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1. PROBLEM

1.0. Notation. If 4 is a set we denote by |4| the cardinal number of A; similarly,
if o is an ordinal then its cardinal number is denoted by locl. We denote by Ord the
class of all ordinals. If « € Ord then we put W, = {8 € Ord; B < «}; further, the least
ordinal cofinal with « is denoted by cf . We denote by N the set of all finite ordinals.

We shall need some simple results concerning ordinals (see [3] and [4]).
(i) fo, B,yeOrd, « < Btheny + a <y + B.
(i1) If o, B € Ord, a < B then there is precisely one ¢ € Ord such that « + ¢ = .
Weputé = —a+ f.
(i) If o, e Ord, « < B, then a + (—a + f) = B, —a + (x + f) = B.
Indeed, the first equation follows directly by definition of —a + f. If we put & =

= —a + (¢« + ) then @ + & = « + B by definition. Then ¢ = B follows from the
uniqueness of the solution.

(iv) If o, B,y€Ord, a £ B <y, then —a + f < —a + .

Indeed, —a + = —a + ywouldimply B = o + (—a + f) Z a + (—a + 7). =
= y by (iii) and (j).

(v) If o, BeOrd, « < B < o0 + @y then —a + B < .

Indeed, —a + B = w, would imply f = « + (—a + B) = a + w, by (iii) which

is a contradiction.

(vi) Supposea, B, €0rd,® + I' = Ord, B < yforeachye I, § > a + (=B + 7)
for each y e I'. Let ¢ be the least ordinal greater than all yeI'. Then 6 = « +
+ (=B + ).

Indeed, suppose, on the contrary, § < a + (—B + ¢). Since 6 > a + (=B + 7)
for at least one y e I' we have 6 = « which implies the existence of —o + & and
—a+(x+ (=B +e) by (ii). Then —x+5< —a+ (x+(-f+e)=—-p+e¢
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by (iv) and (iii). It follows B + (—o +0) < B+ (=B + &) = ¢ by (i) and (iii).
Thus, there is at least one y, € I" such that 8 + (—a + 8) £ 7o. It follows —o + 6 =
=B+ B+ (~a2+3) < —B+17, by (iii) and (iv) which implies § = o« +
+ (—a +8) £ a+ (=B + 7o) by (il)) and (iv) which is a contradiction. Thus,
dza+ (=B +e).

Let oo ¢ Ord. If M is an arbitrary set of ordinals then we denote by < the order
relation on M U {oo} such that its restriction < n (M x M) to M is the natural
order relation of ordinals and that & < oo for each a € M.

If ¢ is a map of the set 4 into the set B, ¢ : A > B, and C < 4, D < B then we
put ¢(C) = {@(x); xeC}; further, we define ¢ (D)= {xed; ¢(x)eD}. If
@ :A— Bis amap, C < A, then we denote by ¢ ] C the restriction ¢ N (C x B)
of ¢; it is a map of C into B.

Let A be a set, f a map of 4 into 4, f: A » A. Then the ordered pair (4, f) is
called a unary algebra. For a unary algebra (4, f) we put f© = id,, f**! = ff" for
each neN. Clearly, f**™ = f*f™ for all n, me N. A unary algebra (4, f) is called
connected if, for all x, y € 4, there are m, n € N such that f"(x) = f"(). If (4, f) is
a unary algebra and x € A an arbitrary element then we put [x] 4 ,, = {f"(x); n € N}.

We denote by = the relation of isomorphism of algebras.

1.1. Definition. Let (4, f) be a connected unary algebra, x € 4. We put Z(x) =
= {y € 4; there exists an infinite set N(y) < N such that f"(x) = y for each n e N(y)}.

1.2. Lemma. Let (A,f) be a connected unary algebra. Then the following as-
sertions hold:

(@) If x€ A, y = f(x) then Z(x) = Z(y).

(b) If xe A, neN, y = f"(x) then Z(x) = Z(y).

(c) If x, y € A then Z(x) = Z(y).

Proof of (a). Suppose x € 4, y = f(x), z € A. Then z € Z(x) iff there is an infinite
set M = N such that f"(x) = z for each n e M; we can suppose, without loss of
generality, that 0 ¢ M. The last condition is equivalent to the condition f*~*(y) =
= f""Y(f(x)) = f*(x) = z for each n € M which is z € Z(y). Thus, Z(x) = Z(y).

Proof of (b). The assertion (b) follows from (a) by induction.

Proof of (c). If x, y € A then there exist m, ne N such that f™(x) = f(y). It
follows from (b) that Z(x) = Z(f"(x)) = Z(f"(y)) = Z(y)-

1.3. Definition. Let (4, f) be a connected unary algebra. We put Z(4, f) = Z(x)
where x € 4 is an arbitrary element, R(A, f) = |Z(A, f)|- Then Z(4, f) is called the
cycle and R(A4, f) the rang of (4, f).
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1.4. Lemma. Let (4, f) be a connected unary algebra. Then (Z(4, f), f | Z(4, f))
is a subalgebra of the algebra (4, f).

Proof. If x € Z(4, f) then there exists an infinite set N(x) < N such that x =
= f"(x) for each n e N(x). It follows f(x) = f**!(x) for all n e N(x) which implies
f(x) e Z(f(x)) = Z(4, f).

1.5. Lemma. Let (A, f) be a connected unary algebra and suppose x,y € A.
Then

(@) If ny,nyeN, ny < n, are such that y = f"(x) = f"(x) then y =
= frtm2=m)(x) for each m e N.
(b) x € Z(A, f) iff there is n e N — {0} such that f"(x) = x.

Proof of (a). We put n, — n; = d; thus, f"*%(x) = f"(x) = y. Let me N and
Supposefn1+md(x) — y Then fn1+(m+1)d(x) =fd+n1+md(x) =fd(fn1+md(x)) — fd(y) —
=f1ME) = m1x) = .

Proof of (b). Suppose, for x € A, the existence of n e N — {0} such that f"(x) = x;
then, by (a), we have x = f™(x) for each m e N. Thus, we have x = f?(x) for all
p € {mn; m e N} the latter set being infinite. Thus, x € Z(x) = Z(4, f).

The necessity of the condition for x € Z(A, f) follows directly from 1.3 and 1.1.

1.6. Lemma. Let (A,f) be a connected unary algebra. Then the following
assertions hold:

(a) If x € Z(A, f) then |Z(A, f)| = min {ne N — {0}; f"(x) = x}.

(b) R(4, f) < No.

Proof of (a). We put d = min {ne N — {0}; f"(x) = x}. Since x € Z(4, f) we
have {x, f(x), ..., f4"*(x)} < Z(4, f), by 1.4. Let us have y € Z(4, f). Then y € Z(x);
thus, there exists m € N such that f™(x) = y. Let p, g € N be such numbers that m =
= pd + g, 0 < g < d. Thus, by definition of d and by 1.5 (a), we have f?(x) = x
and y = f"(x) = fA(f*(x)) = f%(x). Thus, y e {x, f(x),...,f*"'(x)} and we have
{x, f(x), ... f*7U(x)} = Z(A, ). Therefore, |Z(4, f)| = d.

Proof of (b). If Z(4, f) = 0 then R(4, f) = 0 < N,. If Z(4, f) + 0 then there is
x€Z(A,f) and {neN — {0} f'(x)=x}+0 by 15 (b) It follows R(4,f) =
=min {ne N — {0}; f"(x) = x} < N, by (a).

1.7. Definition. Let (4, f) be a connected unary algebra. We put 4° = {x € 4;
there is a sequence (x;),cy such that x, = x and f(x;4,) = x; for each ie N}, 4° =

={xed; f(x) =0}
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Let 2 € Ord, o > 0 and suppose that the sets A* have been defined for all x € W,.
Then we put A* = {xe 4 — U 4% f~'(x) = U 47}.
*xeW o xeWq
1.8. Lemma. Let (A, f) be a connected unary algebra, «, f €Ord, « < B. Then
A*n AP = 0.

Proof. Clearly, 4 = A — \J A* which implies 4’ N A* < Af A Y 4* = 0.
xeWg xeWg
1.9. Lemma. Let (A.f) be a connected unary algebra. Then there is 3 € Ord
such that A* = 0.

Proof. Let veOrd be such an ordinal number that |A[ < N,. Suppose A* + 0
for each AeW,,,. Then N, ., < Y |4} =] U A} =|4/ =X, by 18

which is a contradiction. L eWe, 0y
Thus, there is 3 € Ord, 3 e W, . such that 4° = 0.

Dv+1

1.10. Lemma. Let (A4, f) be a connected unary algebra. If 3 € Ord, A* = Q then
A* = 0 for each 1 € Ord with the property 1 = 9.

Proof. We denote by V(1) the following assertion: A* = 0.
Then ¥(9) holds.

Let us have f € Ord, 3 < B, suppose that V(2) holds for each 4 such that § < 1 <
<pB. Then U A*= U 4* which implies A* ={xed — U 4% f(x) <
leW g AeWg AeW g
c YA} ={xed- U4, (x)cs U4} =4"=0.

2eWg leWg AW 3
The assertion follows by transfinite induction.

1.11. Definition. Let (4, f ) be a connected unary algebra. Then we denote by
9(4, ) the least ordinal 9 such that 4° = 0.

