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Let E" be the Euclidean n-space and V(E") its vector space. Let M < E” be a hyper-
surface. Consider the system of hypersurfaces p,: M — E", te(—¢, g)=Jc X,
such that puo = id. and the mapping p, : M x J — E"is analytic in ¢. Then, in a suit-
able neighborhood (—¢y, &) = J,

(1) (M) =M + to; + tPv, +...

with v, : M — V(E"). The metric on the hypersurface M, = y,(M) is given by means
of the form

© a—1
(2) G, =dM,.dM, = Gy, + Y (2dM . dv, + ) duv, . dv,_g).
a=1 p=1
The surfaces M, and M being isometric for each t € J,, we have
a—1
(3) 2dM .dv, + Y dvy.do,_; =0 for a=1,2,...
B=1

Definition. The mapping v, : M — V(E") is said to be an infinitesimal deformation
of M if

4 dM . dv, = 0.

A formal series of the type (1) is called a formal deformation of M if the vector
fields v, satisfy (3).

We are looking for the conditions under which each infinitesimal deformatlon vy
of M has an extension to a formal deformation (1).

L

Let g;; and h;; (i,j,... = 1, ..., n = dim M) be the fundamental tensors of M;
further, let V, be the covariant differentiation with respect to g;;. Consider the
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diagram

(5) 0—— o — > A5 4,

Inl

0——> % —> B —— B,

,l

C

where: (i) 4 is the Z-module of symmetric (2, 0)-tensors a;; on M, 4, is the Z-module
of (3, O)-tensors a;;, on M, B is the Z-module of (4, 0)-tensors b;j,, on M satisfying
biipg = —Dbjipg = —Dbijgp By is the Z-module of (5, 0)-tensors byijp, 00 M, C is the
Z-module of (4, 0)-tensors c;j,, on M; (ii) the differential operators d; and d, are
defined by

(6) - di(ay) = Viay = Viag,

(™) da(bijpd) = Vebijpg + Vybijor + Vibijry
resp; (iii) the homomorphisms h; and h, are given by

(8) hl(aij) = aiphjq - ajphiq - aithp + athip ’
©) ho(bijp) = " (hejbispy + hypbisaj + hegbisjp)

resp. with 6™ = 0 for 7 # s and 0" = 1; (iv) &/ or Z is the sheaf of the solutions of
the equation dya = 0 or d,b = 0 resp.

Proposition 1. We have h,(/) = 4.

Proposition 2. (Poincaré lemma.) Let me M, U = M be a neighborhood of m,
and let be I'(B, U) satisfy hy(b) = 0. Then there is a neighborhood Uy < U of m
and an a € ['(7, U,) such that h,(a) = b on U,.

Theorem. If h,(I'(«/, M)) = I'(#, M) n Ker h,, then to each infinitesimal defor-
mation vy of M there is a formal deformation M + tv; + t2v, + ...

We are going to prove the propositions and the theorem.

Be given a neighborhood U = M such that to each point m € U there is an orto-
normal frame o, = {e, ..., ¢,1;} with e, ..., e, € T,(M), the field of frames o,
being smooth over U. Then there are 1-forms o', o/, 0", i, (i, jree=1,..,n)
over U such that
(10) dM = w'e;, de; = wle; + 0 le,,,, de,; = 0l e ;

i
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the summation convention is used throughout. Of course,

(11) ol +0j=0, o +oft =0,
(12) do' = o' A 0}, 0=0'A o},

j k j +1 j j +
dof = 0 A of + T A @iy, dott =l Ao}t

On the domain y,(U) of the isometric surface M,, we may introduce frames {e,(t), ...
- €541(f)} such that

(13)  dM, = o'eft), deft) = tlef(t) + 11 e, q(t), de,i (t) = Thiy et
with

0 o0
R | J n+l __ _n+l n+1 .
(14) =l +Y @l ¢, O =0t + Y @it
a=1 : a=1
of course,
. . N +1 .
(15) 4T =0, " 41, =0,
(16) do' =o' Ati, 0=of A",
dtf = At + T AT, AT =1 A 1:'1'-Jr1 .

