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ALGORITHMIC ALGEBRAS OF COMPUTERS*)
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(Received December 22, 1972)

A pure mathematical description of computer and of its activity is given. The
functional unit of the computer is represented by an algebra, the operation of which
concern the basic, i.e. not structured, objects only. The storage is represented by a set
of functions (special sorts of storage are not distinguished). The concept of similarity
of algorithms = programs formalizes the intuitive independency of computable
functions on the input, output variables and labels, used in particular cases. The
similarity of algorithms implies their functional equivalence. The width of an algo-
rithm is introduced and the minimal width is determined as the chromatic number
of a graph defined by the scopes of variables.

1. ALGORITHMIC ALGEBRAS

An algebra {U, F), where U, F is its set of elements, functions, respectively, is
called algorithmic, if two sorts of its elements and of its functions are distinguished
such that

(1.1) U = 0Obj u Lab, where Obj n Lab =0, and F = Opr u Dec, and if the
following requirements are satisfied:

(1.2) f™e Opr v Dec = Domain f™ < Obj",
f™ e Opr = Range f™ < Obj,
f® e Dec = Range f™ < Lab.

The elements from Obj, Lab are called objects, labels, respectively, and the func-
tions (which always may be partial) from Opr, Dec are called operations, decisions,
respectively. Thus an algorithmic algebra is determined by a quadruple A4 =
= {Obj, Lab, Opr, Dec).

*) This paper is a revised version of a talk presented at the International Symposium and
Summer School on Mathematical Foundations of Computer Science, Warsaw, Jablonna, August
21—27, 1972.
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A relational structure RS = {Obj, Opr, Rel), where Rel is its set of relations,
i.e. if 7™ € Rel then Field ™ = Obj", may be considered as an algorithmic algebra
{0bj, {true, false}, Opr, Rely, if the relations from Rel are considered as the well
known truth-functions.

If we use an auxiliary set of symbols Lab, which satisfies (1.1) with respect to the
RS, then there exists an other way how to get an algorithmic algebra from RS. In
general it is admitted that Rel contains n-ary relations in k-valued logic r{y), where
n 2 land k > 2 are arbitrary integers, which are partial, i.e. one admits Field r{y) =
< obj".

If i) e Rel and if [1, 2, ..., k] is a fixed ordering of all k truth values (for k = 2
we assume 1= true and 2 = false), then by each k-tuple [ay, a,, ..., a;] of labels
from Lab the following function r{y) . - is defined:

(1.3) 2 (01, 05, ..., 0,) =g4¢ a; <> the truth value of the formula @0y, 0, ...
..., 0,) is i, where (04, 0,, ..., 0,) € Field rand1 i < k.

The set
(1.4) Relpry = {r . oy T8 e Rel and a; € Lab for i = 1,2, ..., k}

satisfies (1.2) and therefore it is the set of decisions of the algorithmic algebra {Obj,
Lab, Opr, Rel;.;> which corresponds to the RS and to the chosen set Lab.

2. COMPUTER AND ITS STORAGE

It is assumed that the only aim of a computer is to evaluate functions, but of many
different types. The basic type corresponds to the basic objects the computer is
dealing with, and the structured types correspond to the structured objects (e.g.
strings or matrices of basic objects, etc.). It depends on the level of description which
objects are considered as basic. Usually the sequences of zeros and ones of the length
64 are considered as basic objects, but we shall admit that among the basic objects
are integers and real numbers (expressed in decimal system by sequences of a fixed
length), sequences of Latin letters of fixed length, etc.

The functional unit of a computer allows to evaluate certain basic functions, called
hardware operations and relations, because they are incorporated within its hard-
ware, while all other functions are evaluated according to their programs, which are
algorithms belonging to the software of the computer.

The functional unit determines a relational structure <{basic objects, hardware
operations, hardware relations) and therefore the corresponding algorithmic algebra
of the form AA = {Obj, Lab, Opr, Reljray) is called an algorithmic algebra of
the computer.
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There are many different sorts of storage (or memory) of a computer, which need
not be distinguished for the purpose of this paper, but which are necessary for further
purposes. Therefore let Loc be the set of symbols, called locations of the computer,
and let us distinguish only two sorts of them:

(2.1) Loc = Lab v Var, Lab 0 Var = 0, Var 0 Obj = 0, where the elements from
Lab, Var are called labels, (individual) variables, respectively. This distin-
guishing concerns the use of locations within a program, and not the
hardware.

In order to define all possible software of the computer the concept of its vo-
cabulary Voc must be introduced:

(2.2) Voc = SymbOpr v SymbRel U Lab U Var U Aux, where Aux = {,; =:()
<> [ 17} and each two of the five sets of symbols are disjoint.

The symbols from SymbOpr, SymbRel are called symbols of operations, symbols of
relations, respectively, and a one-to-one mapping int, called interpretation, is as-
sumed such that

(2.3) Domain int = SymbOpr U SymbRel,

int (“f™) = ™ where “f" € SymbOpr and f™ € Opr,

int (“rii)) = ry) where “r()” € SymbRel and r§) € Rel.
The following three main types of uninterpreted machine commands are distinguished:
(operational) “f™”(xy, x5, ..., x,) =:x, where “f®” e SymbOpr and x,eVar
foreachi =0,1,..., n;
H (X1, X2, .., x,) Where “r()” € SymbRel, x;e Var for each
i=1,2,..,nand a;e Lab foreachj = 1,2, ..., k;

(decisional)

(stopping) STOP;

obviously, f®(x,,...,x,) =:x, and r{)
commands.

ma(X1s - X,) are interpreted machine

,,,,,

Everywhere further we shall not distinguish between interpreted and uninterpreted
case symbolically, because any confusion can be avoided by the context.