1.12. Lemma. Let (4, f) be a connected unary algebra. Then A = A— ) A~

#eWa(a,s)

Proof. (1) If xeA — U A” then there is an element x’ € f ~!(x) such that

#eWa(a 5

x'eA— U A" Indeed, if we had x'€ U A” for each x' € f ~*(x) then we

*€Ws(4,r) xeWs(a,)

should have f™'(x) = U A* We denote by § the least ordinal such that

xeWg(a,1)

f7(x) € U A Then § < §(4, f) and x € A* by 1.7 which is a contradiction either

xeWg
with A%/ = ¢ (in the case § = 9(4, f)) or with xe 4 — | A (in the case
9 < 9(4, f)). *Waca.n

222



We put xo, = x and X,+1 = x, for n € N. Then f(x,1) = x,forne N and x € A®.
Thus 4 — U A4* c A%,

xeWs(a,1)

(2) Let us have xe A” n( U  A4¥). Then there is a sequence (x;),.y such that
xeWg(a,f)

xo = x and f(x;4,) = x; for each i € N. By 1.8, there exists precisely one », € W 4.,
such that x, € A™.

Suppose that we have constructed ordinals », > %, > ... > x, such that x; e A
for i=0,1,...,n where neN. Then x,,,ef !(x,) € U 4* which implies the

”EWx,.

existence of %,,, < x, such that x,,,; € A**'. Thus, (%;).y is an infinite decreasing
sequence of ordinals which is a contradiction.

It follows that A < A — (J A~
xeWga(a,f)
1.13.. Theorem. Let (4, f) be a connected unary algebra. Then A = U A*
with disjoint summands. xeWoa, il

It is a cosequence of 1.12 and 1.8.

1.14. Lemma. Let (A, f) be a connected unary algebra. Then (A®,f|A™) is
a subalgebra of (A, f).

Proof. Let us have x € A®. It follows the existence of a sequence (x,),.y such that
x, € A4, xo = x and f(x,,) = x, for each ne N. We put f(X) = y = yo, ¥ = Xu—y
foreachn e N — {0}. Then f(y,,,) = y, for each n € N which implies f(x) = y € A~.

1.15. Lemma. Let (A, f) be a connected unary algebra. Then Z(4,f) < A”.

Proof. Z(4, f) € A® holds if Z(4, f) = 0. Thus, we can suppose Z(4, f) # 0.
Let us have x € Z(4, f). Then Z(4, f) = Z(x) by 1.3. By 1.1, there exists an infinite
set N(x) = N such that f"(x) = x for each n € N(x). We denote by d the least positive
element of N(x). Then f%(x) = x and f™(x) = x for each m e N by 1.5 (a). We put,
foreachn eN, x, = f"*"B(x). Then f(x, ) = f(fO* DCI-1(x)) = fr2a-D+2d(y) =
= frCD(f2(x)) = fr?"V(x) = x,, for each neN and x, = f%(x) = x. Thus,
xeA”.

1.16. Lemma. Let (A,f) be a connected unary algebra, suppose A, p € Wy 4,1y
A < w. Then, for each x € A*, there is an x' € A* and an ne N — {0} such that

/(x) = x.

Proof. Let us have x € 4*. Then there is v; eOrd, A < v, < pu and x,; € A™ such
that f(x;) = x. Indeed, if no such v, and x, exist then f~'(x) = U 4" Since

xeW 5

xed— | 4 < A4 — U 4” we have x € A%, by 1.7, which contradicts 1.8.

xeW,, neW 5
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If A < v, we construct similarly v, €Ord, 1 < v, < v; and x, € 4™ such that
f(x,) = x,. As each decreasing sequence of ordinals is finite we construct, after a finite
number of such steps, some ordinals A = v, < v,_; ... < v{ < u and some elements
x;e A" fori = 1,2,..., nsuchthat f(x;4,) = x;fori = 1,2,...,n — 1and f(x;) =
= x. It follows f"(x,) = x, x,€ A*, n + 0 because n = 0 would imply x = x, €
€ A* n A* which contradicts 1.8.

1.17. Lemma. Let (A,f) be a connected unary algebra, A® * Q. Then the
following assertions hold:

(a) For each xe \) A” there exists n(x) € N such that f"™(x) e A.

xeWgca,f)
(b) If A~ A® + 0 and xe A — A® then there is precisely one ioe N — {0}
such that f°~'(x) e A — A, f(x) e A®.

(c) If A — A =+ O then there is at least one x € A — A” such that f(x) e A®.

Proof of (a). We take y € A®. Then there are m, n € N such that f™(x) = f"(»).
By 1.14, we have f"(y) € A® and we obtain the first assertion.

Proof of (b). By 1.12 and (a), for each x € A — A®, there exists n(x) € N such that
f"(x) € A®. It follows by 1.13 that n(x) > 0. Thus, in the set of natural numbers i,
0 < i < n(x), there is the least element i, such that f*(x) € A®. Clearly, i, > 0 and
fel(x)ed — 4~

If i > i then i — 1 = iy and fi7(x) = fi717(f(x)) e A° as f(x) e A® and
(A%, f | A™) is a subalgebra of (4, f) by 1.14. Thus, f"!(x) ¢ A — A™.

If i < i, then fi(x) ¢ A on the basis of the minimality of i,.

Thus, i, is the only element i e N — {0} such that fi"!(x) e 4 — 4%, fi(x) e A.

Proof of (c). We take an arbitrary ze A — A®. By (b), there is precisely one i €
€N — {0} such that f°"'(z)e A — A®, f°(z) e A®. We put x = f°(z). Then
xeA — A, f(x) = f(z) e A™.

1.18. Definition. Let (4, f) be a connected unary algebra. We define a map S(4, f) :
A - Ord U {0} by the condition S(4,f)(x) = % for each x € A%, x € Wyy,5) Y
U {0}. S(4, f) (x) is called the degree of x.

1.19. Lemma. Let (A, f) be a connected unary algebra. Then the following
assertions hold:

(@) If xe A is such element that S(A, f)(x) + o then S(A4,f) (f"(x)) Z
2 S(4, f) (x) + n for each neN.

(b) If x € 4, % € Wy, ,, are arbitrary elements then |[4% A [x]apy| S 1.

224



Proof of (a). If n = 0 then S(4, f) (f°(x)) = S(4, f) (x). Let n e N and suppose
S(4,£) (f"(x)) 2 S(4,f) (x) + n. We put a = S(4,f) (f""*(x)). If @ = oo then

o> S(4,f) + n+ 1.Ifa < oo then f**1(x) e 4*and f"(x) e fT(f"*}(x)) = U 4"
BeWo

Thus, S(4, f) (f'(x)) < « and a = S(4, f) (f(x)) + 1 = S(4,f) (x) + n + 1. We
have proved the assertion (a).

Proof of (b). Suppose, on the contrary, |[4* [x]apl = 2; let y,zed*
O[], ¥ * z. Then there is n € N — {0} such that either f"(y) = z or f*(z) = y.
In the first case, we have x = S(4, f) (z) = S(4,1) (f"(»)) = S(4,f) (y) + n >
> S(4, f) (¥) = %, by (a), which is a contradiction. Similarly, the second case leads
to a contradiction. We have proved the assertion (b).

1.20. Lemma. Let (A, f), (A4, fx) be unary connected algebras, ¢ : A — Ay an
isomorphism of (A,f) onto (As, fx). Then (4, f) = HAs fs), @(4%) = A% for
each x € Wyu 5 U {00} and o(Z(A, f)) = Z(Ax fx)-

Proof. For each o € Ord we denote by V(«) the following assertion: ¢(4%) = 4.

The following conditions are equivalent:
(i) xed®

(i) f(y) = xforno ye 4

(i) f«(z) = @(x) for no z € 4,

(iv) o(x) e A3.

Indeed, (i) and (ii) are equivalent by 1.7 and (iii) and (iv), too. If f(¥) = x for no
yeA and there is z € A, such that fi(z) = @(x) then f(¢ *(z)) = ¢ ' (fu(2)) =
= ¢ (¢(x)) = x because ¢! is an isomorphism; we have a contradiction. Thus,
(ii) implies (iii) and, similarly, (iii) implies (ii).

It follows that V(0) holds.

Let f > 0 be an ordinal, suppose that V() holds for each y < B. It follows
o(U 4) = U 45

xecWg xeWpg

The following conditions are equivalent:

(i) xe 4°
(i) xed — U 4", fi(x) = U 4

xeWg xeWg

(i) @(x) e 4s — U 4% f:'(o(x) = U 4%

xeWpg xeWpg
(iv) o(x) € 44
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Indeed, (i) and (ii) are equivalent by 1.7 and (iii) and (iv), too. f xe A — U 4*

»eWpg
then ¢(x) e p(4 — U A”) = ¢(4) — ¢( U 4”) = 4, — U A% by induction hypo-
xeWg xeWpg xeWg
thesis because ¢ is a bijection. If f~'(x) = (U A* then each y with the property
xeWg

f(y) =xisin | A% Let us have an arbitrary z € fy '(¢(x)). Then fi(z) = ¢(x)

xeW
and f(p~(2)) = qf‘l(f*(z)) = ¢ '(p(x)) = x because ¢! is an isomorphism. It
follows ¢ *(z) e U A* which implies ze o( U 4%) = U 4%. Thus, fx '(e(x)) =
c U A:; xeWg xeWpg xeWg

xeWpg

We have proved that (ii) implies (iii). Similarly, (iii) implies (ii).

Thus, the validity of V() for all y < § implies that of V().

We have ¢(A%) = A} for each o € Ord. Especially, 4* = @ iff A3 = 0. It follows
‘9(A’ f) = S(A*’ f*)

If x € A then there is a sequence (x;);ey such that xo = x and f(x;+,) = x; for
each i eN. It follows ¢(xo) = @(x) and fu(@(x;+1)) = o(f(x;+1)) = @(x;) for each
i € N. Thus, ¢(x) € Ay. Similarly, x € 4, ¢(x) € Af imply x € A°. We have ¢(4*) =
- AT,

We have proved ¢(4*) = A% for each % € Wy, ) U {o0}.

If x € Z(A, f) then there is n e N — {0} such that f"(x) = x by 1.5 (b). It follows
filo(x)) = o(f*(x)) = ¢(x). Thus, ¢(x)e Z(Ay, fx) by 1.5 (b). Similarly, x € 4,
@(x) € Z(Ay, f) imply x € Z(4, f).

