, /г) = ^^ = a by 4.3 (c). 
Further, |C^| = m^ for each x < a, |C°°| = |ß°"| = 0 = m^ by 4.3 (d). 

Thus, we have constructed a connected unary algebra (C, h) such that ô(C, /Ï) = a 

and IC*! = w^ for each x eW^u {oo}. 

(2) Suppose the existence of XQ G Pf̂  such that m^̂  < KQ. 

Clearly, X eW^ impHes x e crit (m J^eî ^^^^o}- If there is a limit ordinal x, XQ < x < 
< oc, then m̂ Q ^ |cf x| by 3.7 (3) which is a contradiction to the finiteness of m^^. 
Thus, each x with the property XQ < x < oc is isolated. 

We take art arbitrary Я, XQ < Я < a. Thus, there is an oo-algebra {A,f) having the 
property (Я). Thus S{A,f) = A > 0 is an isolated ordinal. 

By 3.7 (2) (b), there is fie W^ such that m^ = L It follows the existence of a cone 
(ß, g) such that |ß"| = m;,+„ for each neN by 2.5. 

Then \A^^^^^^-'\ = \A'-'\ = m,., ^ m, = | ß % 

By 4.2 (a), there exists a surjection ф : ̂ ^(^ ' /)-i -> в^ which is a restriction of 
a surjection ф : E{A, f) -^ B^. 

We put J = {1}, Л, = Л, Л = / and (C, /z) = U (Л,,/,) Ф (ß, g\ 
ieJ <p 

242 



By 4.2 (b), (С, h) is a connected unary algebra and S{C, h) = 9{AJ) + S{B, g) = 
= A + coo = ОС by 4.2 (c) because d(B, ^) = COQ and Я + COQ» ^ ^^^ ^^th equal to the 
least limit ordinal greater than À, 

Further, С = A"" for each x < À and С = Б"̂ "*̂  for each x, Я ^ x < a where 
n(x) is the only element of N such that x = À + n{x) (see 4.1 (a)), C^ = Б^ = 0 
by 4.2 (d). It follows IC'I = l^''! = m^ for each x < Я, [С ]̂ = |ß"<''̂ | = m^+„ĵ ^ = 
= nij^ for each x, Я ^ к < a and |C°^| = 0 = m^. Thus, | C | = m^ for each KG 
eW^^ {oo}. 

4.6. Corollary. Let a e O r d , let (ш^Хеж«и{оо} ^^ ^ suitable sequence of cardinals 
such that m^ = 1. Then there is a connected unary algebra {A,f) such that 
S{A,f) = a and Ц'*] = m^for each x e И̂„ u {oo}. 

Proof. For each ordinal, we denote by F(a) the following assertion: If (m^)^^^^^^^^) 
is an arbitrary suitable sequence of cardinals such that m^ = 1 then there is a con­
nected unary algebra {A,f) such that ^{A,f) = a and \A''\ = m^ for each x e Ж„ u 
u {oo}. 

If we put A = /4°° where |У4°°| = 1 = m<̂  then we see that F(0) holds. Similarly, 
if we define the cone A — A^ ^ A"^ where \A^\ •= т^, |Л°^| = 1 = m^ then we see 
that F(l) holds. 

Let us have ß '^l and suppose that V{y) holds for each у < ß. Let (m^)^^^^^!^} 
be a suitable sequence of cardinals such that m^ = 1. If 7 e Ж̂  then the sequence 
{^x)xeWyu{oo} is a suitable sequence of cardinals such that m^ = 1 by 3.9. Thus, by 
the induction hypothesis, there is a connected unary algebra (Ay.fy) such that 
S{Ay,fy) = 7 and |Лу| = m^ for each x e If̂  u {00}. Thus, for each у e Wß, {Ay,fy) 
is an 00-algebra having the property (y) with respect to the sequence ('̂ х)хбЖ^и(а)} 
(cf. 4.4). By 4.5, there is a connected unary algebra {A,f) such that S(A,f) = ß and 
1̂ **! = m^ for each xe WpU {00}. Thus, V{ß) holds. 

It follows by transfinite induction that F(a) holds for each ordinal a which is our 
assertion. 

4.7. Corollary. Let a e O r d , let {i^x)xew„Kj{oo} b^ a suitable sequence of cardinals 
such that m^ = 0. Then there is a connected unary algebra {A,f) such that 
^A,f) = a and [Л'*] = m^for each xeW^u {00}. 

