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The study of projective or affine planes (i.e., the study of a special case of structures
with relations) is intimately connected with the study of planar ternary rings (i.e., of
a special case of structures with operations). It is the method of coordinatization
(introduction and use of coordinate systems) that enables us to transfer problems
from one of these given structures to the other one. The correspondence between the
properties of the projective or affine planes and planar ternary rings coordinatizing
them is not one to one. The fact that a projective plane may be coordinatized by
a planar intermediate ring (G. E. MARTIN) as well as by a planar ternary ring with zero
(L. A. SKORNJAKOV) or by a usual Hall planar ternary ring (with zero and unity)
shows that some properties relative to planar ternary ring depend on the coordinatiza-
tion either and even only. In this paper we are dealing with a characterization of
planar ternary rings with zero (from now only planar ternary rings or shortly PTR’s)
coordinatizing the translation plane. It is well-known that an affine plane is a trans-
lation plane if and only if there exists a left quasifield coordinatizing it. We shall
present PTR’s of any given translation plane, which are without unity and without
the left distributivity. However, our main purpose is to deduce a convenient necessary
and sufficient condition that a given PTR coordinatizes a translation plane.

This research was suggested by VAcLAV HAVEL and written under his direction.

1. AXIOMS OF A PLANAR TERNARY RING
AND THEIR IMMEDIATE CONSEQUENCES

For the codification reasons we introduce the axioms of a planar ternary ring and
add some simple consequences (without proof ) which we shall use in the sequel.

Let S be a set containing at least two different elements and let a ternary operation t
be given on it. An ordered pair (S, t) will be called a planar ternary ring (PTR) if it
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holds:

Al Va,b,ceS 3!xeS t(a, b,x) =c.

A2.Va,b,c,deS; a+c 3xeS t(x,a,b) = t(x, ¢, d).

A3.Va, b,e,deS; a+c 3(x,y)eS* t(a,x,y) =b t(c,x,y) = d.
A4. 30€S Vx,y,zeS t(0,y,2) = z t(x,0,z) = z

Such an element 0 is called zero element or zero.

Consequences.

(a) The pair (x, y) from A 3 is determined uniquely.
(b) The zero element from A 4 is precisely one.

(c) Va,b,ceS; a+03!xeS t(x,a,b) =c

(d) Va,b,ceS; a+03!xeS tla,x, b) =c

For each a € S; a + 0 we shall denote by e, the solution of the equation

t(a,x,0) =a;
additionaly we define
eo =0.
Thus for each a€ S t(a, ¢,, 0) = a.

Now let us introduce in S two binary operations, addition + and multiplication
by virtue of
a+b=t(ae,b) Ya,beSs,

a . b=t(ab0) VabeS.
Consequences.

(€) a+0=0+a=aVaes.

(f) Va,ceS 3'xeSa+x=c.

(ga+b=a+c=>b=c

(h)a.0=0.a=0Vaes.

(i) YeemeS; m*03!xeS x.m
Ve,meS; m=+03lyeSm.y

Il

I

2. COORDINATIZATION OF AN AFFINE PLANE BY A PLANAR TERNARY RING

Let us investigate a projective plane P = (P, L)*). Let us distinguish a line n. Then
by an affine plane P(n) we shall mean as usual the restriction of (P, L) to the incidence
structure (PN n, {IN(I 1 n)}[le L\ {n}). )

*¥) With lines as point sets.
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The points from A : = P\ n will be called proper, the points of n improper (or
directions). The lines from L\ {n} will be called proper whereas their restrictions
to A will be called affine lines. .

Now choose a certain direction Vand call it vertical. Proper lines with this direction
will be called vertical too (and this term will be used also for the corresponding affine
lines). For any N € n denote by N the set of all lines containing N and set

B=L\T7.

As it is known, card A = card B = m? where m is the order of P.
Start from P(n) with m = card S. Then card $? = card A = card B.

Each couple of bijections m:S% - A, 1:S% - B will be called a coordinate
system for P(n).

Let (n, A) be such a coordinate system that
(1) (x, y)"e(a, b)* <y = t(x, a, b)
for some PTR (S, ). Then axioms A 1—A 3 imply:

(a) Lines (a, b)*, (a’, b')* have an improper point of intersection (different from V)
if and only if a = a'.