We have proved o(Z(4, f)) = Z(A4 f)-

1.21. Remark. Let (4, f) be a connected unary algebra. Then the ordinal $(4, f)
and the cardinals |4%|, x € Wy, U {0} and R(4, f) are preserved under isomor-
phisms, i.e. they are invariant, by 1.20:

If (4, f), (B, g) are connected unary algebras then the numbers R(A4, f), R(B, g)
and functions S(4, f), S(B, g) enable to construct all homomorphisms of (4, f)
into (B, g). Thus, a very natural problem arises:

1.22. Problem. Let A be a set, Re N, S: A — Ord U {0} a map. Find necessary
and sufficient conditions for the existence of a complete unary operation f on A
such that (A, f) is connected and R(4, f) = R, S(4,f) = S.

2. AUXILIARY CONSTRUCTION

2.1. Definition. Let (A, f) be a connected unary algebra with the property 4% + 0.
Then (4, f) is called an co-algebra.

2.2. Definition. Let (4, f) be an co-algebra. Then we put E(4, f) = f~1(4”) — A”.
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2.3. Lemma. Let (4, f) be an co-algebra. Then the following assertions hold:

(a) E(A,f) £ 0iff A — A° + 0.
(b) If x€ A — A™ then there is precisely one n, € N such that f*(x) € E(A, f).
(¢) If (A, f) > Ois an isolated ordinal then § = A**)~1 < E(4, f).

Proof of (a). The necessity of the condition is clear.

Let us have A — A% = 0. Then, by 1.17 (c), there is x € 4 — A® such that f(x) e
€ A®. Thus, x € E(4, f).

Proof of (b). The existence of precisely one n, € N with the property f™(x)e
€ E(A, f) is equivalent to the existence of precisely one n, € N with the properties
f™(x) ¢ A”, f**(x) e A~ which is equivalent to the existence of precisely one i, €
e N — {0} such that f°7!(x) ¢ 4®, f°(x) e A®. The last assertion holds according
to 1.17 (b).

Proof of (c). 4*“~1 & ¢ follows from the definition of 9(4, f). If x € A4 ~1
then S(4, f) (f(x)) > S(4,1) (x) = %4, f) — 1 by 1.19 (a). It follows S(4, 1) (f(x)) =
= oo which implies f(x)e A®. It follows xef~'(A”) and we have AN -T =
< fY(A4%). Further, A*“P~1~ 4° =0 by 1.13. It follows A*4H~t
S fHA%) — A° = E(4, f).

n 1

2.4. Definition. Let (4, f) be a non empty connected unary algebra. Then it is
called a cone if f(4%) = A*** for each % € W4 1) such that x + 1 + 9(4, f).

2.5. Examples. 1. A connected unary algebra (4,f) such that A® = A + 0
is a cone.

2. The unary algebra (N, f) where f(n) = n + 1 for each n e N is a cone.

3. If (m,),ey is @ non-increasing sequence of cardinals such that m, # 0 for each
n e N and that there is n, € N with the property m,, = 1 then there is a cone (B, g)
such that |B"| = m, for each n e N.

Indeed, we take mutually disjoint sets B, such that |B,| = m, for each ne N. We
put B = U B,. For an arbitrary n € N, we take an arbitrary surjection g, : B, —

neN
— B, ,; such a surjection exists because the sequence (m,,),,EN is non-increasing. We

define the map g : B — B in such a way that g | B, = g,- Then (B, g) is a unary
algebra. Clearly, IB,,[ = 1 for each n = n,. If x, y € B then there are m, n € N such
that x € B,,,, y € B,. There is pe N, p = max {m, n, no}. Then g*""(x) € B,, g* "(y) €
€ B,. Since |B,| = 1 it follows g?~"(x) = g?~"(y). Thus, (B, g) is connected. Clearly,
B" = B, for each neN and g(B") = ¢(B,) = ¢,(B,) = Bu+1 = B"*! which implies
that (B, g) is a cone such that [B"| = m, for each n € N.
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2.6. Lemma. Let (4, f) be a cone. Then (4, f) < w,

Proof. (1) Let x€ A, ne N be such element that S(4, f) (X) + n € Wyea.p) We
put S(4,f) (x) = »; then x e 4*. By 2.4, we have f"(x) € A**» which implies
S(A4, f) (f"(x)) = % + n = S(4, f) (x) + n.

(2) Let x € Ord, x 2 w,; we prove that 4% = 0. Indeed, suppose, on the contrary,
ye A*. Let us have AeOrd, 1 < w,. Then A < x and, by 1.16, there exist
ze A* and ne N — {0} such that f"(z) = y. By (1), we obtain x = S(4, f) (y) =
= S(4,f)(f"(z)) = S(4,f) (z) + n = 2 + n < w, which is a contradiction.

Thus, (4, f) = min {x € Ord; A* = 0} < w,.

2.7. Definition. Let {(4,, f,); i eI} be a non empty system of mutually disjoint
oo-algebras. Let (B g) be a cone which is disjoint with all co-algebras (AL, fi)iel
Let ¢ : U E(A;, f;) — B be an arbitrary map. (IfU E(A; f}) = 0 then ¢ = 0.)

iel

Then U(A,, 1) @ (B, g) denotes a unary algebra (C, h) such that C = Bu
vy - A°°) and that, for each x e C,

iel
fi(x) it x E(Ai - A:o) - E(Ai,fi) for some iel
h(x) = {o(x) if xeUE4,f)
iel
g(x) if xeB.

2.8. Remark. Let (C, h) = U (4 1) @ (B, g) be a unary algebra defined in 2.7.
If xe A; — A7 for some iel then h~ 1(x) fi'(x)-

2.9. Lemma. Let (C, h) = U (4, f;) ® (B, g) be a unary algebra defined in 2.7.
iel @

Then (C, h) is a connected unary algebra.

Proof. (1) Let x € C be arbitrary. Then there is m € N such that h™(x) € B. Indeed,
if x € B then we have nothing to prove.

If xe A; — A7 for some i€l then, by 2.3 (b), there is precisely one m € N such
that f7'(x) € E(4,, f;). It follows, for ne N, n < m, that f(x) ¢ A7, since fi(x) e A?
would imply f7'(x) = fi"""(fi(x)) € AY by 1.14 which is a contradiction as A® N
N E(A4;, f;) = 0. Thus, 0 < n < m implies fi(x) € A; — AT — E(4,, f;). It follows
h"(x) = fi(x) for each n, 0 < n < m and especially h" '(x) = fr !(x)e 4; —
— AP — E(A,, f;) which implies h™(x) = f'(x) € E(4;, f;) and h™*(x) = h(h™(x)) =
= h(f7'(x)) = o(f7'(x)) € B.

(2) Let us have x, y € C. Then there are n, m € N such that h"(x) e B, h"(y) e B
by (1). Since (B, g) is connected there are p, g € N such that g?(h"(x)) = g%(h"(y))
which implies h**"(x) = g?(h"(x)) = g*(h™(y)) = h**™(y). Thus, (C, h) in connected.
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2.10. Lemma. Let (C,h) = U (4, f;) ® (B,g) be a unary algebra defined in
iel @

2.7. Then the following assertions hold:
(a) If iel and » € Ord then A7 = C* n A,
(b) C* = B™.
() Z(C, h) = Z(B, g)-
(d) Putting I(x) = {iel; » < (A, f))} for each x € Wy, we have C* <
c(B-B*)u U (4; — 4A7).
iel(x)

(¢) We put §; = sup (A, ). If 9; < 2 < ¥(C, h) then C* = B — B™.
iel

(F) If iel then (A, f) is the least ordinal greater than S(C, h)(x) for all
x € E(4;, ).

(8) If xe C — C™ and there exists i€l such that § + h™'(x) = E(A;, f,) then
S(C, h) (x) = (45 f).

(h) Ifiel,x€Ord and C* = A; — A? then C* = A}.

Proof of (a). Let i € I be an arbitrary element. If A, — A7 = 0 then Wy, ;) = 0.
It follows A =Qand C* N A, = Cn 4; < A, — A? = 0.

Thus, we can suppose 4; — A + 0. We have AY = C° n A4, because x e A?
iff x € 4; and f; '(x) = 0; by 2.8, it is equivalent to x € 4; and h~*(x) = 0 which
means x € C° N 4.

Let us have A€Ord, A > 0 and suppose 4 = C* n A, for each x € W,. Then

() Udr=U(C"na)=4,n(U C)
xeW 5 xeW ;, xeW 4
and
() A-UA=(4n0)—-(4n(UC)=4n(C-UC).
xeW 3 xeW ;, xeW 5

It follows that, for x € C, the following assertions are mutually equivalent:

(i) x e 4}
(i) xed; — U 4}, fi'(x) = U 47
xeW ), xeW ,,
(i) xed; — U 4}, h"'(x) = U 47
xeW s xeW 5
(iv) xed, xeC— U C, ki (x) s 4;n (U CY)
xeW xeW A
(V) xed, xeC— U C, h™'(x) s U C*
xeW ,, xeW ,,

(vi) xe 4; n C~
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Indeed, (i) and (ii) are equivalent by 1.7, (v) and (vi), too. Clearly, x € C, x € A}
implies x € 4; — A7 which implies h~*(x) = f; '(x) by 2.8. Thus, (i) and (iii) are
equivalent. Since h™!(x) = f; '(x) = A, (iv) and (v) are equivalent. The equivalence
of (iii) and (iv) follows by (*) and (%x).

We have proved A} = C* n A;. The assertion (a) follows by transfinite induction.