From (16,), we get

(17) o= ol

1 i

this being, essentially, the affirmation of the Gauss Theorem. The equations (162,3,4)
reduce to

(18) 0=0' A @i+, AW = ol A @Dgitt,

a—1

ntl (a)(pr]:_+1 __l__(:x)(pril+1 Awr}+1 +Z(p)q)r;+1 /\(a—ﬂ)@r}+1.
p=1

0 = o
Let us consider the system

i j +1
(19) 0= Ax, dt;=ow] A%, of A%j+%iAw;+1=Qija

Q;; being exterior 2-forms satisfying @Q;; + Q;; = 0. The exterior differentiation of
(19) yields
(20) oleg A Qy; =0, dQ; = of A Qy + of A Qu;

(20) are thus the conditions for the local existence of x;’s satisfying (19).
From (19,), we get the existence of a tensor a;; such that
(21) % = ayw , a;=aj;.
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The equation (19,) yields
(22) (da

k K Jo_
= g0 — ayw;) A o’ =0.

Because of the well known relation da;; — a0 — a,;0f = V,a;0", (22) reduces to

(23) Viai; = V,ay.
Write
(24) wril+1 — hijw'i , hij — hji ,

h;; being the second fundamental tensor of M. The forms Q,; defined by (195) are
(25) Qi = (aphj, — aj,hy,) 0" A 0.

The forms x; satisfying (19, ,), the form (195) satisfies (20,), and this proves Proposi-

tion 1. Write Q;; = b;;,,0” A % it is easy to see that the conditions (20,) and (20,)

are equivalent to h,(b;;,,) = 0 and d,(b;;,,) = 0 resp. This proves Proposition 2.
To prove our Theorem, it is obviously sufficient to prove the following assertion:

Let the forms (M7, ..., @ei™ ! satisfy (18) for o = 1, ..., a, then the forms

a
+1 —p+1), n+1
(26) Qij = Z (II)(/,'il A @b )(p;
p=1

satisfy (20). But this is to be seen by a direct calculation.

1L

In the second part, I propose to work out the formal aspects of an apparatus leading
to the solutions of problems analoguous to the problem treated above.

Be given a Lie algebra G, its subalgebra H and suppose the existence of a sub-
algebra K = G such that

(27) G=H+K, [HK]<K.

Further, be given a differentiable manifold M and a G-valued 1-form ¢ over M
satisfying

(28) do(X,Y) = —[o(X), o(Y)]
for any two tangent vector fields X, Y on M.

Definition. A formal H-deformation of the form ¢ is a formal series
(29) 0 =@+ ot+ ot +...
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with w, H-valued 1-forms on M which formally satisfies the equation of the type
(28), i.e.,

(0) w0, ) = ~[o(x), V)] = [), o] = T [0(X), 0u-o(1)]
for a=1,2,...

The H-valued 1-form w,; on M is called an infinitesimal H-deformation of ¢ if

(31) do,(X, ¥) = ~[p(X), 0,(1)] - [0,(X), o(¥)] .

Our problem is to exhibit conditions under which each infinitesimal H-deformation
w, of ¢ may be extended to a formal H-deformation (29).
Let us write

(32) ¢ = o + of,
™ being an H-valued and ¥ a K-valued form resp. From (28) and (30), we get
(3) do"(X.Y) = ~[0"(X), ¢"(V)].
do5(X, ¥) = ~[0"(X), 0(V)] = [N, 0" (V)] ~ [0*(X), 0 (V)] 3
(4 do(x.7) =[50, 0u1)] = [0, "] = ¥ [), 0, 1]
0 = [0"(1). ()] + [w(X). 9" (V)]

Notice that the exterior differential dt of a G-valued p-form 7 is to be defined by the
formula

(35) de(X g oo Xper) = D=1 XXy, oy Kip oo X)) +
+ Y (=) ([ X X ] Xy Xy oo X X i)
i<j

Lemma. Let o, ¢ be G-valued 1-forms on M, and let the G-valued 2-form R be
defined by

(36) R(X,Y) = [o(X), o(Y)] + [o(X), o(Y)] -

Then

(37)  dR(X.Y,2) = [de(X, ¥), o(2)] — [do(X, 2), o(¥)] + [de(¥, 2), o(X)]
~ [o(), do(¥; 2)] + [o(¥). do(X, 2)] ~ [e(2), de(X, Y)] .