(b) Points (x, y)", (x, y')" lie on the same vertical line if and only if x = x'.
Thus the coordinate system (n, 2) induces two bijections |
T:So>n\{V}; 1:S-V\{n}
in the following natural way:
@ = {(a, b} |beS} U {n}; o = {(a b)|beS) L V).

Let H be a direction for which H = 07 (the so-called horizontal direction) and
let v denote a vertical line 0* (the so-called vertical axis). Every proper line con-
taining H will be called horizontal as well. Axioms A 1— A 4 imply:

(¢) Points (x, y), (x', y')" lie on the same horizontal line if and only if y = y'.

(d) Lines (a, b)*, (a’, b')* intersect in a proper point lying on the vertical axis if and
only if b =b'".

In this way we obtain further two bijections:

n:S—>oN{V}; V:S->H\{n}
as follows:

’b\""={(a,b)’1|aeS}u{v}, b* = {(a, b)* | ae S} L {H}.
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For any ae S we have b = t(0, a, b) (equivalently (0, b)" € (a, b)*) and therefore
= (0, b)".
Further
(x, )" =x*ny*, (a b)*3a* b Vx,y,a,beS.

Finally note that the affine plane P(n) may be coordinatized by a PTR.

3. VERTICALLY TRANSITIVE PLANES

An affine plane P(n) is said to be a translation plane if the group G of all transla-
tions of P(n) operates transitively on the set A of all proper points.

Let us recall without proof some well-known statements about affine planes:
(a) A set of all translations with a given dlrectlon U is a subgroup (denoted by Gy)
of the group G of all translations.
(b) If the group G contains translations with two different directions then it is
Abelian.
(c) The group Gy operates transitively on each affine line with the direction U if
and only if it operates transitively on one of them.

(d) Letu, v be affine lines with different directions U, V. Then G operates transitively
on the set A of all proper points if and only if the groups Gy and Gy operate so
on the lines u, v. In this case

G=GU®GV-

If U denotes any direction of an affine plane P(n), then P(n) will be called U-
transitive (more exactly (U, n)-transitive) plane*) if Gy, operates transitively on every
affine line with the direction U.

Let P(n) be an affine plane'coordinatized by a PTR (S, t), let V be the vertical
direction and H the horizontal direction relative to the given PTR. The V-transitive
plane or H-transitive plane P(n) are said to be vertically or horizontally transitive,
respectively.

The planar ternary ring (S, t) will be called a generalized Cartesian group**)
if it has the following properties:

(o) Its addition is associative or equivalently (S, +) is a group.
(B) (S, t, +, .) satisfies the linearity property, i.e.,

)] tla,b,c)=a.b + c Va, b, ce$**¥)

*) [11, p. 140, [4], p. 101.
*¥) For the definition of Cartesian groups cf. [4], p. 90.
*=+%) cf. [2], p. 10.
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The generalized Cartesian group is said to be commutative, if (S, +) is com-
mutative.

Throughout this and the next chapter we assume that (m, 1) is a fixed coordinate
system with the property (1) of any given affine plane P(n).

Proposition 1. The group G, operates transitively on each vertical affine line if
and only if for any ae S

(3) (x, )" b (x,y + a)f
is a translation from G,.

Proof. I. Let (3) present a translation from Gy Va € S. By (c) it suffices to prove
that G, operates transitively on proper points of the vertical axis v. For this it suffices
to show that for each point (0, a) there exists a translation f € Gy so that f((0, 0)) =
= (0, a)". However, it is just the translation (3) which has this property.

II. Let G, operates transitively on every vertical affine line. Then Va € S there is
a fe Gy carrying (0,0)" into (0, a)". Now we have to prove that f((x, y)") =
= (x, y + a)"V¥(x, y)"e A. This is evident for y = 0 because the image of the horizontal
line through (0, 0)" is a horizontal line containing the point (0, a)* and the points
(x, 0)" and (x, a)" lie on the vertical line x* fixed under the translation considered.