Proof of (b). Let us have x € C*. Then there is a sequence (x;)eev such that x, = x
and h(x,,,) = x, for each k e N. If x, € B for all k € N then g(xx+1) = h(x;+,) = X,
for all k e N which implies x € B®. If there is k € N such that x, ¢ B then x, € A; —
— AP for some iel. Clearly, for each I = k, we have x, € 4;. Thus, for all [eN,
I = k, we obtain fi(x,4 ) = h(x,4) = x,. It follows x, € A7 which is a contradiction.
Thus, x e B* and C*® < B®.

If x € B® then there is a sequence (X )iy, X, € B for each k € N such that x, = x
and g(x.4,) = x, for each keN. It follows h(x.,) = x, for each keN. Thus
xeC®.

We have proved C® = B™.

Proof of (c). Let us have x € Z(C, h). Then there is n e N — {0} such that h"(x) =
= x, by 1.5 (b). Then Z(C, h) = C* = B® < B by (b) and 1.15 which implies x € B
and [x] S B. Thus, h"(x) = g"(x) which implies x € Z(B, g), by 1.5 (b).

Suppose x € Z(B, g). Then there is n € N — {0} such that g"(x) = x, by 1.5 (b).
We have h"(x) = g"(x) = x which implies x € Z(C, h).

Thus, Z(C, h) = Z(B, g).

Proof of (d). Let us have iel — I(x). By (a), it follows C* N A; = A7 =0
because x = ¥(4,, f;). By (b), we have C* = C — C* = (B — B®)u U (4; — A7)
which implies (d). iel(x)

Proof of (¢). We have C* = (B — B®)U U (4; — A7) by (d) where I(2) =

ieI(4)
={iel; 2 < (A4, f)}. Since (4, f;) < 9; < 2 for each iel we have I(1) = 0
and C* = B — B*.

Proof of (f). Since E(4,f) < U A4}, then, for each x € E(4,, f;), there is
o 2eWadi o

4 € Wya, 5o such that x € 47 = C* by (a). It follows S(C, k) (x) = 4 < (4, f)-
Suppose the existence of f € Ord, B < (4, f;) such that S(C, h) (x) < B for each
x € E(A;, f;). Then there is y € A? = A; n C? by (a). Then y € 4; — A?. By 2.3 (b),
there is precisely one n e N such that f7(y) € E(4;, f;). Clearly, fi(y) e A, — A7 for
j=0,1,..,n Tt follows h"(y) = fi(y) and B= S(C,h)(y) < S(C,h)(y) + n <
< S(C, h) (h"(y)) = S(C, h) (f(y)) < B by 1.19 (a), which is a contradiction.
Thus, 9(A4,, f;) is the least ordinal greater than S(C, h) (x) for all x € E(4,, f;).
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Proofof (g). Let y e E(4;, f;) be arbitrary. Then x = h(y) which implies S(C, h)(x) =
= S(C, h) (h(y)) > S(C, h) (y) by 1.19 (a). It follows S(C, h)(x) = 9(4,, f;) by (f).

Suppose S(C, h) (x) > (A, f;)- Then there are ze C, ne N — {0} such that
S(C. h)(z) = (4, f;) and h"(z) = x, by 1.16. We put t = h""'(z). Then h(f) =
= h"(z) = x which implies te E(4; f;). It follows (4, f;) = S(C, h)(z) <
< S(C, h)(z) + n — 1 £ S(C, h) (k" '(2)) = S(C, h) (t) < 9(A4, f;) by 1.19 (a) and
(f) which is a contradiction.

Thus, S(C, h) (x) = (A4, f3)-

Proof of (h). We have C*= C*n(4; — A7) = C*n 4; = A} = C* by (a).
1t follows C* = A].

2.11. Definition. Let ) + M < Ord, o € Ord. Then we put M < « if B < o for
each fe M.

2.12. Lemma. Let (C, h) = U (A4, f;) ® (B, g) be a unary algebra defined in 2.7.
iel @

We put 8; = sup (A, f,), then C** = B — B® and we put
iel

% — Jmin {neWymy: B'AC* £0} if C %0
(B, g) if C*=0.

If me Wy, m = n* then S(C, h)(B™) < 9; + (m — n*).

Proof. C¥ < B — B® by 2.10 (e).

Let us have m € Wy, m = n*. Then n* < m < §(B, g). We denote by V(m)
the following assertion: S(C, k) (B"™) £ 9; + (m — n*).

Then V(n*) holds: Suppose, on the contrary, the existence of y, € B" such that
S(C, h) (yo) > 9 By 2.10 (b) S(C, h) (o) * o0. By 1.16, there is z e C** and no €
eN — {0} such that h"(z) = g"(z) = y, which implies n* < S(B, g)(z) <
< S(B, g) (z) + no < S(B, g) (9™(z)) = S(B, g) (yo) = n* by 1.19 (a) which is
a contradiction. Thus, S(C, h) (B") < 9,.

Let us have k € Wy ), k = n*. Suppose that V'(k) holds and that k + 1 € Wys,q)-

Let us have y € B**!, Then h~*(y) < B* U U E(4,, f;) because (B, g) is a cone.
iel

By 2.10 (f), we have S(C,h)(E(4;f)) < HAnf) <9 =9+ (k — n*) for
each iel. The validity of V(k) means S(C, h)(B*) < 9, + (k — n*). It follows
S(C, h) (h™'()) £ 9; + (k — n*). According to the definition of S(C, i) we obtain
S(C, h) (y) < 9; + (k + 1 — n*) which is V(k + 1).

It follows by induction that ¥(m) holds for each m € Wy, with the property
m = n*,
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2.13. Theorem. Let (C,h) = U (4, 1) ® (B, g) be a unary algebra defined
iel @
in 2.7, let §; and n* be defined by 2.12. Then
(C,h) = 9; + (—n* + 9(B, g)) .

Proof. (1) Suppose n* = (B, g).

If iel, x € Wy, s, then 0 + A% = C* A A4; by 2.10 (a) which implies C* =+ 0.
It follows 9(C, h) > x for each % € Wy(4, . It follows 9(C, h) Z %4, f;) which
implies 9(C, h) = 9,.

Suppose 9(C, k) > 9;. By 1.10, there is x € C such that S(C h) (x) = 9; which
implies C** # 0. It is a contradiction with the fact n* = S(B, g)~

Thus, (C, h) = 9;.

(2) Suppose n* < 9(B.g).

Then C* + 0 and there exists at least one x € B" such that S(C, ) (x) = 9,.
Let us have ne Wyg,, n = n*. By 1.19 (a), we have S(C, h) (B "(x)) = 9 +
+ (n — n*). Since (B, g) is a cone and x € B" = B we have i""'(x) = " "(x) €
€g" "(B™) = B". Thus, by 2.12 we have S(C, h)(B") < 9 + (n — n*) which
implies S(C, h) (h"™"(x)) < 8; + (n — n*). 1t follows S(C,h)(h"""(x)) = 9; +
+ (n — n*).

Thus, for each ne Wyg,, n=n* we have 9(C,h) > S(C, h)(h"™"(x)) =
= 9; + (n — n*) = 9; + (—n* + n) whichimplies 9(C, h) = 9; + (—n* + ¥(B, g))
by 1.0 (vi).

Suppose (C, h) > 9; + (—n* + (B, g)). We put % = 9; + (—n* + 9(B, g)).

By 1.10, there exists y € C*. Since x > 9y, there is z e C¥ and!n eN — {0} such
that I'(z) = y, by 1.16. It follows C* = B — B®, C% = B — B by 2.10 (¢). It
follows the existence of m € Wy 4 such that y € B". Since z € B we have g"(z) = y
which implies S(B, g) (v) = S(B, 9) (9"(z)) Z S(B, g) (z) + n by 1.19 (a). Clearly,
z € C* implies n* < S(B, g) (z) < S(B, g) (v) = m. By 2.12, we have 9, + (—n* +
+ 9B, g)) =% = S(C,h) (y) £ 9 + (m — n*) = 9 + (=n* + m). It follows
—n* + 9B, g)= —% + O + (—=n* + 9B, 9)) £ % + (% + (—n* + m)) =
= —n* + m by 1.0 (i) and (iv) which implies 9(B, g) = n* + (—n* + 3(B, g)) <
< n* + (—n* + m) = m by 1.0 (iii) and (i). Thus, (B, g) < m which is a contra-
diction.

It follows 9(C, k) = 9; + (—n* + (B, 9)).

3. NECESSARY CONDITIONS

3.1. Lemma. Let (4, f) be a connected unary algebra. If |4%| < 8, then
Z(A,f) = A and R(A, f) = |A®].

Proof. By 1.15 we have Z(A,f) < A%,
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Let us suppose [A*| < ¥,. We prove A® = Z(4, f). It holds if A* = 0. Thus,
we can suppose A” # . Let us have x € A°. Then there is a sequence (x;);v sSuch
that f(xiH) = x; for each i e N and x, = x. Clearly, x; € A for each i ¢ N. From
the finiteness of A®, it follows the existence of i, j € N, i < j, such that x; = x;. We
prove by an easy induction that f"(x,) = x for each n e N. It follows fi(x;) = x =
= fi(x;) = fi(x;). We put d = j — i > 0. By 1.5 (b), we have x € Z(4, f) because
7409 = 745 = ) = .

We have proved Z(4, f) = A® which implies R(4, f) = |4*|.

3.2. Lemma. Let (A,f) be a connected unary algebra, suppose A, p€ Wy sy
A < p. Then the following assertions hold:

(@) If x, ye A", x’ e A*, m,neN — {0}, f"(x') = x, f(x) = y then x = y.

(b) If ¢ : A* — A is a map such that, for each x € A*, there exists n(x) e N — {0}
with the property f"(¢(x)) = x then ¢ is injective.

Proof of (a). Let us have x, y € 4%, x' € A, m,ne N — {0}, f"(x') = x, f"(x') =
= y. Suppose m = n. Then x = f™(x') = f™ "(f"(x')) = f™ "(y). Thus, " "(y) =
= x € 4", f°(y) = y € A" which implies x = y by 1.19 (b).