Proof follows by a direct calculation.
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Proposition 3. Let Q, ¥ be H-valued 2-forms on M. The integrability conditions
of the system

(38) do(X, Y) = —[¢"(X), o(Y)] = [o(X), ¢"(¥)] + X, Y),
P(X,Y) = [¢5(X), o(Y)] + [(X), 95(¥)]
for the H-valued 1-form w are
(9) o, %.2) - - [o"(X), % 2)] + ["(Y), (X, 2)] -
- [¢"(2), a(x, 1)],
d¥(X, Y, 2) = — [¢"(X), @Y, 2)] + [o*(Y), AX, 2)] -
- [¢"(2), X, V)] - [o(X), ¥(¥. 2)] +
+ [o(Y), ¥(X, 2)] - [0(2), ¥(X, Y)].
Proof. By the exterior differentiation of (12,), we get
dQ(X, Y, 2) = [d¢"(X, Y), 0(2)] — [d¢"(X, Z), o(Y)] + [d0"(¥, Z), o(X)] -
— [¢"(X), do(¥, 2)] + [¢"(Y), dao(X, 2)] = [¢"(2), do(X, Y)] =
= = [["(X), o"(V)]. (2)] + [[¢"(X), "(2)], 0(¥)] -
= [[e"(¥), 0"(2)], o(X)] + [¢"(X), [0"(¥), »(2)]] +
+ [¢"(X), [o(1), "(2)]] = [0"(X). Y, 2)] ~
= [¢"(V), [¢"(X), o(Z)]] — [¢"(Y), [(X), 0"(2)]] +
+ [0"(Y), X, Z)] + [¢"(2), [¢"(X), (V)] +
+ [07(2), [o(X), ¢"(V)]] = [¢"(2), 2X, )] =
= = [¢"(%). &Y, 2)] + [¢"(Y), AX, 2)] - [¢"(2), A(X, V)]
Further, from (12,)
d¥(X, Y, Z) = [do"(X, Y), o(2)] — [do"(X, 2), o(Y)] + [d*(¥; Z), (X)] —
— [¢"(X), da(¥, 2)] + [o*(Y), do(X, 2)] = [¢%(2), doo(X, Y)] =
= — [[¢"(X), o"(1)], o(2)] - [["(X), »"(V)], @(2)] -
= [[o* (), ¢*(V)]. 0(2)] + [[o"(X), ¢ (2)], (¥)] +
+ (L"), ¢"(2)], o(Y)] + [[o5(X), ¥ (2)], o(¥)] -
= [[0"(¥), 9*(2)], o(2)] = [[*(¥). 9"(2)], (X)] -
= (Lo (). ¢5(2)], o(X)] + [0*(X). ["(¥), (2)]] +
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+ [¢5(X), [o(Y), ¢"(2)]] = [o"(X), (¥, 2)] -
= [o*(¥), [¢"(X), &(2)]] = [#"(¥), [o(X), ¢"(2)]] +
+ [05(1), 2X, 2)] + [¢"(2), [¢"(X), 0(V)]] +
+ [05(2), [0(X), 9"(2)]] = [¢%(2), X, V)] =
= — [o"(X), ¥, 2)] + [¢ (), 2(X, 2)] - [¢"(2), X, Y)] -
— [¢"(2), [o(X), #"(V)]] = [o"(Y), [¢"(2), @(X)]] +
+ [[¢%(2), o(X)], 9"(V)] + [[w(X), #"(V)], ¥"(2)] -
= [0"(X), [(Y), ¢*(2)]] — [¢"(2), [¢"(X), @(¥)]] —
— [[¢%(2), o(1)], ¢"(X)] = [[(Y), " (X)], ¥*(2)] +
+ [0"(%), [0(2), " (V)]] = [¢"(Y), [(2), »"(X)]] +
+ [[05(1), 0(2)], o5X)] + [[(2), ¢*(X)], ¥"(V)] =
= — [o"X), ¥, 2)] + [¢(7), 2X, 2)] - [¢%(2), 2X, V)] -
— [¢"(2), ¥(X. V)] + [0"(Y), ¥(X, 2)] - [¢"(X), ¥(¥, 2)] +
+ [#(Y, 2), 0*(X)] - [¥(X, 2), o"(V)] + [¥(¥, 2), 05(X)]