Thus assume y # 0. Then obviously f((y, y)*) = (y, z)" for some z € S. As (0, 0)",
(v, y)" € (e,, 0)* s0 (y, z)" lies on the line going through (0, a)* parallelly to (e,, 0)*
Thus (y, z)" € (e, a)* <>z = t(y, e,, a) = y + a. The image of the horizontal line
(0, y)* under f is the horizontal line (0, y + a)*. Therefore f((x, y)*) = (x, y + a)"
as required.

Proposition 2. G}, operates transitively on each vertical affine line if and only if
the associative law for addition and the linearity property are valid.

Proof. I. Let the associative law for addition and the linearity property hold.
Then in consequence of Proposition 1 it suffices to show that (3) is a translation in the
direction V for V a € S. Since (S, +) is a group, (3) is a bijective mapping fixing every
vertical line. Now let (m, b)* be an arbitrary (not vertical) line; this line has the equa-
tion y = x.m + b. Denote by f the mapping (3). Then the images of proper points
(x, y)© of (m, b)* are the points (x, y + a)* = (x,(x . m + b) + a)* = (x, x . m +
+ (b + a))™ So f((m, b)*) = (m, b + a)* Thus f is a dilatation with the centre ¥
ie., it belongs to G,.

II. Let G operate transitively on each vertical affine line. Then by Proposition 1
(3) belongs to Gy YaeS. If a, b, c € S, then denote by f, g € G the translations for
which £((0, 0)*) = (0, b)~ and g((0, 0)*) = (0, c)". It follows directly from Proposition
1 that g((0, b)*) = (0, b + )", so that (g o f) (0, 0)*)= (0, b + ¢)". From this it is
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clear that (g - f) (0, a)*) = (0, @ + (b + c))" and on the other hand (g - f) (0, a)) =
= 6((0.a + b)) = (0.(a + b) + o), o that

a+(b+c)=(a+b)+c.

If again a, b, c € S then denote by f such translation from Gy for which f((0, 0)") =
= (O, c)". By our assumption such a translation must exist. Let us consider a line
(b, 0)% 1t is (0, 0)" € (b, 0)%, therefore (0, )" e f((b, 0)*). As (b, 0)*, f((b, 0)*) are
parallel, we have f((b, 0)*) = (b, ¢c)*. Further (a, a. b)" € (b, 0)* so that (a,a.b +
+ ¢)" e f((b, 0)*). This implies a. b + ¢ = t(a, b, c) as desired.

Theorem 1. An affine plane P(n) is vertically transitive if and only if one (and
consequently each) planar ternary ring (S, t) of P(n) is a generalized Cartesian
group. Furthermore, Gy is Abelian if and only if (S, t) is commutative.

Proof. I. Let (S, t) be a generalized Cartesian group. By Proposition 2 G operates
transitively on each vertical affine line. It remains to prove that G, is commutative.
For this purpose let £, g € Gy; f((0, 0)%) = (0, b)~, g((0, 0)) = (0, ¢)*. According to
the second part of the proof of Proposition 2 (g.of)((0,0)") = (0,5 + ¢)* =
=(0,c+b)"=(fog)((0,0)")sothat gof = fog.

IL Let P(n) be a vertically transitive plane. By Proposition 2 the addition is
associative and the linearity property holds. It remains to prove the commutative law
for addition. Let b, ce S and f, g € G, be translations for which £((0, 0)%) = (0, b)~,
9((0, 0)*) = (0, ¢)". Since G, operates transitively on each vertical affine line, such
translation does exist. Then (0,5 + ¢) = (g o f) (0, 0)") = (f - g) ((0, 0O)%) =
= (0, ¢ + b)"and consequently b + ¢ = ¢ + b.

4. TRANSLATION PLANES

In this chapter we shall consider a fixed vertically transitive plane P(n) and its
arbitrary coordinate system (z, 1) with the property (1) expressing a generalized
Cartesian group (S, t). By the property (d) in § 3 P(n) is a translation plane if and only
if Gy (H is the horizontal direction) operates transitively on each horizontal affine
line. To formulate the next results in a convenient form, let us introduce the following
expressions:

(4) ImeS\{0} (a+b).m=a.m+b.m

Il

(4,) VmesS (a+b).m=a.m+b.m
(5)) 3ImeS\{0} a.m+b.m=c.m
(5,) VmesS a.m+b.m=c.m
In [5], p. 454, .