Proof of (b). Suppose that ¢ : A* — A* is such a map that, for each x € 4%,
there exists n(x) € N — {0} with the property f"®(p(x)) = x. Let s, t € A* be such
elements that ¢(s) = @(f). Then there exist n(s), n(f)e N — {0} such that s =
= f"(p(s)), t = f"(¢(t)) = f"(¢(s)). Then, by (a), we have s = ¢ and (b) holds.

3.3. Lemma. Let (A4, f) be a connected unary algebra, suppose A, p € Wy4 1y & <
< p. Then |4*| £ |4%]-

Proof. By 1.16, there exists a map ¢ : A* — A% such that, for each x e 4%, there is
n(x) e N — {0} such that f"®(p(x)) = x. By 3.2 (b), this map is injective. Thus
] < |4t

3.4. Lemma. Let (4, f) be a connected unary algebra and o a limit ordinal with
the property o < (A, f). If (A,f) is no oo-algebra suppose o« < H(A, f). Then
|4 = |cf «| for each x € W,.

Proof. If « = 0 then we have nothing to prove as W, = 0.

Suppose a > 0.

(1) Suppose first o + (4, f). Then x € A* implies f~'(x) = U 4%, xe 4 —
_ U Ax. xeWqo

xeWq
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Let % € W, be an arbitrary ordinal. Then there is an ordinal 1 € W,, A > x and an
element y € A* such that f(y) = x. Indeed, if such 4, y do not exist then there is an
ordinal pe W, such that f~'(x) =€ U 4" Further, xed — Y A< 4 - U 4

veW, veW o veW
which implies x € 4* in contradiction to 1.8.

(2) Let (#).ew_,, be an arbitrary increasing sequence of ordinals such that
sup %, = a. By (1), there is an ordinal u, € W,, g > %, and an element x,, € A"

veWera

such that f(x,,) = x.

Let ¢ € W, be an arbitrary ordinal and suppose that we have constructed, for each
ordinal v < @, an ordinal g, such that %, < u, < « and an element x,, € 4** in such

a way that (uv)vag is an increasing sequence. Then sup u, < o because ¢ < cfa
veW,

and cf o is the least ordinal cofinal with «. Thus, we can take an ordinal U, €W,

such that pt, > %,, u, > sup g, and an element x,, € 4" such that f(x,,) = x, by (1).
veW,

By transfinite induction, we obtain an increasing sequence of ordinals ()
and a sequence of elements (X, ),ew.,, such that f(x,,) = x for each v € W,g,.
we have o = sup %, < sup p, < «; thus, sup u, = a.

veWera veWcta veW cte

veWera

Further,

(3) Let x € W, be arbitrary. By 1.16, for each v € W, such that p, > 3 there exists
y,€A* and n,eN — {0} such that f™(y,) = x,. We put X = {x,; ve Wy,
% < w,}. Clearly, v, v' € Wges v £ V', % < p,, o, imply g, % p,. because (1) cmeocn
is an increasing sequence. It implies x,, + x, . by 1.8. Suppose y, = y,., n, < n,-.
We put d = n, —n, and we have x,.=f"(y,) =" = r("0) =
= f%(x,,). Then, for d = 0, we have x, . = x, which is a contradiction. Thus, d > 0
and x,.. = fUx,) = [ (f(x,) = f*7'(x) which implies x = f(x,,) =
= f(f17(x)) = fx). It follows from d > 0 that x € Z(4, f) by 1.5 (b); thus x € A”
by 1.3 and 1.15 which contradicts 1.13. Thus, y, # y,.

We have proved that there exists an injection of X into 4* Clearly, |X| = [cfoz].
Thus |4 = [cf «|.

(4) Suppose now o = (4, f). By our hypothesis, (4, f) is an oo-algebra. Let
(B, g) be a cone such that B = B® U B® where |B°| = 1, |B”| = 1. Let ¢ : E(4, f) —
— B° is the only map of E(4, f) onto B®. WeputI = {1}, 4, = A,f, = £,(C, h) =
= iEUI(Ai’fi) C‘% (B, 9)-

By 2.9, (C, h) is a connected unary algebra. We define 9;, n* by 2.12. ClearlZ,
9; = 9(A, f). If x e B® then S(C, h) (x) = (4, f) by 2.10 (g) and we have xe C™*
which implies n* = 0. Clearly, %(B, g) = 1. It follows 9(C, h) = (4, f) + 1 by
2.13. Thus, @ = 9(4, f) < 9(C, h). For each x e W,, we have |C*| 2 |cfa| by (1),
(2), (3). By 2.10 (d), we have C* = (B — B*) U (4 — 4®) = B° U (4 — A%). As
we have seen, S(C, h) (x) = %(4, f) for x e BO. It follows C* = A — A™. By 2.10 (h),
we have C* = 4*, Thus [A"| > Icf oc[.
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3.5. Lemma. Let (4, f) be a non empty connected unary algebra which is not an
oo-algebra. Then the following assertions hold:

(@) (4, f) is a limit ordinal cofinal with w,.
(b) If 2€ Wi sy is such an ordinal that |A‘| < Ny then there is such an ordinal
1 e Wiy s that |4*] = 1.

Proof of (a). Suppose that 9(4, f) is an isolated ordinal. Then there is x € 4 such
that S(4, f) (x) = 9(4, f) — 1. By 1.19 (a), we have S(4,f)(x) < S(4,f) (f(x))-
If S(4, 1) (f(x)) €eOrd then S(4,f)(f(x)) = ¥4, f) which is impossible. Thus,
S(A, f) (f(x)) = co which contradicts the hypothesis A = 0. Thus, (4, f) is a limit
ordinal.

Let x € 4 be such an element that S(4, f) (x) = 0; such an element exists because
%(A, f) > 0. For each x € W4, there is an element y, € A such that S(4, f) (y,) =
= x. Since (4, f) is connected there are m,, n, € N such that f"(x) = f™(y,). By
1.19 (a), we have S(4, f) (f™(x)) = S(4, ) (f™(v,)) = ». Thus (S(4, f) (f"(X)))nen

is a sequence of the type w, such that Wy, ) is cofinal with this sequence.

Proof of (b). Let us have 1 € Wyy fy, [4%] < No. If |A*| = 1 then we have nothing
to prove. Suppose |4*| = 2, let x, y € A* be such elements that x * y. As (4,f)is
connected there are n, meN — {0} such that f"(x) = f™(y) = z. Since A% =0
there is A; € Wy 41 > A such that z € A*. By 1.16, there is a map ¢ : A* — 4*
such that ¢(z) = x and that, for each t € 4", thereis k e N — {0} such that f*(¢(t)) =
= 1. By 3.2 (b), this map is injective.

We prove that y ¢ p(A*'). Suppose, on the contrary, the existence of z’ € A** with
the property @(z') = y. Then there is pe N — {0} such that f?(y) = f?(o(2)) =
= z' € A™. We have f"(y) = z e A*. It follows z = z’ by 3.2 (a) which implies x =
= ¢(z) = ¢(z') = y which is a contradiction. Thus ¢ : 4*' - A*is not a surjection.
Since A* is a finite set we have |4%| > |4%].

We proceed similarly with the set A*', 1, € Wy, as A* is a finite set. Since 9(4, f)
is a limit ordinal, we obtain, after a finite number of steps, an ordinal u e Wy,
such that |A“| = 1.

3.6. Definition. Let o € Ord and suppose that (m,,)newuu(m) is a sequence of car-
dinals. We put
. W, i
crit (M.)ypoey = 4 ui{a} if mg #0
w, if my,=0.

3.7. Definition. Let I' < Ord U {oo} and suppose that (m,),. is a sequence of
cardinals. This sequence is called suitable if the following conditions are satisfied:
(1) I' = W, U {0} for some a € Ord, the sequence (7, )xew, is non-increasing and

m, %+ 0 for each x € W,.
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(2) If m,, = 0 then (a) o is a limit ordinal cofinal with w,, (b) the existence of A€ W,
with the property m; < N, implies the existence of ue W, with the property
m, = 1.

(3) For an arbitrary limit ordinal u € crit (m,),cw, () and for an arbitrary 1 e W,
we have m; = |cf pl.

3.8. Theorem. Let (A, f) be a non empty connected unary algebra. Then the fol-
lowing assertions hold:

(a) If |[A°| < R, then R(4, f) = |4~
(b) The sequence (|A*|)ewoqa.syuiony is suitable.

Proof. (a) follows by 3.1. The property (1) of 3.7 follows by definition of 9(4, f)
and by 3.3, the property (2) of 3.7 follows by 3.5 and the property (3) of 3.7 follows
by 3.4.

3.9. Lemma. Let o € Ord, let (m,,)xewau(w} be a suitable sequence of cardinals
with the property m,, = 1. If B € W, then (m,),cy,,(xy is a suitable sequence with
the property m,, = 1.

Proof. The sequence (m,).ew, () Satisfies the condition (1) of 3.7. The condition
(2) is satisfied trivialy as m,, = 1. If pecrit (M) xew poieoy then p < B which implies
pecrit (m,),ew, ) Thus, for each limit ordinal g e crit (m,).ew,o(0; and each
4 € W, we have m; 2 |cf u| which is (3) of 3.7.

3.10. Lemma. Let o« € Ord, let (m,), .y, (0, be a suitable sequence of cardinals
such that m,, = 0. We put m;, = m, for each x € W,, ml, = 1. Then (m}).cw o)
is a suitable sequence for each e W,.