and (39,) follows.
Proposition 4. On M, be given H-valued 1-forms wy, ..., , satisfying

() @ X.7) = = [o00), 0,0)] = [0.X) )] = % [0 0],
0= [¢(9), D) + [03), 0" (1]

for a=1,...,p.

The H-valued 2-form Q,.,, be defined by

(@) 2y1(X,¥) = = 3. [), 3y (V)]
Then
@) 40,.,(X, 7, 2) =

= = [0"(%), 2,11(¥, 2)] + [¢"(Y), 2s4(X, 2)] = [¢7(2), 21X, V)],
0 = [05(X), 2,:,(¥, 2)] = [0"(Y), 2,1(X, 2)] + [¢"(2). 2,1,(X, V)]
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Proof. Let us prove (42) for p = 1, the general proof being then almost obvious.
Suppose that the 1-form o, satisfies

doy(X,Y) = = [¢"(X), 0,(Y)] = [@:(X), ¢"(V)],
0 = [¢*(X), @,(Y)] + [@:(X), 0*(Y)]
and the 2-form Q, is given by
(X, Y) = — [04(X), 0y(Y)] .
Then
[o5(X). 2a(Y, 2)] = [9*(Y), 2u(X, 2)] + [0%(2), (X, Y)] =
= [[04(Y), :(2)], ¢"(X)] — [[@:(X), 02(2)], 9 (V)] + [[@1(X), 0,(Y)], 0¥(2)] =
= = [[@:(2), »"(X)], 0,(1)] = [["(X), @:(V)], @4(2)] +
+ [[04(2), ¢*(V)]. @:(X)] + [[¢5(Y), @:,(X)] @,(2)] -
= [[@1(¥), 5(2)], @:(X)] = [[¢*(2), @:(X)], &,(¥)] = 0.
Further, :
42,(X. Y, Z) = [0(X). doy(¥, 2)] = [0:(r) doy(X, 2)] + [0,(2), doy(X. V)],
d0y(X, Y, Z) + [0"(X), Qu(Y, 2)] — [0"(Y), (X, Z)] + [0"(2), 24(X, Y)] =
= = [0,X), ["(V), 0,(Z)]] = [0:(X), [@:(Y). 0"(2)]] +
+ [04(Y), [%(X), 04(2)]] + [04(Y), [0,(X), "(2)]] -
= [@(2), [¢"(X), 04(V)]] = [04(2), [@:(X), 0" (¥)]] -
= [¢"(%), [04(Y), :(2)]] + [¢"(¥), [0:(X), @,(2)]] -
= [¢%(2), [o(X), 01(V)]] = 0.

From the preceding two propositions, we get

Theorem 2. Let w, be an infinitesimal H-deformation of ¢, and let me M be
a given point. Then there are neighborhoods M > U, > Uz > ... of m and H-
valued 1-forms w,, s, ..., w, being defined in U,, such that ¢ + ot + w,t* + ...

is a formal H-deformation of ¢ in () U,.
a=2

Let us turn our attention to the global problem.
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Definition. Denote by =/ (p =0, 1,...) the sheaf of H-valued p-forms T on M
having the following properties:

(i) we have

(43) i;(—-l)"“ [o"(X), o(X oy Xiy oo Xpee)] = 0,
(ii) the form

(44) 0t(Xy, oy Xpiq) =

pt+1
=do(Xy, .. Xpeq) +'Zl(—1)‘+1 [o™(X), v(X s o Xy o Xpi1)]
is H-valued.