(4y) = (4,) forall a,beS
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((S, +) is Abelian of course) is stated as a necessary condition for P(n) to be a transla-
tion plane, while (4,) is given as a sufficient condition for P(n) to be a translation
plane.

Ifa PTR (S, t) is Hall, i.e., if there exists an element e Ssuchthate.a = a.e =
= a Vae S, then (4,) holds for m = e. Thus for the vertically transitive plane P(n)
coordinated by Hall PTR (4,) is a necessary and sufficient condition for P(n) to be
a translation plane.

The main result of this paper is the following theorem which has been motivated
by the passages of [5] just quoted.

Theorem 2. A vertically transitive affine plane P(n) is a translation plane if one
of its PTR (8, t) satisfies for alla,bce S

(51) = (5).-

Proof. I. Let (S, t) be a generalized Cartesian group of a given vertically transitive
plane P(n). It suffices to prove that the group Gy operates transitively on proper
points of the line (0, 0)* (horizontal axis). It remains only to show: Ybe S 3f e Gy
£((0, 0)*) = (b, 0)~. Thus let b € S. Define a mapping

fi(xy)y b (x, )
with x’ € S uniquely determined by
(6) x.m+b.m=x".m.

Thus (5,) is satisfied for (a, b, ¢) = (x, b, x'). Clearly f is bijective and fixes every
horizontal line. Further it is obvious that the image of the vertical line x™ is the verti-
cal line x'. Let us consider a line (u, v)* where u + 0. If (x, y)* € (u, v)* then
y=x.u+ v. For f((x,y)") = (x', y')" we have x'.u = x.u + b.u. Hence
itisy=(x".u—b.u)+v=x".u+(—(b.u)+ v) or equivalently (x', y)* €
€ (u, —(b. u) + v)*. This implies f((u, v)*) = (u, —(b . u) + v)* and consequently f
is a translation from Gy.

IL. Let P(n) be a translation plane. Let a, b, ¢ € S. Further let f be the translation
for which £((0, 0)%) = (b, 0)*. We shall prove:

(a) If f((a, 0)") = (c, 0), then (5,) holds.

(b) If (5,) holds, then f((a, 0)") = (c, 0)".

Ad (a): First of all, evidently @.0 + b.0 = c. 0. Thus suppose m e S\ {0} and
f((a, 0)*) = (c, 0)". Let us construct the last point in the following way: Denote by Q
the point of intersection of a*, (m, 0)* (Fig. 1). Thus Q = (a, a. m)". Let h be the
horizontal line through Q. It is obviously f(Q) € h. Furthemore the line r joining
(b, 0)* = £((0, 0)"), f(Q) is parallel to (m, 0)*. Thus r = (m, v)*. But (b, 0)* € (m, v)*
means 0 = b.m + v, v = —(b. m). The line joining (c, 0)", f(Q) must be vertical
so that f(Q) = (¢, a. m)*. But f(Q) € r can be written as c.m — (b.m) = a.m.
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Ad (b): Let a.my + b.my = c.my hold for some m,e S\ {0}. Further let
/((a, 0)*) = (¢, 0)" for some ¢ € S. Then by (a) a. my + b.my = ¢. m, Comparing
both equations with the same left hand side a . my + b. my we obtain ¢.m, =
= C. mg and therefore ¢ = ¢ Thus (b) is proved.

Finally a.my 4+ b.my = c.m, for some m,eS\{0} implies f((a,0)") =
= (¢, 0)" by (b) and further (5,) by (a).

Q-ta,amp [\

(a,05° / (0,0)7\ Jte0” \rb,o)’
Fig. 1.

Corollary 1. It follows immediately from Theorem 2 and property (b) of §3: If
any generalized Gartesian group (S, t) satisfies the condition (5,) = (5,) for all
a, b, ceS then the group (S, +) is Abelian.

Corollary 2. The additional validity of the left distributivity
(7 a.m+b.m=(a+b).m Ya,b,me$S
implies that P(n) is a translation plane.