Proof. The condition (1) of 3.7 is satisfied by the sequence (11,,),cw o) the cOn-
dition (2) of 3.7 is satisfied trivially as m), = 1. Clearly, ff € W, implies f e
€ crit (M,)ewoo(wy Which implies crit (m), oy = Wy Y B} = W, =
= crit (My)yewauioy If p € Crit (M )eewyoic) is @ limit ordinal and A € W, then pe
e crit (m,)xew.u) Which implies |mj| = [m,| = |cf y|. Thus, the condition (3)
of 3.7 is satisfied by the sequence (m,,),.cw o (w0}

3.11. Lemma. Let o € Ord, let (m,),ew.u(c) be a suitable sequence of cardinals
such that m,, # 0. We put m, = m,, for each x € W,, m_, = 1. Then (m;),,swmu(w;
is a suitable sequence.

Proof. (m,),ew.o) Satisfies obviously the condition (1) and (2) of 3.7. Clearl)./,
crit (M) ew oy = Wy U {@} = crit (m,)uewooimy Thus, if p e crit (mewooteo) 19
a limit ordinal and 4 e W, then u € crit (M)ew vy and mj = m, 2 [of p|- Thus,
(M) xew. a0y satisfies the condition (3) of 3.7.
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4. SUFFICIENT CONDITIONS

4.1. Lemma. Let (C, h) = U (45, 1) @ (B, 9) be a unary algebra defined in 2.7.
We put 9§; = sup A, f)- We suppose that O + B® = C*. Then the following
conditions hold.

(a) n* = O where n* is defined according to 2.12, 9(C, h) = 8, + (B, g) and, if
we put n(x) = ~9; + % for each » with the property 9, < x < 9(C, h) then
{n(x); 8 £ % < §(C, h)} = Wy,

(b) C* = B"™ for each x, 9; < » < ¥(C, h).

Proof of (a). If @ & B® = C% then n* = 0 by 2.12. It follows %C, h) = 9, +
+ (—n* + 9(B, g)) = 9 + (B, g) by 2.13.

Further, if 9; < » < 9(C, h) then n(x) = —9; + x < =9 + ¥C, h) = (B, g).

On the other hand, if n < 9(B, g) then n = —9, + (9 + n) where 9, < 9, +
+n <9+ B, g) < ¥C, h).

Proof of (b). (1) For each m < 9(B, g), we have S(C, h) (B") < 9, + (—n* +
+ m) = 9; + m by 2.12 and (a). Further, x € B" implies the existence of y € B®
< C* such that h"(y) = g"(y) = x because (B, g) is a cone. It follows S(C, h)(x) =
= S(C, h) (h"(y)) =2 S(C, h) (y) + m = %; + m by 1.19 (a). Thus, S(C, h) (B™) =
= 9, + m for each m < (B, g). It implies, for each x», 9, < » < 9(C, h), that
Bn(x) c C81+n(u) Cc* by (a)

(2) % £ % < 9(C, h) implies C* < B— B® = |J B" by 2.10 (e). It implies

neWg(n
C"=C*n U B'= U (C""YAp)= o068 1 by (a) and (1). It

neWs(B,q) neWs(s,g)

follows C* = B"®.
Thus, we have C* = B"® for each %, 9; < x < 9(C, h) by (1) and (2).

4.2. Lemma. Let (4, f) be an co-algebra such that 9(A,f) > 0 is an isolated
ordinal, (B, g) a cone disjoint with (A, f) such that B® + 0, |B°| < IAS(“'”'1|.
Then the following assertions hold:

(a) There exists a surjection  : A% =1 — B which is a restriction of a sur-
jection ¢ : E(4, f) > B°.

We put I = {1}, 4; = A4, f; = f and let (C, h) = U (4;, f;) ® (B, g) be a unary
algebra defined in 2.7. el e

(b) (C, h) is a connected unary algebra.

(c) 8(C, h) = (4, f) + 4B, g).

(d) C* = A* for each x < YA, f), C* = B"™ for each x, 3(A, f) < x < 9(C, h)
where n(x) is defined according to 4.1 (a), C* = B®™.
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Proof of (a). Since 9(A4,f) > 0 is an isolated ordinal then @ # 4*“4-N~1 <
S E(A, f) by 2.3 (c) and since |4*“"~| 2 |B°| then there is a surjection V¥ :
APA-D=1 — B which is a restriction of a surjection ¢ : E(4, f) - B°.

Proof of (b). (C, h) is a connected unary algebra by 2.9.

Proof of (c). If x € B then there exists z € 4*4 ! such that h(z) = y(z) =
= ¢(z) = x. Since 4°4N~1 = C¥4N~1 by 2.10 (a) we have S(C, h) (z) = ¥4, f) —
— 1. It follows S(C, h) (x) = S(C, h) (h(z)) > S(C, h)(z) = (4, f) — 1 by 1.19 (a)
because x ¢ B® = C*® with regard to 2.10 (b). Since g™ *(x) = @ we have h~*(x) =
=9 '(x)cA4-4°"= U 4*< U C* by 2.10 (a). Further, xeC —

xeWgs(a, xeWs(4,
— U C* because S(C, h() (;c)) = 9(4, f() It follows x € C*:) which is x € C*

xcWga,5)

because 9; = sup 8(A4;, f;) = 9(A4, f). We have proved B° = C*.
It implies S(C, h) = 9; + (B, g) = (4, f) + B, g) by 4.1 (a).

Proof of (d). We have proved B® = C*. It follows B=B*uU ) B"=

meWgs(B,g)
=C*u U C*4N*mpy 210 (b), 4.1 (b) and 4.1 (a). Thus, C* = 4 — A* for

meWg(B,g)
each x < 9(4, f) which implies C* = A* for each » < 9(4, f) by 2.10 (h).
Further, C* = B"® for each x, (4, f) < » < %(C, h) by 4.1 (b).
Finally, C® = B follows by 2.10 (b).

4.3. Lemma. Let {(A4,, f,); i€l} be a set of mutually disjoint co-algebras such

that (A, f;) > 0 for each iel. We put 9; = sup N4, f;) and I(x) = {iel;
iel

% € Wyu, sy fOr each x < 9,}. We suppose that, for each x < 9y, there is a cardinal
m, = max {|I|, Xo} such that |A}| = m, for each iecI(x). Let (B,g) be a cone
disjoint with all co-algebras (A,, f;) such that |B — B®| = |I|. Then the following
assertions hold:

(a) There exists a surjection ¢ : UE(A,,f,)—+B — B® such that, for each

x € B — B®, there is (precisely one) leI such that ¢~ (x) = E(4;, f).
Let (C, h) = U (4, f;) ® (B, g) be a unary algebra defined in 2.7.
iel @

(b) (C, h) is a connected unary algebra.

(c) Let I = W, for some limit ordinal « and suppose that B — B® = B°® implies
o = wo and (E(A;, f;) = B’ for each i € I. If (3(A;, f1))ier is an increasing sequence
then §(C, h) = 9.

(') If there is an oo-algebra (A, f) such that (A, fi) = (A, f) for each iel
then §(C, h) = Y(A4, f) + (B, g).

(d) |C*| = m, for each x < 9, C* = B*.
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(d) If there is an co-algebra (A, f) such that (A; f)) = (4, f) for each iel
then 9; < 9(C, h) and, for each %, 9; £ » < 9(C, h), C* = B"™ where n(x) is defined
according to 4.1 (a).

Proof of (a). If i eI then 9(4;, f;) > 0 which implies A; — A7 + 0; it follows
E(A; f;) + 0 by 2.3 (a). Let y : 1 —» B — B* be a bijection; we put ¢(t) = y(i) for
each i eI and t € E(A;, f;). Then ¢ : U E(4,;, f;) > B — B® is a surjection with the

iel

property: for each x € B — B®, there is (preciselly one) i €I such that ¢~ '(x) =
= E(4,, f).
Proof of (b). (C, h) is connected unary algebra by 2.9.

Proof of (c). (1) We put {e;} = @(E(A;, f;)) for each iel. If xe B — B™ is
arbitrary then, by (a), there is (precisely one) i € I such that e; = x. Thus, B — B* =
= {e;iel}.

(2) We prove that S(4, f) (e;) = (4, f;) foreachi el = W,.Indeed,if B — B” =
= B° then, for each i€l, e;e B® and h™'(e;) = ¢~ '(e;) = E(A;, f;) by 2.7. Thus,
S(C, h) (e;) = (4, f;) by 2.10 (g).

We suppose that B — B® =+ B°. Then I = W, and {e;,} = B’ for each i eI. The
assertion S(C, h) (e;) = 3(4;, f:) (i e I) will be proved by induction.

If i = 0 then ¢, € B® and, by 2.7 and 2.10 (g), S(C, h) (eo) = HAo, fo).

Let iel — {0} and suppose S(C, h)(e;—;) = $(A;—y,fi-1)- By 2.7, we have
h~*(e;) = E(A,, fi) U B! = E(A,, f;) U {e;_,}. By 2.10 (f), it follows (A4, f;) =
= min {¢ € Ord; o« > S(C, h) (E(4;, f;))} (see 2.11). Further, (3(4;, f;))ic is increasing
and it implies ¥4, fi) > HAi_y, fi-1) = S(C, h) (e;—,). Thus, (4, f;) =
=min {«e Ord; « > S(C, h) (E(A;, f;)v{e;_,}) = min {aeOrd; & > S(C, h) (h~*(e;))} =
= S(C, h) (e;).

(3) By (1) and (2), there exists, for each x € B — B®, i € I such that S(C, h) (x) =
= 9(A,, f;). Further, we have 9(4,, f;) + 9, for each i eI because (9(4,, f)))wr is
increasing and |I| 2 X,. Thus, S(C, h)(x) # 9, for each xe B — B*. It follows
C* = 0 and n* = 9(B, g) by 2.12. We obtain §(C, h) = §; + (—n* + (B, g)) = %
by 2.13.