Among the operational commands the following type of commands may be
distinguished:

(restoring) Yo =:Xo Where x,, yo € Var,

if the omitted operational symbol was a symbol of unary identity operation. Using
the restoring commands all kinds of shifting from one sort of memory to another
one can be described.
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Let Com be the set of all commands, i.e. strings over the vocabulary Voc.

The occurrence of the variable x, in the operational and restoring command is
called a defining occurrence, and all other occurrences of variables in all types of
commands are called applied occurrences.

A state of storage is a function o € X, , where
(2.4) 244 =a (0Obj U Loc U Com)™° .

The different states of storage are used for description of the process of com-
putation, because the activity of the computer consists in changing its state of storage
step by step.

On the other hand the symbol “y” belongs to the vocabulary Voe, and it may be
used in the following two further types of commands (see [5]):

(left 2-restoring)  9(yo) =:xo Wwhere X, yo € Var.
(right 2-restoring) Yo =:7(x0)-

In this case “y” is denoting “the current state of storage”, and the only activity of
the storage, which is allowed by the hardware of the computer, is to evaluate the
current state. If o€ X,,, xeVar and o(x) € Var, then ¢*(x) = o(o(x)) is defined
which allows to describe the “ref-mechanism” in ALGOL 68 [17], but it is not the
aim of this paper.

In the following section we do not intend to investigate the structured objects and
to evaluate the functions of structured types. Therefore we do not need to assume that
the locations are natural numbers, i.e. the assumed storage has no special structure,
and further, we do not intend to use “table functions” which are the functions from
locations to objects, and by which the algorithmic algebra may be enriched.

A machine program is a finite sequence of machine commands which are stored
in certain locations = labels. Therefore a pair (b, C) is called a labelled command,
where b e Lab and C € Com.

3. ALGORITHMS OVER AN ALGORITHMIC ALGEBRA

Let AA = {Obj, Lab, Opr, Rely;,,;> be an algorithmic algebra of a computer and
let Var be a set of individual variables such that (1.1) and (2.1) are satified. Further
let Voc be the vocabulary introduced in Sect. 2. With respect to computers the term
algorithm may be replaced by the term program. '

A finite sequence 4 = (K™, U®, ..., K™) of labelled commands K = (b, C?)
is called an algorithm over Voc if the following two requirements are satisfied:

(3.1) bD % bWV where i # j, for eachi,j =1,2,...,N;
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(3.2) there exists at least one finite sequence 1b = (K,, K,, ...,K,) of labelled
commands from A (i.e. K; = KY) such that:

(i) Ky = KW
(i) K, = K where 1 < j < N, and CY = STOP;

and CY is an operational (or a restoring) command,;

(iii) there exists an integeri,1 < i < g such thatK; = K where1 < j < N

(iv) if K; = KY where 1 < i < q then one of the following two possibilities
must occur: either CY is an operational command and then 1 < j < N

s p
and K,y = KUY, or CV = ¢l (xy,...,x,) is a decisional com-

mand and then there are indices hy 1 £ h < k and p, 1 < p < N such
that a, = b® and K, ; = K.

For theoretical purposes it is usefull to admit also infinite algorithms when the
given sequence A is infinite.

A sequence Ib, the existence of which is required in (3.2), is called labelled branch
of A if it satisfies (3.2, i, iii and iv). Let LB, be the set of all labelled branches of A.

A variable which occurs in a labelled branch b € LB, is called input variable of b,
if its first occurrence (from left to right) in the string Ib is an applied occurrence.
A variable which has its defining occurrence in the labelled branch Ib € LB, is called
output variable of 1b, if after the last defining occurrence (the first from right) of this
variable in Ib either no its occurrence appear or there appear only its applied occur-
rences in decisional commands. Let Inp,, Outp,, be the set of all input, output
variables of b, respectively. Further let us define

(3.3) Inp, = U Inp, and Outp,= U Outp,,
IbeLB 4 IbeLB 4

where the variables from Inp,, Outp, are called input, output variables of the
algorithm A.

Lemma 3.1. If A is an algorithm over Voc then 1B, # O and therefore Inp, +
* 0 % Outp,.

The proof follows immediately from the definitions.

It should be noted that using new restoring commands and new variables further
output variables of an algorithm may be introduced.

The application of the algorithm A = (KW, ..., K™) to the initial state 65 € X4
in the algorithmic algebra AA is an activity, which starts and can, but need not
terminate, and which consists of elementary steps corresponding to particular com-
mands: the first step consists in application of K; =4 K to ¢, and in the i-th step,
1 £ i by the application of K; =4 K9, 1 £ j < N, to the state g;_,, the next state g;
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and the next command K, ; are determined as follows:

(34) (1) if €V = fx,y, ..., X,) =: X then

a) 0(Xo) =ar int fO(a;_ 1(x1), -0 6:-1(x,))s 04(2) =ar 0:-4(2) for each
zeVar such that z + x;

b) Kivi =g KUH);

(i) if CV = 1) (x1. ... x,) then

[as,...,
a) 0; =ar0i-15
b) K;y =a K" where h is the smalest integer such that b™® =
= int rgz,.,.,nkl(ai-—l(xx), cees 0i~1(xn))§
(iii) if CY¥ = STOP then K; is the last step and the activity finishes; the

application is called stopped and &;_, is called the result state which
corresponds to the initial state o;

(iv) if in the case (i) either j =N or (0,-4(xy), ..., 0;-1(x,)) ¢
¢ Domain (int f™), or in the case (ii) either as = b™ for each
s=1,2,..,k and each h =1,2,..,N, or (g;-4(xy), ..., 0;-4(x,)) ¢
¢ Domain (int r{})  ,.) then K; is the last step and the activity

finishes; the application is called finished;

(v) it may happen that the activity does not finish and then the application
is called not finished.