Proof. From a.my + b.mg = c¢. m, for some mye S\{0} it follows that
(a +b).my =c.my and thus ¢ = a + b. So (7) coincides with (5,) and P(n)
must be a translation plane.

Corollary 3. Let P(n) be a translation plane and let (S, t) be one of its PTR’s. If
there exists an element mge S\{0} such that a.mo + b.my = (a + b).m,
Va, beS then (7) holds.

Proof. Immediate, from Theorem 2 for ¢ = a + b.

Corollary 4. Let P(n) be an affine plane and (S, t) one of its PTR’s. Then P(n) is
a translation plane if and only if:

(a) Addition of (S, t) is associative.
(b) (S, t) satisfies the linearity property.
(c) Foralla,b,ceS (5)=(5,).
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Proof. Let (a), (b), (c) be valid. Then by (a) and (b) (S, t) is a generalized Cartesian
group and by Theorem 1 P(n) is a vertically transitive plane. Finally Theorem 2 and
(c) imply that P(n) is a translation plane.

If P(n) is a translation plane then it is of course also vertically transitive. Thus
Theorem 2 gives (c) and Theorem 1 gives the remaining conditions (a) and (b).

Proposition 3. Let P(n) be a translation plane and (S, t) one of its PTR’s. Then
the left distributivity (7) holds if and only if for every a€ S

(8) fi(xy) b (x+ap)r
is a translation from Gy.

Proof. First let (8) be a translation from Gy for any a € S. Then f((0, 0)%) =
= (a,0)" and Vbe S f((0,0)") = (b + a,0)" = (a + b, 0)* (by Corollary 1). By
part II of the proof of Theorem 2 a.m + b.m = (a + b).m holds Vme S.

Let (7) hold. Note that f is evidently a bijection fixing every horizontal line and
carrying every vertical line onto a vertical line again. Consider any line (m, v)* for
veS, meS\{0}.If (x, y)* € (m, v)* then y = x . m + v. So for (x', y)* : = f((x, y)")
we have x’ = x + a and consequently y = (x' + (—a)). m+v=x".m+ ((—a).
. m + v). Thus f maps (m, v)* onto (m, (—a) . m + v)* and f is a translation of Gy.

5. EXAMPLES

Let us have a PTR (S, t). An element ee S (j € S) will be called its right (left)
unity if forallae Sa.e = a(j.a = a). If (S, t) has the right and left unity e and j,
respectively, evidently j = j. e = e.

Let us consider an affine plane P(n) with a given coordinate system (=, 1) and let
(S, t) be the PTR associated to it.

Proposition 4a. (S, t) has a right unity if and only if the set
©) D = {(x.x)" | x<S)
(the so-called diagonal) is an affine line.

Proof. Let (S, t) have a right unity e. Then D = {(x, y)*|y = x.e, x€ S} =
= {(x, Y|y = t(x, e, 0)} = (e, 0~

II. Conversely, if D is an affine line, then D = (e, 0)* as (0, 0)"e D. Then a e S =
= (a,a)"e D= a = a.e= eis a right unity of (S, t).
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Proposition 4b. (S, t) has a left unity if and only if the mapping fiBN{v} >
- H\{n}
f:Pd® b a*

where P = (0, 0)", is a perspectivity with vertical axis.
Proof. I Let (S, t) have a left unity j and p = j*= Pa" A p = (a,0)* n p =
= (j,j.a)" = (j,a)"€a* = Pa" n a* € p = f is a perspectivity with axis p.

II. Let f be a perspectivity with a vertical axis p = j% Let ae S = (j, a)"e p.
Denote by g the line joining P and (j, a)". As p is the axis of perspectivity f,q =
= (a,0)%, (j, @)"€(a,0)* = a = j.a = j is left unity.

Now let us show shortly how to introduce a coordinate system in P(n). At first
take a set S so that card S is equal to the order of the plane P(n), further select
a direction Ve n and a proper line v e V. Denote, as usual, A = P\ {n}, B = L\ V.

Let us choose bijections
(10) 7:S->n\{V} 1:S-V\{n}

and denote by 0 the element from S for which 0* = v and by H the direction 0.
Furthermore choose an arbitrary direction

(11) A:S—>HN{n}.