Proof of (¢'). 9; = sup 8(4,,f}) = 9(4,f) by 1.20. Further, B’ & 0 because
iel

B — B + 0 and we have S(C, h) (x) = 8(4, f) for each x € B® by (a) and 2.10 (g)-
It implies B° = C*. We obtain n* = 0 by 4.1 (a) and §(C, h) = 9y + (—n* +
+ 9(B, 9)) = (4, f) + ¥(B, g) by 2.13. :

Proof of (d). We put (E(4;, f})) = {e;} for each i e I; then B — B* = U [ei)ic.n

iel
by (a). Let us have x < 9;. We put m* = |C* n (B — B®)|. Then C* N (B — B®) =
= U (C* n[e])cn) which implies m* <Y |C* n [e]iem| s m because |[C* N
iel

iel
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A [edicm| < 1 by 1.19 (b). We have C* = (B — B®) U U (4; — 4F) by 2.10 (d)

iel(x)

which implies C* = C*n (B — B*)u U (4; — A7) =(C*n (B - B?))u U 4,
iel(%) ieI(x)
with disjoint summans by 2.10 (a) and 1.13. It follows |C"[ =m*+ Y, |Aﬂ =
iel(3x)
= m* + [[(x)| m, = m, because m, = No, m, = [I| = |I[(»)], m, = [I| =Z m* and

I(x) + 0.
C* = B” follows by 2.10 (b).

Proofof (d'). §(C, h) = %(4, f) + 9(B, g) = 9, + (B, g) by (¢') and (B, g) > 0
because B — B® + 0. It follows 9; < (C, h). Further, we have proved ¢ + B, = C*
in the proof of (c’). It implies C* = B"® for each %, 8; < » < 9(C, h), by 4.1 (b).

4.4. Definition. Let us have o« €Ord, let (m,),cp, (., be a suitable sequence of
cardinals, (4, f) an co-algebra. Then (4, f) is said to have the property (B) with
respect to the given sequence if f € W,, 9(4, f) = p and |4*| = m, for each x € W.

4.5. Lemma. Let us have o € Ord, « > 2, let (m,),w, () be a suitable sequence
of cardinals with the property m, < 1. If, for each B € W,, there is an co-algebra
having the property (ﬁ) with respect to the given sequence then there exists a con-
nected unary algebra (A, f) such that 9(A,f) = « and |A4*| = m, for each x e
e W, u {0}

Proof. (I) If « is an isolated ordinal then m_ = 1 because m,, # 0 by 3.7. Thus,
there exists « — 1 € Ord because o = 2 and an co-algebra (4, f) having the property
(a — 1) with respect to the given sequence.

Two cases can occur:

(1) Suppose m, = N, for each x € W,_,

Let {(4,, f;); i €I} be a set of mutually disjoint oo-algebras such that (4;, f;) =
~ (A, f) for each i e and [I| = m,_,. Let (B, g) be a cone disjoint with all agebras
(4 f:) such that B = B® U B*, |B°| = m,_,, |B*| = 1.

Then 3(A4;, f;) = (A, f) = o — 1 > 0 for each iel by 1.20. Further, we have
9 = supS(A,-,f,-) =94, f)=o—1 and, for each ¥ <o —1, m, 2 m,_; =
= |I| Wthh implies m,, = max {|1]. No} and |A47| = m, for each i eI = I(x) (see 4.3).

Finally, we have |B — B°°| = |B°| = m,_, = |I|. Then there exists a surjection
0: U E(A;, f}) » B — B such that, for each x € B — B®, there is (precisely one)

il such that ¢~ *(x) = E(4,, f;) by 4.3 (a). We put (C, h) = u (45 1) @ (B, 9).

By 4.3 (b), (C, h) is a connected unary algebra and 9(C, h) = S(A f) + S(B g) =
= (o2 — 1) + 1 = a by 4.3 (¢') because ¥(B, g) = 1.
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By 4.3 (d), we have |C*| = m, for each x < a — 1. By 4.3 (d), we obtain C*~* =
= B° because §(C, h) = o. It implies |C*~!| = |B°| = m,_,. By 4.3 (d), we obtain
|c*| = |B*| =1 = m,,.

We have constructed a connected unary algebra (C, h) with the following proper-
ties: 9(C, h) = o, |C*| = m,, for each x € W, U {o0}.

(2) Suppose the existence of %, € W,_, such that m,, < N,.

Then a 2 2 implies « — 1 = 1. Clearly, o — 1 €crit (m,),ew, 000y If @ — 1 were
a limit ordinal then we should have m,, = |cf (x — 1)| by 3.7 (3) which is a contradic-
tion to the finiteness of m,,. Thus, « — 1 is an isolated ordinal.

Let (B, g) be a cone disjoint with (4, f) such that B = B° U B® and |B°| =

=m,_y, |B®| = 1.
9(A,f) = o — 1 > 0 is an 1solated ordinal and we have B® + 0, |B°| = m,_; <
< my_, = |47 = [A*4D 71|, Then there exists a surjection y : A% "1 — B°

which is a restriction of a surjection ¢ : E(4, f) — B® by 4.2 (a). We put I = {1},
Al = A’fl =f; (C’ h) = U (Abfi) ® (B’ g)'
iel @

By 4.2 (b), (C, h) is a connected unary algebra. Clearly, 9(B, g) = 1 which implies
HC, h) = A, f) + 9B, g) = (¢ — 1) + 1 = a by 4.2 (c).

Further, C* = A* for each » < a — 1, C*"! = B% C® = B* by 4.2 (d) because
9(C, h) = «. It follows |C*| = m,, for each x € W, U {o0}.

(11) Suppose that « is a limit ordinal. We put I = W,,. Then there exists an in-

creasing sequence of positive ordinals (B;);; such that sup f; = o. For each iel
iel

there exists an oo-algebra (4, f;) having the property (B;) with respect to the given
sequence. We can suppose, without loss of generality, that the oo-algebras (4;, f;)
are mutually disjoint.

The set {(A4,, f;); iel} of oo-algebras has the following properties: 3(4,, f;) =
= B; > 0 for each iel; 9, = sup 9(4,,f;) = sup f; = «; if we put I(x) = {iel;

iel iel
% € Wy(4, s} for each x < o (see 4.3) then, for each iel(x), we have |4}| = m,
because (4, f;) is an co-algebra having the property (B;) with respect to the given
sequence.

Two cases can occur:

(i) Let us have m, = 1. Since (m,).ew,u; S @ suitable sequence then
crit (m,)uew, 010y = W, U {a} and, by 3.7 (3), we have m, > |cf «| = |I| for each
x € W,. Thus, for each x < a = 9, we have m, > max {|I|, X,} because |I| = N,.

We take a cone (B, g) disjoint with all oo-algebras (4 f;) such that B = B® U B®
where |B°| = |I| = [cf«f, |[B*| = 1.
Thus, B — B® = B® and [B — B*| = [I|.
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By 4.3 (a), there exists a surjection ¢ : U E(A;, f}) » B — B such that, for each

x e B — B>, there is (precisely one) IGI such that ¢~ '(x) = E(4,, f;). We put
(€. h) = (A.,f,)@)(B 9)-

Then (C, h)is a connected unary algebra by 4.3 (b). Further, 3(C, h) = 9, = «
by 4.3 (c).

Finally, |C*| = m, for each x < §; = «, |C*| = |B*| = 1 = m,, by 4.3 (d).

Thus, we have constructed a connected unary algebra (C, h) such that $(C, h) = «
and |C*| = m, for each x € W, U {c0}.

(if) Let us have m,, = 0. Since (M, ),ew, o0} is @ suitable sequence we have cf o« =
= w, by 3.7.

Two cases are possible:

(1) Suppose m, = N, for each x € W,.

Then, for each x < o« = §;, we have m, 2 max {|I|, No} because |I| = |cfa| =

]wol = Ny.

Let (B, g) be the cone (constructed in 2.5, 2) such that |B"| = 1 for each ne N.
Suppose that (B, g) is disjoint with all co-algebras (4;, f;)-

Thus, B® = @ and [B — B®| = |B| = 8, = ]I|.

We take, by 4.3 (a), a surjection ¢ : U E(A;, f;) — B such that ¢(E(4,, f;)) = B’ for
eachiel = W,, = N. We put (C, h) U (4. 1) @ (B, 9).

Then (C, h) is a connected unary algebra by 43 (b) and 9(C, h) = 9, = a by 4.3(c).

Further, |C*| = m, for each x < a, |C*| = |B®| = 0 = m,, by 4.3 (d).

Thus, we have constructed a connected unary algebra (C, h) such that §(C. h) = «
and |C¥| = m, for each x € W, U {o0}.

(2) Suppose the existence of x, € W, such that m,,, < .

Clearly, x € W, implies x € crit (m,),cw, () If there is a limit ordinal %, %, < » <
< a, then m,, = |cf %| by 3.7 (3) which is a contradiction to the finiteness of m,,.
Thus, each » with the property %, < » < a is isolated.

We take an arbitrary 4, ¥, < A < a. Thus, there is an co-algebra (4, f) having the
property (1). Thus 3(4, f) = 4 > 0 is an isolated ordinal.

By 3.7 (2) (b), there is u € W, such that m, = 1. It follows the existence of a cone
(B, g) such that |B"| = m,, for each n € N by 2.5.

Then |A* 4D~ = 4% = m,_; =2 m, = |B°).

By 4.2 (a), there exists a surjection Y : A%# =1 - B which is a restriction of
a surjection ¢ : E(4, f) —» B°.

Weput J ={1}, 4, = 4, f; = fand (C, h) = U(A,—,fi) @ (B, g).

ie )
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By 4.2 (b), (C, h) is a connected unary algebra and 3(C, h) = 9(4, f) + ¥(B, g) =
= A+ w, = a by 4.2 (c) because (B, g) = w, and 1 + w,, « are both equal to the
least limit ordinal greater than A.