Let LB44(A, 65), Cpt44(A, 6,) denote the unique labelled branch (K4, ..., K,), the
sequence of states (0o, 05, ..., 6,—;), respectively, which are determined by a stopped
application of 4 to o, in A4 according to (3.4). LB, (4, 6,) is called a labelled
branch applied in AA and Cpt,,(A, 6,) is called computation in AA. Let LB, 44
be the set of all labelled branches applied in 44 of the algorithm A. Obviously
LB, 44 = LB, for each AA.

The state function S, ,,, depending on the algorithm A4 and on the algorithmic
algebra AA, is defined as follows:

(3.5) Domain Sy 44 =y {09 € 2,45 Cptyu(A, 0,) exists},

Range S, 44 =g {0,_1; there exists oo € X4, and Cpty (A4, 5) = (0, - ..
e Ggm1)}s

S4,44(00) = 04—y Where Cptas(4; 06) = (005 ---» o;q—l)'

This state function S, ,, is a transition function of a nonsequential machine (see
[2]) or of a jumping machine (see [3]), and this transition function is the starting
concept of Pawlak’s approach (see [14]). The state function is not investigated here.
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In the next Sect. 4 the following assertion will be proved easily:

Lemma 3.2. Let A be an algorithm and let 6., 6, € 2,4 be two initial states such
that (x) = o4(x) for each x € Inp,. Then a) LB44(A, 0,) exists <= LB, ,(4, c})
exists; b) if LByu(A, 6o) exists then LB44(A, 04) = LB44(A, 0y) and o,_4(y) =
= 0,-1(y) for each y € Outp,, where Ib = LB, ,(A, 0,) and Cpt (4, 65) = (0o, ...
coes 6g_1) and Cptg4(A, 05) = (64, ..., 6,4—1)-

The assertion 3.2 allows the following definition of the system of functions
fa,44<{Inp4, Outp,) which is computable (or algorithmically definable) by A4 in AA:

(3.6) the system fy 44<{Inp4, Outp,) contains |Outp,| functions of |Inp,| variables
(|N| is the number of elements of the set N); the functions of the system are
distinguished by the particular output variables; if fy4 44, € 4,44 Where

y€Outp,, and Inp, = {xy, X5, ..., %} then fy44,(00(x1), oo(X2)s..
vy 00(%,)) =45 64—1(y) < LB44(A, 0,) exists and Cpty4(A, 05) = (00, 04, - ..
...y Gg—y), Where one fixed ordering (xy, X, ..., X,) of all input variables is

assumed (which is not determined by Inp, itself).

It can happen that f, 44, = f4 44,,- for some y, y’ € Outp,, where y # y’. This is
the reason why f, 44 is considered as a system and not as a set of functions fu 44y,
the only distinguishing thing among which is the output variable y.

If we are not interested in the input and output variables of the particular algo-
rithms then the following equivalence of two systems may be introduced: one writes
fa44 = far a4 if there exist two one-to-one mappings 7, and 7, such that
Domain n;,, = Inp,, Range =;,, = Inp,, Domain =,,,, = Outp,, Range7,,, =
= Outp,. and

(37) Faany(X1s X202 X)) = Far ot monepy(TinpX1s TinpX2s -5 TinpXy)  fOr each ye
€ Outp,, where x; and m,,,x; are the corresponding variables for each i =
=1,2,...,r

The usual functional equivalence = ,, of two algorithms 4 and A’ in the algo-
rithmic algebra A4 is defined as follows:

(3‘8) A=44A < 444 = faraa-
Finally let Algy,. be the set of all algorithms over the vocabulary Voc. Then
(3.9) fet, = {fA,AA,y; faaa,EF1,440 A€ A,gVoc}
and
(3.10) Fety, = {fuun; A€ Algy,)

represent the functional power of the algorithmic algebra A4 when the algorithrﬂs
of Algy,. are used.
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If the algorithmic algebra AA, is defined as follows: Obj, is the set of all natural
numbers, Opr, contains only the successor function, Rel, contains only the equality
relation, and Var,, Lab, contain as many symbols as it is necessary, then the following
theorem is proved in [6].

Theorem 3.3. fct, , contains all partial recursive functions.

In the following section we shall assume that each algorithm 4 = (K@, ..., K™)
satisfies the following requirement:

(32) (v) each KO, where 1 < i £ N, is contained at least in one labelled branch
of A.

The labelled commands of 4 which do not satisfy (3.2v) are called (syntactically)
superflous, because they may be omitted (or added) without any effect to the set LB,
and therefore to the computable system f, , 4.

Lemma 3.4. If A* arises from the algorithm A over Voc by omission of all its
superflous labelled commands, then LBy« = LB, and A* = 4, A in each algorithmic
algebra AA over Voc.

The proof follows by the definition and by (3.4) and (3.6).

In fact the inductive definition of application (3.4), and all other inductive defini-
tions, concerns only the labelled commands which are not superflous. E.g. if the last
command of an algorithm is operational, then it is superflous.