Proposition 5. If T € /7, then 6t € &/P*L. Further, 6* = 0.

Proof. Let us restrict ourselves to the case p = 0, the general case is to be treated
in a similar manner. Thus, let 7 € &/, i.e., let the form

(45) 01(X) = Xt + [9"(X), 7]
be H-valued and satisfy
(46) [¢X(X), 7] = 0.

From (46),
[YoX(X), 7] + [¢"(X), Yz] = 0

for any vector fields X, Yon M, and we get
[do"(X,Y), ] = — [oX(Y), X7] + [¢¥(X), Yz] .
Thus
[o*(X), (V)] — [@*(Y), 5x(X)] =
[ (X), Yo + [@"(Y), <]] = [0"(Y), X7 + [¢"(X), <]] =
— [["(X), o"(M)]. <] = [[@"(X), 0" (V)] 7] = [[0"(X), ¢*(¥)]. 7] +
+ [0(X), [2"(Y), ]] = [0™(¥), [¢"(X), 7]] =
[[e"(¥). 7] 0" (X)] + [ " (X)], ¢* ()] + [z, ¢"(X)]> 0"(V)] +

+ [[e*(¥), 7], "(X)] = 0.

Il

Il
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Let us write t = dr + Q with Q(X) = [¢¥(X), 7]. Then
81X, Y) = d(X, Y) + [¢"(X), 61(Y)] — [¢"(¥), 61(X)] =
= [Xo"(Y), 7] + [@"(Y), Xz] — [Yo"(X), <] — [¢"(X), Yr] -
= [o"([X, Y]), ] + [0"(X), Yt] + [¢"(X), [¢"(Y), <]] -
= [o™(¥), X<] = [0"(Y), [¢"(X), 7]] =
= [do"(X, Y), 7] + [["(X), ¢"(Y)]. 7] = 0.
Proposition 6. (Poincaré lemma.) Let o € o/” be defined in a neighborhood U = M

of the point me M, and let 6 = 0. Then there is a neighborhood U, = U of m
and a form t e /P~ defined in U, such that 6t = o.

Proof. For p = 2, see Proposition 3. Let us restrict ourselves to the case p = 1.
Let ¢ € o/ be an H-valued 1-form on U, and let o = 0, i.e.,

(47) [o*(%), o(¥)] — [#5(¥), o(X)] = 0,
do(X, Y) + [¢"(X), o(¥)] = [¢"(¥), o(X)] = 0
We have to prove that the integrability conditions of the system

(48) de(X) + [¢%(X), <] = o(X), [¢"(X), 7] =0
for the H-valued 0-form 7 are satisfied. From (48, ), we get
do(X,Y) = X o(Y) — Yo(X) — o([XY]) =
= XYt + [X o"(Y), 7] + [¢"(Y), X<] — YX7 — [Yo"(X), 7] —
= [o"(x), ¥e] - [X, Y] = — ["([X, Y]), 7] =
= [do"(X, Y), 7] + [¢"(Y), o(X) — [¢"(X), <]] -
= [¢"(x), o(Y) = ["(Y), 1] = [¢"(Y), o(X)] = [¢"(X), o(¥)],

i.e., (46,). Let us write o(X) = [¢*(X), 7] Then

do(X, Y) = [do"(X, Y), 7] + [¢(¥), o(X) — [¢"(X), 7]] —
— [¢"(X), o(Y) = [¢"(Y). ]] =
= [¢"(), o(X)] = [¢"(X), o(V)] — [[¢"(X), o*(V)], 7] -
= [[o*(x), ¢"(1)], ] = [[o"(X), 9*(1)], ] = [[= *(V)], 0"(X)] -
— [[e*(¥), ¢"(X)]. <] + [z "(X)], 9"(V)] + [[0*(X), 9™(¥)]. 7] =
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= [¢5(7), o(X)] = [¢*(X). o(¥)] — [[=, " (V)] ¢"(X)] +
+ [z o*(X)] 0" ()] + [[o"(¥Y), ], @"(X)] + [ " (X)], o"(V)]

and do(X, Y) = 0 follows from (47,) and (46,).