Further, C* = A* for each ¥ < A and C* = B"™® for each x, 1 < » < « where
n(x) is the only element of N such that x = A + n(x) (see 4.1 (a)), C* = B* = ¢
by 4.2 (d). It follows |C*| = |4*| = m, for each x < 4, |C*| = |B"®| = m; 1, =
= m, for each x, 2 < x < « and |C*| = 0 = m,,. Thus, |C*| = m, for each xe
e W, L {o0}.

4.6. Corollary. Let o € Ord, let (m,,)uewau{w, be a suitable sequence of cardinals
such that m, = 1. Then there is a connected unary algebra (4, f) such that
(A, f) = « and |A*| = m, for each x € W, U {c0}.

Proof. For each ordinal, we denote by V(«) the following assertion: If (m, ) cew_ o a0)
is an arbitrary suitable sequence of cardinals such that m, = 1 then there is a con-
nected unary algebra (4, f) such that (4, f) = « and |4*| = m, for each x € W, U
U {o0}.

If we put A = A® where |[A*| = 1 = m,, then we see that V/(0) holds. Similarly,
if we define the cone 4 = A° U A” where |4°| = m,, |4®| = 1 = m,, then we see
that /(1) holds.

Let us have § = 2 and suppose that V(y) holds for each y < B. Let (m,),cw o)
be a suitable sequence of cardinals such that m,, = 1. If y € W then the sequence
(m,,),{eww{w, is a suitable sequence of cardinals such that m, = 1 by 3.9. Thus, by
the induction hypothesis, there is a connected unary algebra (4,,f,) such that
9(A,, f,) = v and |4}| = m, for each x € W, U {c0}. Thus, for each y € Wj, (4,, f,)
is an oo-algebra having the property (y) with respect to the sequence (m1,),ew o (0}
(cf. 4.4). By 4.5, there is a connected unary algebra (4, f) such that (4, f) = p and
|A4*| = m, for each x € W, U {o0}. Thus, V() holds.

It follows by transfinite induction that V() holds for each ordinal « which is our
assertion.

4.7. Corollary. Let o« € Ord, let (m,‘),,ewau{oo) be a suitable sequence of cardinals
such that m, = 0. Then there is a connected unary algebra (A,f) such that
(A, f) = « and |A*| = m, for each x € W, U {c0}.

Proof. Since m,, = 0 the ordinal « is a limit ordinal by 3.7 which implies o = 2.
We put m;, = m, for each x € W,, m;, = 1. If B € W, then (m,),cw,o(«) is @ suitable
sequence with the property m,, = 1 by 3.10. By 4.6, there is an co-algebra (A4, f;)
such that 9(4,, f5) = B and |A:,f| = m,, = m, for each x € W,. Thus, for each B e W,,
(Ap, f5) has the property (B) with respect to the sequence (m,),ew,u(x) (cf. 4.4). The
assertion follows by 4.5.
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4.8. Lemma. Let m > 0 be a cardinal, Re N an ordinal such that m < X,
implies R = m. Then there is a connected unary algebra (A4, f) such that A = A®,
|A| = |4®| = m and R(4, f) = R.

Proof. Let A be an arbitrary set such that |A| = m. We take an arbitrary subset
B < A such that |B| = R. We have the following possibilities:

M) m < N,.

Then R = m and B = A. We put 4 = {a,, a,, ..., a,}. We put f(a;,) = a;,, for
eachi,1 <i < m — 1, f(a,) = a,. Then (4, f) is a connected unary algebra such
that A = A” = Z(A, f) which implies |4| = |4”| = m = R = |Z(4, f)| = R(4, f).

(1) m = N,

Then |4 — B| = m = Nym. We take an arbitrary set K such that |[K| = m and,
for each x € K, we define a subset B, = A — B such that |B,| = ¥,, A — B = U B,
with disjoint summands. We have A = B u |J B,. Two cases can occur: ek

(1) R + 0. K

Then we put B = {a,, a, ..., ag}, B, = {a}; ie N} for each x e K. We define
fla))=a;y, for i, 1 i< R -1, f(ag) = a,, f(a}) =af., for each xeK,
ieN — {0}, f(a§) = a; for each x € K. Then (4, f) is a connected unary algebra,
R(A,f) = |Z(4, f)| = |B| = R, 4% = A which implies |4| = |4*| = m.

2 R=0.

Then we have B = 0. We put B, = {a}; i € N} for each x € K, we take an arbitrary
%, € K and we define f(a}°) = a7%, for each ie N, f(a}) = aj_, for each xe K —
~ {%o} and each i e N — {0}, f(as) = ay’ for each x € K — {x,}.

Then, clearly, (4, f) is a connected unary algebra such that Z(4, f) = @ which
implies R(4, f) = 0 = R. Further, A” = A and |4 = |4”| = m.

It IIA

4.9. Theorem. Let o € Ord, let (m,)xswau(w} be a suitable sequence of cardinals,
let R e N be such that m,, < X, implies R = m,,. Then there is a connected unary
algebra (A, f) such that R(A,f) = R, 9(4,f) = « and |4*| = m, for each xe€
e W, u {oo}.

Proof. (I) If m,, = 0 then there is a connected unary algebra (4, f) such that
(A, f) = « and |4*| = m, for each x € W, L {c0} by 4.7. Further, Z(A, f) = 4~
by 1.15 which implies R(4, f) = |Z(4, f)| £ |4®| = m,, = 0 = R; thus, R(4,f) =
= R.

(I1) If m,, + O then we put mj, = m, for each » e W, and m/, = 1. By 3.11,
(M) w010y is @ suitable sequence with the property m’, = 1. By 4.6, there is a con-
nected unary algebra (4, f) such that (4, f) = a and [4*| = m], = m, for each
%€ W, By 4.8, there is a cone (B, g) such that B = B®, |B| = [B”| = m, and
R(B,g) = R. We can suppose, without loss of generality, that (4, f), (B, g) are
mutually disjoint. :
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Two cases can occur:

(1) If & = 0 then W, U {o0} = {0} and (B, g) has the properties R(B, g) = R
5] = m..
(2) If & > 0 then @ + 4° = A — A® which implies E(4, f) #+ 0 by 2.3 (a). Let
E(A,f) - B be an arbitrary map. We put I = {1}, 4, =A, fi =1, (C.h) =
\{(A.,f.) ® (B, 9).

Then (C, h) is connected unary algebra by 2.9. If 9, and n* are defined by 2.12
then 9, = %(4, f). Clearly, (B, g) = 0 which implies n* = 0. By 2.13, %(C, h) =
=9 + (=n* + ¥(B, g)) = 4, f) = o. If x € W, then x < 9(4, f) which implies
C*< (B—B”)U (A — A”) = A — A® by 2.10 (d). It follows C* = A4* for each
% < %(A, f) by 2.10 (h). Thus, |C*| = m, for each x € W,. By 2.10 (b), (c), we have
C* = B” and Z(C, h) = Z(B, g) which implies |C*| = |[B*| = m,, R(C,h) =
=|2(C, h)| = |Z(B, g)| = R(B, g) = R. Thus, we have constructed a connected
unary algebra (C, h) such that R(C,h) = R, %(C,h) = o, |C*| = m, for each
x e W, u {o}.

@

4.10. Theorem. Let Abeaset,S : A — Ord U {oo} a map, R e N. Let the following
conditions be satisfied:

(a) If [S7*(0)| < N, then R = |S™*(0)].
(b) The sequence (|S™*(%)|)ues(a) is suitable.

Then there is a unary operation f on A such that (A, f) is a non empty con-
nected unary algebra and S(4,f) = S, R(4, f) =

Proof. By 3.7 (1), there is « € Ord such that S(4) = W, U {c0}. By 4.9, there is
a connected unary algebra (4, fy) such that (A, fyx) = o, R(A44 fy) = R and
|[4%] = |S7'(x)| for each xeW,u {w}. We have |dy= Y [4}|=

xeWq u{oo}

= Y |S7(x)| = |A|. Thus, there is a bijection ¢ : Ay — 4 such that ¢ | 4% :

neWyu{owo}
A% = S7'(x) is a bijection for each x € W, U {o}. We put f(x) = o(f(¢ ™ '(x)))
for each x € A. Then f is a unary operation on A4 such that ¢~ '(f(x)) = fy(e~'(x))
for each x € A. It follows that ¢! is a bijective homorphism of (4, f) onto (A*,f*).
Thus, (4, f), (A4, fx) are isomorphic, ¢ is an isomorphism of (A, fx) onto (4, f).
By 1.20, we have %(4, f) = (A4, f+), @(A}) = A* for each x € Wy 4 ;, U {00} and
P(Z(As, f4) = Z(A, f). Thus, R(4, f) = |Z(A.f)| = |0(Z(As f+))| = lZ(A*,f*)l =
= R(Ay, f4) = R. Further, for each x € W, U {00} we have S™(4, f) (x) = 4" =
= ¢(43) = o(0~*(S™Y(x))) = S~Y(x) which implies S(4, f) = S.

If [S7%(o0)| 4 0 then @ + 4™ < A4; if |S7*(c0)| = 0 then « is infinite by 3.7 (2)
which implies |S~*(0)| 4 0 by 3.7 (1) which implies @ + A° < 4. Thus, (4, f) is
non-empty.
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5. SOLUTION OF THE PROBLEM

5.1. Main Theorem. Let A be a set, S: A — Ord v {oo} a map, Re N a finite
ordinal. Then the following conditions are equivalent:

(A) There is a unary operation f on A such that (A, f) is a non empty connected
unary algebra, S(4,f) = S, R(4, ) =R

(B) The following conditions are satisfied:
(@) If |S™*(0)| < Ro then R = |S™*(0)|.
(b) The sequence (|S™"(x)|)es(4) is suitable.

It is a consequence of 3.8 and 4.10.
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