In order to be able to speak about the particular symbols from Voc, which occur
in a command C € Com the following auxiliary functions [4] must be introduced:

(3.11) (i) if C is an operational, decisional command then symb C denotes the
symbol of operation, decision, respectively, which occurs in C; if Cis the
stopping command then symb C = STOP; if C is a restoring command
then symb C = Id, where “Id” is a new symbol (which may be added
to SymbOpr) corresponding to the unary identity function;

(i) arg; C denotes the i-th (from left to right) applied occurrence of
a variable in C fori =1,2,...;

(iii) res C denotes the (unique if any) defining occurrence of a variable in C;

(iv) lab; C denotes the j-th (from left to right) occurrence of a label in C
forj=1,2,...

Obviously the defined functions are partial, e.g. res C and lab; C cannot be defined
simultaneously.

Further let var C, lab C be the set of all variables, labels, respectively, which
occur in C. And if K = (I, C), A € Algy,., Ib e LB, etc., then the set of variables
var K, var A, var Ib, etc., and the sets of labels lab K, lab A, lab b, etc., are defined
in a similar way.
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4. SCOPES OF VARIABLES. WIDTH

In an algorithm 4 = (K@, ..., K™)) without superflous commands let us assume
that all occurrences of all variables are numbered by right upperscripts from the left
to the right, i.e. the k-th occurrence of the variable x is denoted as x*. If xeInp,
then the zero-th occurrence x° is added (for easier definitions of further notions).

Lzt us denote:

(4.1)  Ocy(x) is the set of all numbered occurrences of x in A (inclusively the zero-th
occurrence if x eInp,);
Ocy = U Ocy(x);

xevarA

0cy(x) = |Ocy(x)| and oc, = Y. Aoc,,(x).

Xevar.

In each labelled branch Ib = (K, ..., K,) of A let us assume that all occurrences
of all variables are numbered by left upperscripts from the left to the right, i.e. the
h-th occurrence of the variable x is denoted as "x. If x € Inp,, then the zero-th occur-
rence °x is added.

Let us denote:

(4.2)  Ocyy(x) is the set of all numbered occurrences of x in Ib (inclusively °x if
x € Inpy); Ocy, = U,,, Ocy(x); ocy(x) = |O0cy(x)| and ocy, = Y, ocy(x).

xevar xevarlb
Each zero-th occurrence is considered as a defining occurrence.
It is clear that there exist a mapping x,, such that Domain %, = Oc,, Range x,, =
< Ocy, and "x € Ocy, and x,,("x) = x* € Oc, either identify the same occurrence of
the variable x in A, or both are zero-th occurrences. Therefore, obviously,

(4.3) "x e Ocy is a defining (applied) occurrence of x <> »,("x) € Oc, is a defining
(applied) occurrence of x.

The scope of the defining occurrence "x € Oc,, in the labelled branch Ib e LB, is
the set SC,,("x) of the following occurrences in Ib:

(4.4) SCu("x) = {**'x; 0 < i < p and p is the maximal integer such that "*x is
an applied occurrence for i = 1,2, ..., p}.

The number |SC,,("x)| — 1 is called the length of the scope Sc,("x) and "*%x, where q
is the length of the scope, is called maximal occurrence of the scope. Thus the
maximal occurrence of the scope having length equal zero is a defining occurrence.

The first occurrence x € Oc,,, which is an applied occurrence, is called the input
occurrence of x in Ib, and the last occurrence *x € Oc,,, where k = |oc;,(x)|, which
is a defining one, is called the output occurrence of x in Ib.
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If ¥x is a maximal, input, output occurrence of x in Ib then x,,(*x) is called maximal,
input, output occurrence of x in A, respectively.

The scope of the defining occurrence x* € Oc, in the algorithm A is the set SC (x)
of the occurrences in A:

(4.5)  SC,(x*) = {su('x); Ibe LB, 'xe SC,("x) and »,("x) = x*} .

The number [SC(x*)| — 1 is called the length of the scope SC4(x*).

Remark 4.1. There exists at most one input and output occurrence of a variable
in 1b e LB,, but there can exist more than one input and output occurrences of
.a variable in A. There exists at most one maximal occurrence of a scope in lb, but
there can exist more than one maximal occurrences of a scope in A.

The proof follows from the definitions.

A labelled operational command K® of the algorithm 4 = (K™, ..., K®™),
1 <p <N, is called (semantically) superflous if in each labelled branch Ib =
= (K, ..., K,) € LB, such'that there exist K; = K» and res* C; is not an output
occurrence, the following requirement is satisfied:

(4.6) the length of the scope SC,res* C;) is zero,

where the function “res™ assignes the corresponding numbered occurrence of Ocy,
to C; (while “res” of (3.11) assigned the variable itself). In a similar way the other
functions “arg;*” and “labj“” will be used.

Lemma 4.2. Let A* arise from A = (K", ..., K™) € Algy,., when A is without
syntactically superflous commands, by omitting of a (semantically) superflous
operational command K® = (b®, C?S where 1 < p < N, and by the following
change of each decisional command K®), 1 < s £ N: if symb C® = ¢} . then

each a;, 1 £i £k, such that a; = b, should be replaced by the label b?* D,
Then A* =44 A in each algorithmic algebra AA.

The proof is obvious.

Lemma 4.3. If "x € Oc,, where 1b e LB, A € Algy,. then there exists exactly one
defining occurrence *y € Ocy, such that *x € SCy,(*y), and, obviously, y = x.

If x" € Oc, then there exists at least one defining occurrence x* € Oc, such that
x" € SC,(x*).

Proof. If x € Ocy, is a defining occurrence then by (4.4) *x € SCj,("x). If "x is an
applied occurrence then either there does not exist a defining occurrence *x such
that 1 < k < h; in this case x is an input variable and therefore °x € Oc;, and by
(4.4) "x € SCy(°x); or there exists the mentioned defining occurrence *x with the
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maximal number k; in this case by (4.4) "x € SC,,(*x). Thus each occurrence apears
at least in one scope. The assumption SCp("x) N SCip(*x) & @ for h =+ k leads to
a contradiction by (4.4) immediately.