This determines uniquely the bijection

(12) 'S > uN{V}
so that
(13) VbeS:b™ =vn b

(equivalently the mapping b™ > b* is the perspectivity from v onto H \ {n}). The
mappings

(14) ni(x,y)bx*ay’ A:i(a,b)bp
are bijections 7 : $* » A, 1 :S? — B. Now intorducing in S a ternary operation by
(15) y = t(x, a, b) < (x, y)"€(a, b)* Vx, y,a,b€eS,

we can easily find that (S, t) is a PTR with the zero element 0. Thus (z, 2) is a co-
ordinate system (which has property (1)). The coordinate system (, 2) will be denoted
by (%, Z, n’, A') or only by (7, 1, X').

The diagonal D of the coordinate system (7, 4) is characterized by

(16) D = {x*nx*|xeS}.
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As the diagonal intersects every vertical or horizontal line at a unique point, the
mapping A’ is uniquely determined by 1 and by the diagonal. The introduction of the
coordinate system of P(n) can be transformed as follows: we replace A’ by the diago-
nal D expressed by a set which is intersected by every proper line of pencils Vand H
at one point. If P(n) is coordinatized by PTR (S, t), we obtain its other coordinatiza-
tions by ,,deforming” the original diagonal. By this we also transform t into a new
ternary operation t'. (S, t') will be of course again a PTR determined by the new
coordinatization.

a) Example 1. Let P(n) be an affine plane*) coordinatized by the field Z,**) and
(m, 2) its coordinate system. As a new diagonal we take D = {(0, 0), (1, 4)", (2, 3)",
(3, 1)%, (4,2)"}. D is not a line so that the new PTR (S, t) (where S = {0, 1, 2, 3, 4}),
will not have a right unity. We can establish new multiplication and addition tables:

addition: multiplication:
01 2 3 4 012 3 4
0/0 1 2 3 4 0/0 00 00O
111 2 4 0 3 110 3 4 21
212 4 310 210 41 3 2
3/301 4 2 3/02 31 4
414 3 0 2 1 4101 2 43

It follows from the tables that the left distributive law does not hold, for instance
(4+2).3=03=0; 43+23=4+3=2.

It follows from the existence of the original coordinate system that P(n) is even
Pappian and so (5,) = (5,).

Example 2. Let P(n) be an arbitrary Euclidean plane; let us choose an origin P
and an orthonormal basis (e, e,). This induces naturally a coordinate system
(my, 4,) in the sense of § 2; its PTR is of course the field of real numbers. The vertical
direction is the direction determined by e,. As a new diagonal D choose the curve
with the equation

y=x", r>1, odd

*) Every PTR coordinatizes for instance its canonical plane, see [3].

**) Let (S, t) be given, where (S, +) is a Abelian group (with zero element 0), (S\ {0}, )
is a quasigroup, Vx €S 0. x = x.0= 0, andbothequationsa.x=b.x+c,y.a=y.b+ ¢
are uniquely solvable for a = b. Then we can introduce the structure of a ternary ring by
t(a, b, ¢) = a. b+ c. Then (S, t) is a generalized Cartesian group with commutative addition.
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The new PTR (S, t) (S is now the set of all real number) has no right unity and it is
easy to verify that the addition @ and the multiplication ® of (S, t) fulfil
c=a@®bescd =ada+0,
d=aQ@b<sd =a.b.
Thus in (S, t) the left distributive law does not hold. However, the implication (5,) =

= (5,) holds as P(n) is a translation plane.

b) Example 3. Let S = {0,1,2,3,4} and let + be the addition mod 5. The
multiplication - will be defined by the following table:

012 3 4
00 0 00O
110 2 4 3 1
2101 2 43
3/0 4 3 1 2
410 3 1 2 4

It is trivial to verify that (S, t) (t is a ternary operation in S as in the footnote**)
to Example 1) is a generalized Cartezian group with commutative addition. It is
evident that (S, t) possesses neither the right nor the left unitary element. In (S, t)
the multiplication is not associative and the left distributive law does not hold:

2.(33) =21=1; (23).3=43=2
(3+1).3=43=2; 33+13=1+3=4

We can verify that (5;) = (5,) and so every affine plane coordinatized by (S, t) is
a translation plane.
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