Theorem 3. Let & < ° be the sheaf of solutions of the system

(49) 55(X) = Xs + [¢"(X),s] =0, [¢"(X),s]=0.
Then
(50) 0> F >t S

is the resolution of <.
Proof follows from Propositions 5 and 6.

Denote by I‘(aﬂ, M) the Z-module of the sections of &/? over M, and introduce
the following notation:

v

(51) BP = {6t; te (P71, M)} for p=1,
27 = {t; 7 eI(4%, M), 57 =0} for p=0;
(52) #? = 2B for p=1,
HO=2°.

Theorem 4. Let 5#* = 0. Then to each infinitesimal H-deformation w, of ¢ there
is a formal H-deformation ¢ + tw, + t?w, + ...

Proof. Suppose the existence of forms wy, ..., w, e I'(s7*, M) satisfying (40);
we have to prove the existence of a form w,, ; € I'(«/*, M) satisfying dw,+1 = 2,41,
Q,., being given by (41). Proposition 4 says that Q,, , € I'(o/%, M) and 6Q,., = 0,
ie, Q,,, €2 From #?* = 0, we get Q,,, € %7, and the existence of a solution of
0w,y = 8,41 follows.

III.

It is almost obvious that the suppositions (27) and [K, K] = K are superfluous for
the proof of Theorem 3. Nevertheless, I have technical difficulties in proving the
general result; in this section, I intend to sketch an approach to such a proof.
Perhaps new more simple methods are to be developped.
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Be given a Lie algebra G and its subalgebra H. Choose a complement K of H in G,

ie., let G = H + K as vector spaces. Each vector x € G may now be written in the
form

(53) x=x"+x*; xTeH, xfeK.

Introduce the bilinear mappings

(54) A":HxK—->H, AX=HxK->K, B":KxK-H,
BX:K x KK

by

(55) AH(XH, yK) — [XH, yK']H , AK(XH, yK) — [XH, yK]K s

BH(xK, yK) - [xK, yK]H , BK(xK, yK) — [XK’ yK]K;

of course, the mapping BX is skewsymmetric. From the Jacobi identity in G, we get:
Write

(56) RU(x,y,z) = [A%(x¥, y&), 2] — [AP(y", x¥), 2] + [BH(xX, y¥), "] +

+ AH([XH’ yH]’ ZK) + AH( AH(XH, yK)’ ZK) _

_ AH(AH(yH, xK)’ ZK) + AH(BH(XK, yK)’ ZK) _
— AT, AK(x, X)) + AT(T, AT, xN)) —
— AB(H, BY(xK, X)) 4 B(AK(x", ), 25) —
— BH(AK(y¥, xK), 2X) 4 BU(BN(xE, ¥), 25),

RX(x, y, 2) = AX([x", yH], 25) + AX(A7(x", y9), 25) — AX(AB(", x¥), z5) +

+ AX(BE(xE, yK), 2K) — AX(2", AX(x", y¥)) +
+ A", ANy, x¥)) — A", BY(xE, ¥F)) +
+ BY(AN(x", y¥), 25) — B4 (" x¥), 25) +

+ BK(BK(XK’ yK), ZK) ,
then

(57) RA(x, y, z) + RH(y, z,x) + R¥(z,x,y) =0,
R¥(x, y, z) + RX(y, z,x) + R¥(z, x,y) = 0.
The equation (28) decomposes into
(58) dp"(X,Y) = — [#"(X), 0"(¥)] — A"(¢"(X), 0*(V)) +
+ A%(e"(Y). (X)) — B (0"(X), 9"(¥)),
do*(X, Y) = — AX(e"(X), ¢X(Y)) + A5(9"(Y), ¢"(X)) — B (¢ (X), #™(Y)).
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As above, denote by &/? the sheaf of H-valued p-forms @ on M such that dw is
H-valued as well, dw being defined by

(59) 86Xy rn Xpiy) =
=do(Xq, .0 Xpi1) + Z(=D)F o(X), (X1, oo Xty ooy Xpa)] -
For the H-valued form w, it means
(60) S(X s Xpy) =
= do(Xy, - Xpr) + Z(= 1) (X, (X, s Koo Xpir)] =
= (=) A (o(X s oo Xy Xpia)s 05(X0)) s
(61) (1) A¥o(X g, o Ko Xpe1) @5(X) = 0.