The second part follows by (4.5) directly.

The set of all scopes in A is considered as the set of vertices of the undirected
scope graph the edges of which are defined as follows: two scopes are joined by an
edge if their set theoretical intersection is not void. Then the set theoretical union
of all scopes, which belong to the same connected component of the scope graph, is
denoted by FaSC , and called a family of scopes. It is clear that using the families
of scopes the last assertion of Lemma 4.3 may be extended.

Let A= (K®,..,K™), 4" =(K'D,..,K'™) be two algorithms over Voc,
where K = (b, C?) and K'P = (b'P, C'Py. We say that A is similar to A’,
and we write 4 sim A’, if the following requirements are satisfied:

(4.7) (i) N =N
(ii) symb C® = symb C'® for p =1,2,..,N;

(i) if the mapping  is defined as follows: Y(b®P) = p'® for p =
=1,2,...,N, where Domain y = {bV, ..., b™} and Range y =
= {b'®, .., '™}, thenlab; C'® = y(lab; C?) for eachj = 1,2, ...,
and each p such that 1 < p < N and C® is a decisional command,

N
(iv) if the mapping ¢ is defined as follows: ¢ = U @, where argf C'® =
p=1

= ¢, (arg® C?) for each i = 1,2, ..., and each p such that 1 < p <
< N and C® is not the stopping command, res* C'® — @ (res* C?)
for each p such that 1 £ p £ N and C™ is an operational command,
then:

(*) arg® C® and arg C® are occurrences of the same variable <>
<@ (arg® C?) and ¢, (arg C?) are occurrences of the same
variable, where 1 < p < N;

(**) arg® C” and arg;* C” are input occurrences of the same variable <
< ¢ (arg; C?) and ¢ (arg C®) are input occurrences of the same
variable, where 1 < p, r < N;

(***) x* e SC,(x") = o(x*) € SC.(¢(x")) for all x*,x"e Ocy, where ¢ is
extended to the zero occurrences in accordance to (**) uniquely;

(****) res* C?®) and res* C™” are output occurences of the same variable <>
< ¢ (res* C?) and ¢ (res* C) are output occurences of the same
variable, where 1 < p,r < N.
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Theorem 4.4. The relation sim is an equivalence relation in Algy,c,

Proof. The relation sim is the intersection of four binary relations, which are
defined by four requirements (4.7i, ii, iii and iv). The first two of these relations are
equivalence relations evidently. The third concerns a one-to-one mapping y, and
therefore it is clear, that it is an equivalence relation also. Finally ¢ is a one-to-one
mapping again, and therefore one easy proves that the identity satisfies all four
conditions (*)—(****); further if ¢ satisfies these conditions then also ¢~ ! satisfies
them; and if ¢, and ¢, satisfy these conditions and Range ¢, = Domain ¢,, then
@, satisfies them also. Thus the reflexivity, symmetry and transitivity of the fourth
relation is proved.

Let us introduce the following sets of labels which correspond to scopes and to
families of scopes:

(4.8) LaSC,(*x) = {I;<1;,C;> =K, Ib=(K,,..,K,)), 0si<j<i+k=q,
where "x belongs to K; if h > 0 and i > 0, while i = 0 if h = 0, and the
maximal occurrence of this scope belongs to KH,(};

(4.9) LaSC4(x*) = U LaSC,("x);
*p(hx) =x*
IbeLBs
(4.10) LaFaSC,(x*) = U LaSC,(x").
xheFaSC 4

Lemma 4.5. If A’ arises from A by the renaming ¢ of occurrences of variables
such that (4.11) is satisfied, then A’ sim A, where

(4.11) (i) x* e FaSC4(x") = o(x*) and o(x") are occurrences of the same variable;

(i) LaFaSC4(x") n LaFaSC (y*) + 0 = o(x*) and o(x") are occurrences of
two different variables.

(iii) x* and y* are output occurences of the same variable < o(x*) and o(y")
are output occurences of the same variable.

Proof. It is clear that A’ and A satisfy (4.7i, ii and iii). Therefore it remains to
prove that ¢, defined in (4.7iv), satisfies (*)—(****). If arg,* C® and arg;* C® are
occurrences of the same variable then they belong to the same family of scopes and
therefore by (4.11i) ¢,(arg* C?”) and ¢ (arg;? C') are occurrences of the same
variable. On the other hand if arg,* C‘” and arg,* C'? are occurrences of different
variables then they belong to different families of scopes, such that their sets of labels
have not void intersection, and therefore by (4.11ii) also o, (arg FC®)and ¢ (arg,* C?)
have not void intersection, and therefore by (4.11ii) also ¢,(arg* C”) and
¢,(arg;? C?) are occurrences of different variables. Thus (*) is proved.
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The renaming ¢ does not change the property of to be an input occurrence, and
therefore (**) is also satisfied.

The condition (***) may be proved by contradiction. and the remaining require-
ment (****) is only a transcription of (4.11iii), when one uses the identity ¢(x*) =
= o(x").

The family graph of an algorithm A is the undirected graph G, the vertices of
which are families of scopes not containing output occurrences, and an edge connects
FaSC 4(x") with FaSC ,(y*) if LaFaSc(x") n LaFaSC ,(y*) * 0.

Theorem 4.6. If x(G,) is the chromatic number -of the family graph G, of the
algorithm A and Sim (A) is the class of all algorithms A’ such that A’ sim A, then

(4.12) min |var A'| = max {y(G,), |Outp,|} .