Proof. Since m̂ o = 0 the ordinal a is a limit ordinal by 3.7 which implies a ^ 2. 
We put m^ = m^ for each xeW^,m'^ = l.lf ß eW^ then (m^)^g^^^^^ ĵ is a suitable 
sequence with the property m'^ = 1 by 3.10. By 4.6, there is an 00-algebra {Aß,fß) 
such that S{Aß,fß) = ß and \A^\ = m^ = m^ for each x e Wß. Thus, for each ß e W^,, 
{Aß,fß) has the property (ß) with respect to the sequence ('̂ х)хеж«и{оо} (cf. 4.4). The 
assertion follows by 4.5. 
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4.8. Lemma. Let m > О be a cardinal, ReN an ordinal such that m < KQ 
implies R = m. Then there is a connected unary algebra {A,f) such that A = A"^, 
\A\ = |Л°°| = m and R{AJ) = R. 

Proof. Let A be an arbitrary set such that \A\ = m. We take an arbitrary subset 
В ^ A such that |ß | = Я. We have the following possibilities: 

(I) m < Ko. 
Then R = m and В = A. We put A = {a^, a2, ..., a^}. We pu t / (a , ) = a^+i for 

each i, 1 ^ i ^ m — 1, f{a^) = a^. Then {A,f) is a connected unary algebra such 
that A = A'^ = Z{AJ) which implies | л | = |Л^| = m = i^ = | ^ ( ^ ' / ) | = R{Af)-

(II) m ^ Ko. 
Then \A -- B\ = m = КоШ. We take an arbitrary set К such that \К\ = m and, 

for each xeK,we define a subset B^ ^ A - В such that |Б^ | = ^^^ A — В = \J B^ 
with disjoint summands. We have A = В и [J B^. Two cases can occur: ""^^ 

(1) i? + 0. 
Then we put В = {a^, «2, •••? ^ R } ' ^X = {^ll I ^ ^ } fô ^ ^^^h ж EK. We define 

/ (a , ) = ai+i for f, 1 ^ i ^ i^ - 1, /(ö^^) = a^, /(a^) = a^_i for each x e K, 
i sN — {0}, /(ao) = «1 for each x еК. Then (Л , / ) is a connected unary algebra, 
R{AJ) = \Z{AJ)\ = |ß| = R, A"^ = A which implies |̂ 1 = \A^\ = m. 

(2) 1̂  = 0. 

Then we have Б = 0. We put B^ = {a^; г e N} for each x G K, we take an arbitrary 
XQGK and we define /(a^'') = a^+i for each ieN, f{afj = a^_i for each xeK -
- {xo} and each ieN - {0},f{ao) = «o° for each x GJK: -~ {XQ}-

Then, clearly, (^4,/) is a connected unary algebra such that Z{A,f) = 0 which 
implies R{AJ) = 0 = R. Further, A"^ = A and |Л| = H'^l = m. 

4.9. Theorem. L e r a e O r d , let (ni^).^ew<,^{ao} be a suitable sequence of cardinals, 
let ReN be such that m^ < Ко implies R = m^. Then there is a connected unary 
algebra (AJ) such that R{AJ) = R, ^{Af) = a and {A""] = m^ for each xe 
eW^u {со}. 

Proof. (I) If m00 = 0 then there is a connected unary algebra (A,f) such that 
S{AJ) = a and {А""] = m^ for each xeW^u {oo} by 4.7. Further, Z{AJ) Ç A"^ 
by L15 which implies R{AJ) = \Z{AJ)\ S И""! = m^ = О = R; thus, R{AJ) = 
= i?. 

(II) If m^ Ф 0 then we put m^ = m^ for each xeW^ and mj^ = L By 3.11, 
{^'y)xew^Kj{c^} is a suitable sequence with the property m'^ = L By 4.6, there is a con­
nected unary algebra {A J) such that 5(Л, / ) = a and [Л'̂ ] = m^ = m^ for each 
X e Ж .̂ By 4.8, there is a cone (Б, f̂) such that Б = Б°", | Б | = | Л ^ ! = '̂ оо and 
R{B,g) = R. We can suppose, without loss of generality, that {A,f), {B^ 9) are 
mutually disjoint. 
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Two cases can occur: 

(1) If a = 0 then W^ u {00} = {00} and {В, g) has the properties R{B, g) = R, 
\B^\ = m^. 