My claim is that Theorems 3 and 4 remain valid. Let us restrict ourselves just to the
proof of the Poincaré lemma on the level p = 1. Thus, be given (on a neighborhood U
of a point me M) an H-valued 1-form w satisfying dw = 0, we have to prove the

existence of a neighborhood U, =« U of m and a mapping v:U,; - H such that
ov = w. Now,

(62) Su(X) = do(X) + [¢"(X) + ¢¥(X), v] =
= du(X) + [¢"(X), v] — 4"(v, 9*(X)) — A%(v, @ (X))
Further,
(63) d0(X,Y) = do(X,Y) + [¢"(X) + ¢"(X), o(Y)] + [w(X), ¢"(Y) + ¢ (¥)] =
= do(X, Y) + [¢"(X), o(Y)] - 4%(o(¥), ¢*(X)) —
— AX(o(Y), ¢(X)) + [w(X), 0"(V)] + 4%(@(X), ¢*(Y)) +
+ 4¥(o(X), ¢*(Y)) -

Thus our problem may be formulated as follows: Be given an H-valued 1-form o
satisfying

(64) do(X, Y) + [0"(X), o¥)] — A%(w(¥), ¢*(X)) +
+ [0(X), 9(1)] + A"(@(X), (1)) = 0,

(©9) A1), " (X)) — A(X), ¢5(¥)) = 0

we look for the existence of a mapping v : U; — H such that

(66) a(x) + [o"(X), v] = 4o, ¢*(X)) = (),

(67) A¥o, ¢(X)) = 0.
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To assure the existence of such a mapping, we have to show that the integrability
conditions of (66) + (67) are consequences of (64)—(67).

Write
(68) @(X) = Ao, 95(X)), ¥(X) = Xv + [¢%(X), v] — 4%(v. 9*(X)) — (X))
Then
do(X,Y) = AXXv, oX(Y)) — A5, o¥(X)) + 4%(v, de*(X, Y)) =
= AX¥(X), oH(Y)) — A(P(Y), o"(X)) + 4¥(o(X), 9¥(Y)) —
— AXo(Y), ¢"(X)) + @4(X, Y)
with
®,(X, Y) = — AX[¢"(X), o], 05(Y)) + 44" (v, 0"(X)), 2*(Y)) +
+ AX([o"(Y), v], (X)) — A4 (v, @*(Y)), 0*(X)) -
— A¥(v, A¥(0"(X), 95(V)) + A% (v, A (0"(Y), ¢ (X)) —
— A%v, B(¢5(X), ¢"(Y))) -
From (57,) for x = ¢¥(X) + ¢X(X), y = ¢"(Y) + ¢*(Y), z = v, we get
(X, Y) = BY(4%(v, 9"(Y)), 05(X)) — B(4%(v, 0"(X)), #*(Y)) +
+ AX"(Y), 4%(v, 05(X))) ,
and dP(X,Y) = 0 is the consequence of ®(X) = ¥(X) = 0, (65) and (67). Further,
d¥(X,Y) = [de"(X, Y), v] + [0™(Y), Xv] — [¢™(X), Yv] — 4¥(v, dp"(X, Y)) —
— A¥(Xv, p5(Y)) + A"(Yv, p5(X)) — d(X, Y).

Using, as above, (64)—(67) and (57,), we get d¥(X,Y) = 0. This proves the local
existence of a solution of (66) + (67).

This paper has been written during my stay at the State University and the
Pedagogical Institute at Vilnius, USSR.

Author’s address: 118 00 Praha 1, Malostranské nam. 25, CSSR (Matematicko-fyzikalni fakulta
UK).
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