If Ib = (K, ..., K,) € LB, then let us define the sequence Med,, = (Mo, M, ...
.ey M,_y) of sets of intermediate variables as follows. If K; = <(b;, C;>, 1 < i < g,
then let H,,(C;) be the set of all variables the occurrences of which in C; (within Ib)
are the maximal occurrences. Now

(4.12) My =4 Inpy, My =4 (M; — H(C))) U {resC;} for i =1,2,..,q9 — 2.

The width wid (Ib) of the labelled branch 1b is defined by the requirement
wid (Ib) = max |M,|, and the width wid(A) of the algorithm Ais defined as follows:

MieMedp
wid (A4) = max wid (Ib).

1beLB 4
The sets of intermediate variables give perfect knowledge concerning locations of
all intermediate results after each step of computation. The sets of intermediate
variables are necessary if the ‘interruptions” are described, and are usefull for
description the ‘“‘garbage collection”.

5. SIMILARITY OF STATES AND COMMANDS

A one-to-one mapping © such that

(5.1) Domainn < Var U Lab, Range |y, < Var, Rangen|;, = Lab, is called
a similarity. We say that the state o is similar to the state ¢’ in the similarity
n, and we write ong’, if

(5.2) o(x) = o'(x) for each xe Domainn.
The following assertions follow immediately from the definitions:

(5.3) one’ < o'n le, and ome’ and n' < =on'c .
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We say that the command C is similar to the command C' in the similarity ,
and we write CrnC’, if '

(5.4) (i) symb C' = symb C;
(ii) arg; C' = n(arg; C) fori =1,2,..;
(iii) lab; C' = n(lab; C) for j = 1,2,...
Lemma 5.1. If CnC’ then

(5.4%*) (i) arg;C
(i) lab; C = lab; C <> lab, C' = lab; C' where i,j = 1,2, ...

arg; C<=arg, C’' = arg; C' where i,j =1,2,...;

The proof follows directly from the definitions.

If C and C’ are operational (or restoring) commands and CrC’ holds, then the new
mapping n*, called the star similarity of =, arises from r as follows:

(5.5) n*(res C) =4 res C' and n*x =4 nx for each x € Domain t — {res C};

the domain and range of ©* is changing according to the following five possibilities:

(5.6) 0 i dres C ¢ Domain &t hen Domain 1* =, Domain & U {res C}
0 res C' ¢ Range nt Range n* =, Rangen U {resC'}{’

!

1 if res C € Domain &t then
0 res C' ¢ Range nt

)

a) tresC % res C' and {

res C ¢ Domain &t i
res C' e Rangen ren

if{
Domain n* =, (Domain n — {n "' res C'}) U {res C}
Range t* =4 Rangen ’
Domain n* = ; Domain nt
Range n* =4 (Rangen — {nresC})u {resC’}|’

res C € Domainn

then either
res C' e Range n }

Domain n* =4 Domainn — {n~* res C'}
Range n* =, Rangen — {mresC} ’
or

Domain n* =4 Domain n}

b) nresC = res C' and {Range n* =4 Rangen
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All five possibilities are clarified by the following examples, where it is assumed
that Domain n = {x, y}, Range n = {x, )’} and nx = x/, 7y = y:

0\ (x + y=:z)n(x' + y =:z) = Domain n* = {x, y, z},
0/ Range n* = {x, y', z'};

0\ x+y=:z)n(x' +y
1) Range n* = Range 7;

:y') = Domain n* = {x, z},

1\ (x +y=:x)n(x' + )" =:z) = Domain n* = Domain ,
0/ Range n* = {y’, z'};
i) a) (x+y=:x)n(x'+) =:)') = Domain n* = {x}, Range n* = {y'};
b) (x + y =:x)n(x' + )’ =:x") = Domain n* = Domain 7,
Range n* = Range 7.

It is easy to see that star similarity n*, which arised from the similarity © by (5.5)
and (5.6), is a one-to-one mapping, and therefore also a similarity.

Lemma 5.2. Let be C © C', where C is an operational command, and let nx =y,
where x € Domain , y € Range . If x & res C and y + res C', then x € Domain 1*,
y € Range n* and n*x = y.

Proof. With respect to (5‘6) the possibilities (1)), (1)) and i)a) should be taken in

acount, and therefore it suffices to show that x = n ! res C' and y + nres C. If it
were x = ! res C’, it would be y = nx = res C’, which contradicts the assump-
tion, and similarly in the second case. Thus x € Domain ©* and y € Range n*. Now
by (5.5) follows n*x = nx = y.

Let A = (K™, .., K™), 4" = (KD, ..., K'™) be two algorithms, where K(? =
= (b®, ¢y and K'D = (p'D, ¢'DY, and let 7 be a similarity. We write 4 1 4,
and say that A is similar to A’ in the similarity =, if the following requirements are
satisfied:

(5.7) (i) Domain x|y, > Inp,, Range n|,,, = Inp,;

(i) Domain x|, = {b?, ..., b™} and nb® = b'® for each i = 1,2, ..., N;
(i) if we define 1" =4 then CV 7 C'D holds, and if n® has been
already defined and C® n® C'® holds, where 1 < p < N, then
either C?) is an operational command and 1 £ p < N, and then we define
Pt = o (nP)* and it must hold C®+V g+ 1) Cre+1)

or C® is a decisional command and then we define n® =4 @ for each g
such that b® = lab; C” for an integer j 2 1, and it must hold
C@ g '@,
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(iv) res C®¥ = res C® < n@[res CP] = n[res C” for all similarities
@, 1 which are defined in (5.7iii), where res C® gnd res C are
output occurences, and 1 < p, r < N.