(2) If a > 0 then 0 Ф Л° ^ Л - Л°° which implies E{ÄJ) ф 0 by 2.3 (a). Let 
(p : E{A,f) -> Б be an arbitrary map. We put / = {l}, Л^ = A, /1 = / , (C, h) = 
= и (AiJi) ® {B, g). 

iel (p 

Then (C, h) is connected unary algebra by 2.9. If Sj and n* are defined by 2.12 
then SI = S{AJ). Clearly, S{B, g) = 0 which implies n* = 0. By 2.13, ^(C, h) = 
= ;9̂  + ( - n * + S{B, g)) = S{AJ) = a. If xeW^ then x < S{AJ) which implies 
C^ Ç (Б " Б^) UIA - A"^) = A - A"^ by 2.10 (d). It follows C" = A"" for each 
X < S{AJ) by 2.10 (h). Thus, l^^l = m^ for each x e W^. By 2.10 (b), (c), we have 
C^' = Б°" and Z{C, h) = Z(B, g) which implies |C^| = | Б ^ | = m^, R{C, h) = 
= |Z(C, h)\ = |2(Б, 0̂ )1 = R{B, g) = Я. Thus, we have constructed a connected 
unary algebra (C, /г) such that R[C, h) = Я, -9(C, /z) = a, l^^l = m^ for each 
xeW^\J {00}. 

4.10. Theorem. L̂ ^ Abe a set, S : A -^ Ord u {00} a map, ReN. Let the following 
conditions be satisfied: 

(a) / / I^S-^oo)! < Ko then R = \S-\oo)\. 

(b) The sequence {\S~'^{X)\)^^S(A) is suitable. 

Then there is a unary operation f on A such that {A,f) is a non empty con­
nected unary algebra and S(A,f) = S, R(A,f) = R. 

Proof. By 3.7 (1), there is a eOrd such that S{A) = W^u {00}. By 4.9, there is 
a connected unary algebra (Л^,Д) such that ^(^* ' /*) = ^^ ^(^*5/*) = R and 
|Л^| = |S-i(%)| for each xeW^u{oo}. We have \A^\ = ^ \^l\ = 

= Z l-^X^)! = И1- Thus, there is a bijection cp : A^ -> A such that (p \ Al : 

Al -> S~^{x) is a bijection for each xeW^u (cx)}. We pu t / (x ) = ф(/*(^"4^))) 
for each x e A. T h e n / is a unary operation on A such that (?)~^(/(x)) = /*(<^~4^)) 
for each x e Л. It follows that ф~^ is a bijective homorphism of (Л , / ) onto (-4*,/*). 
Thus, ( ^ , / ) , {A^,f^) are isomorphic, ф is an isomorphism of (Л^,,/^) onto {A,f). 
By 1.20, we have S{A, f) = 5(Л*,/^), ф(Л*) = Л^ for each x e W^^^j^ u {00} and 
ср{2{А^,и)) = 2 (Л , / ) . Thus, Я(Л,/) = \Z{AJ)\ = \(p{Z{A^,U))\ = \Z{A^,U)\ = 
= R{A^J^) = R. Further, for each xeW^^ {00} we have S~\AJ) {x) = Л'* = 
- (р{А1) = ф(ф-1(5-Х%))) = S-\x) which implies 5(Л, / ) = S. 

If |5"-i(oo)| Ф 0 then 0 Ф Л°° Ç Л; if [^"^(oo)! = 0 then a is infinite by 3.7 (2) 
which implies |S"XO)| ф 0 by 3.7 (1) which implies 0 Ф Л^ Ç Л. Thus, {A J) is 
non-empty. 
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5. SOLUTION OF THE PROBLEM 

5.1. Main Theorem. Let A be a set, S : A-^ Ord u {00} a map, ReN a finite 
ordinal. Then the following conditions are equivalent: 

(A) There is a unary operation f on A such that {A,f) is a non empty connected 
unary algebra, S{A,f) = S, R(A,f) y R. 

( B ) The following conditions are satisfied: 
(a) J / |S-^(oo) | < Ko then R = \S-\oo)\. 
(b) The sequence (|S ^(x)])^g5(^) is suitable. 

It is a consequence of 3.8 and 4.10. 
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