The similarity = of A A’ is called minimal if the requirement (1) is replaced by
the following stronger requirement

(5.7) (i*) Domain x|y, = Inp,, Rangely,, = Inp,-.

It should be mentioned that if a command K® of 4 is (syntactically) superflous,
then there is no similarity n? defined for it in (5.7iii). On the other hand if K is not
superflous then there is at least one similarity n(®) defined for K, If s, is the number
of all similarities n(” then 5, < r(b®) + 1, where r(b™®) is the number of different
labelled commands K@ such that b® = lab; C@ for an integer j > 1.

Theorem 5.3. A sim A’ = there exists a similarity © such that A © 4"

Proof. Let 4 =(K™,..,K™) and 4’ = (K'®,...,K'™), where K® =
= (bW, Py and K'®D = (p'D, 'Y and let us assume A sim A’, i.e. N = N’ and
there are mappings  and ¢ such that (4.7) is satisfied.

First of all let us define © as follows: 7/,,, =  and therefore m satisfies (5.7ii); if
x*“€ Ocy and y" € Oc. are arbitrary input occurrences such that ¢(x*) = y", then we
may define nx =y, because ¢ satisfies (**) of (4.7iv). With respect to the definition of
input occurrences in 4 or A’ it follows that Domain nlya, = Inp, and Range Tr]ya, =
= Inp,.. Thus 7 satisfies (5.7i).

It is clear that the requirement (5.7iv) follows immediately from (4.7%#%#**) and
therefore it remains to prove (5.7iii), i.e. to prove the corresponding assertion con-
cerning all possible similarities n” for cach C?”, 1 < p < N. If Ib = (K,,...,K,) €
€ LB,, where K; = <{b;, C;>, is an arbitrary labelled branch containing C®, and if
Ib" = (K}, ...,K;) € LB., where K} = <bj, C}», is the corresponding labelled branch,
which is determined uniquely by v, i.e. b = (b)) for i = 1,2, ..., q, then we
may define mappings n, 7, ..., 7, as follows: m; = rand if 1 £t < g and =, has
been defined then either C, is operational and we put m,,, = =}, or C, is decisional
and we put m,,; = 7, It is clear that each possible 1 = r,, when C'” = C, and Ib
was chosen suitably. Therefore it is sufficient to prove the assertion for , (instead
of n(® from (5.7iii)), which says: C,m,C;. With respect to (4.7ii) and (4.7iii) it remains
to prove only (5.4ii), ie. arg; C; = m,arg; C,for i = 1,2, ..., and we shall prove it
by induction as follows.

1) According to (3.2i)) C; = C™ and Cj = C'™ and therefore let us prove
narg, C" = arg, C'™ for each i =1,2,... If we denote arg?C®" = x* and
arg? 'V = y* where 1 < i, then x¥, y* must be input occurrences and @ (x*) = y".
Therefore by the definition of & it holds tx = y.
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2) Let us accept the following inductive assumption: =, arg; C*’ = arg, C')
foreacht =1,2,...,pand foreachi = 1,2, ..., where 1 < p < g, and let us prove:
T,y arg; CP*Y = arg, C'®* D for each i = 1,2,...

Let us denote *x = arg? C?*D and "y = arg? C'?* 1), where 1 < i. Using Lemma
4.3 let "x, *y be the unique defining occurrences in Ib, Ib’, respectively such that
*¥x € SCy("x) and "y € SC,, (*y).

a) If r = 0 then also s = 0, which follows by contradiction from (***) of (4.7iv).
In this case k = h and there is no defining occurrence of x, y, in C,, C;, respectively,
fort =1,2,..., p. Now 'x and 'y are input occurrences and therefore ©,;x = y. By
the definition of m, and by repeated application of Lemma 5.2 we obtain m,, ;x = y.

b) If » > 0 then also s > 0, which follows by (***) again. In this case there exists ¢,
1 £t < p, such that "x = res* C, and °y = res* C,. Using (5.5) we prove that
mee1x = y. If t = p, we proved 7,,,x = y, and if ¢ < p then there is no defining
occurrence of x, y in C,, C,, respectively, for each v such that, t + 1 < v < p. Thus
again the assumption for repeated application of Lemma 5.2 and of definition of =,
are satisfied, and we obtain m,,;x = y from m,, ;x = y, which finishes the proof.

Lemma 5.4. Let o, ¢’ be states, C, C' be operational (or restoring) commands,
and m be a similarity such that ¢ © ¢’ and Cn C' hold. If the next state Co exists
then also C'c’ exists and (Co) ¥ (C'a’) holds, where m* is the star similarity,
defined by (5.5) and (5.6).

Proof. By the assumption C n C’, i.e. by (5.4) it follows symb C = symb C’ and
let us put symb C = f™. We want to prove (Co) (x) = (C'd’) (n*x) for each x e
€ Domain n*, and therefore, with respect to (5.6) let us distinguish the five pos-
sibilities:

g) In this case Domain n* = Domain n U {res C}, Range n* = Range n U
U {res C'}, and further res C ¢ Domain n, res C’ ¢ Range n. If x € Domain 7* and
x # res C, then x € Domain n and nx # res C'. Therefore by (3.4) (Co) (x) = o(x)
and (C'¢’) (nx) = o'(nx); by the assumption ¢ ¢’ it follows o(x) = ¢'(nx), and by
(5.5) n*x = mx. Thus we have (Co) (x) = o(x) = o'(nx) = (C'¢’) (nx) = (C'¢") (n*x).

If xe Domainn* and x = res C then by (4.5) n*(res C) = res C'. By (3.4)
(Co) (res C) = f™(o(arg; C), ..., o(arg, C)) and (C'c") (n* res C) = f"(d’(arg, C'),
..., o'(arg, C')); by the assumption C n C', i.e. by (5.4), it follows arg; C' = n(arg; C)
for each i = 1,2,...,n, and by the assumption ¢ 7 ¢’ it follows a’(n(argi Q) =
= o(arg; C)) = o(arg; C) for i=1,2,...,n Thus (Co)(res C) = f"Yo(arg, C),
..., o(arg, C)) = f(c'[n(arg, C)], ..., o'’n(arg, C]) = f®(o'(arg, C), ...,
o'(arg, C')) = (C'd’) n* res C). 2

Therefore (Co) n* (C'd’) is true.
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Let us briefly prove the next possibility ? , where Domain n* = (Domain & —

— {n"'resC'}) U {res C}), Range n* = Range m, and res C ¢ Domain &, res C' €
€ Range . If x € Domain n* and x + res C then nx #+ res C’. Similarly as above
using (3.4), (5.5) and the assumption ¢ ma’ we get (Co)(x) = o(x) = o'(nx) =
= (C'¢") (nx) = (C'd") (n*x).

If x € Domain n* and x = res C, then by (5.5) n*(res C) = res C'. Further by
(3.4) and by the assumption CnC’ and oma we get, similarly as above,
(Co)(res C) = f"(o(arg, C),...,a(arg, C)) = f"c'[n(arg, C)],...,0'[n(arg, C)]) =
= f"(o'(arg, C'), ..., o'(arg, C')) = (C'c") (n* res C).

The remzining three possibilities can be proved in a analogous way.

Theorem 5.5. If A A’ then f; 44{Inpy, Outp,> = f4 44{Inp,., Outp,.>.

Proof. Let us assume that A = (K@, ..., K™), where K® = (b® C@®3 and
A = (KM, .., K'™), where K'® = (b'‘?, C'""). Further let © be the minimal
similarity, and let 6, o be two arbitrary initial states such that o, 7t a,.

If we put m; =47 and C; = C, C; = C'V then ¢, m, 0§, and by (5.7iii) also
C, m; C; holds, which will be the starting assertion of an induction. The inductive
assumption is as follows: ¢,_1 7, 0,_; and C,n, C, hold, where LB, ,4(4, 0,) =
= (Ky, ... K,), K, =<b, C», and Cpt, , (A, ¢y) = (00, 0y, ..., 0,-;) and
LB, (A, 00) = (K}, ....,K;), Kp=<l,,Cp>, and Cpty 4,(A" 60) = (60, -..
Q...,0,_y). Let us denote 10" = (Ky, ..., K)) and Ib" = (K}, ..., K). We want
prove ¢, m,, 6, if 1 < p < g.If C, is an operational (or restoring) command then
it follows by Lemma 5.4, because o, = C,0,_; and o, = C,0,_;, and if C, is
a decisional command then by (3.4ii) 0, = ¢,_, and o}, = o,_,, and by (5.7iii)
T,+1 = T, which proves ¢, 7,1 0, also. By this induction is proved ¢, 7, 0,1

We need to determine two one-to-one mappings x;,, and m,,,,, which are required
in (3.7). Obviously we define 7;,, = m and, with respect to (5.7iv) it is possible to
define 7,,,,[res C?] = n®[res C®] for each output occurrence res C” and each p,
1 < p £ N. It is clear that nau,plo,,,p,b = 7, i.e. T, is an extension of m, for each

Ib € LB,; thus according to (3.6) if ye Outp, and Inp, = {x,, ..., x,} then
fA,AA,y(O'o(Xx), cees Uo(xr)) = 0'q—1(Y) = ;-1(7qu’) = U;-x(”omp}') =
= fA',AA,ﬂm..p,y (a(',(ﬂ:,-,,pxl), e o{)(ni"‘,x.)).
This proves (3.8) if o, and gq vary for all possible cases.

Proof of Lemma 3.2.

Let us take A" = 4 and let © be the identical similarity such that Domain n =
= Inp,. Then An A’ and the assumption o(x) = ao(x) for each x eInp, from
Lemma 3.2 may be rewritten as o, © 6. Now using the induction from the proof of
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Theorem 5 we shall recognize that all m, are identical mappings. Therefore
g1 Ty 0,y implies g, (x) = 05-1(n,x) = 6,_(x) for each x e Outpy Which is
the required assertion c).

6. SIMPLE ALGORITHMS AND THEIR COMPLEXITY

An algorithm A € Algy,. is called simple if all its commands are operational (the
stopping command may be omitted because there exist just one branch of A). In [7]
by the simple algorithm A its algorithmic net (without cycles) N , is determined such
that N, is an oriented acyclic multigraph with labelled vertices and edges. The
algorithmic net is a generalization of the concept of term and of usual binary rcoted
trees, which correspond to arithmetical expressions in two respects: more than one
root is admited, and the output degrees of inner vertices may be arbitrary (and not
necessary always 2).

By an algorithmic net its partially ordered set is determined, the linear extensions
of which represent all possible courses of evaluation of the net. These courses are
simple algorithms which are functionally equivalent in all interpretations. On the
other hand the proper concept of homomorphism of algorithmic nets allows to get
a complete characterization of all algorithmic nets, the courses of which are func-
tionally equivalent.

The with of algorithmic net is determined in [8] and [9], where in several special
cases more general results are obtained than in [13], [15] and [16], but the general
problem remains still open.
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