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1. An interesting property of a derivative function f in the class of real functions
of a single real variable is that if f is nonnegative almost everywhere in an interval
then f is nonnegative everywhere in that interval from which the following property
of f can easily be deduced:

(*) given any closed interval I, each of the sets In {x:f(x)>a} and
I {x:f(x) < a} is either void or of positive measure for arbitrary values of a.

This property of the derivative function f together with its Darboux property and
belonging to Baire class 1 implies the Denjoy property of f [5, 3] viz.

(**) given any closed interval I, the set I N {x :a < f(x) < B} is either void
or of positive measure for arbitrary « and 5, « < f3.

In [11] it is shown that the properties (*) and (**) are equivalent for functions
of single variable in Baire class 1. In the present paper we extend this result to
functions of several variables. It is interesting to note that MSfx [8] proved that
if a function f belongs to the class ./#, (for definition see also [17]) then it satisfies
the property (**). Since a function f belongs to the class .#, iff f is in Baire class 1
satisfying the condition (*), this result also follows from the result of Misik. Misik
proved his result with the help of Darboux property which is established in [9]
(see also [10]). Since the properties (*) and (**) are very close to each other, and
because of the intrinsic value of these properties, we give here a direct proof. Finally,
in the light of these results some properties of the approximate partial derivatives
are studied.

2. Throughout the paper X is the euclidean n-space R", where R is the set of all
real numbers. We shall follow the standard definitions of closed and open intervals,
spheres, cubes, etc. given in [13; p. 57]. By an interval (resp. sphere) in X we mean
a set 4 = X such that & (the closure of %) is a closed nondegenerate interval (resp.
sphere) and %° (the interior of %) is an open interval (resp. sphere) with the same
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principal vertices (resp. with the same centre and radius), i.e. (9)° = ¢ = . p(4) will
denote the Lebesgue measure of the measurable set 4 = X. # will denote the base
for the topology of X consisting of all open intervals (or, spheres) in X. Following
[2] we shall say that a function f on X has Darboux property relative to 4 if f(U)
is connected for every U € 4. We need the following

Definition. A measurable set E < X is said to satisfy the property € relative to 2
iff U N E is either void or of positive measure for every U € 4.

A measurable function f on X is said to satisfy the property €, relative to #
iff for arbitrary o € R each of the sets

(xif() > o} and {x:/(x) <}

satisfies the property € relative to 4, (./// % property of Zahorski - Mi§ik).
The function f is said to satisfy the property € relative to % iff for arbitrary «,
BeR,a < B, the set
{x:a<f(x) < B}

satisfies the property € relative to %, (Denjoy property).

We shall consider extended real valued functions on X. &, %,, #5(#), 9'(#)
and 9(2#) will denote respectively the class of finite functions, the class of functions
of Baire type 1, the class of functions satisfying the property %, relative to 4, the
class of functions satisfying the property @4 relative to 4, and the class of functions
satisfying Darboux property relative to 4.

We shall write

E(f;* 0) = {x:xeX; f(x) < a},
E(f; B, *) = {x:xeX; f(x) > B},
E(fia, B) = {x:xeX;a < f(x) < B}.

When there is no confusion, we shall simply write E(*, «) etc. instead of E(f; *, «) etc.
For the definition of metric density, approximate continuity, and approximate
partial derivatives, which we shall consider in the paper, we refer to the book of
Saks [13]. We shall prove our results when % consists of all open intervals. The case
when Z consists of all open spheres is similar.

3. Theorem 1. .#/%5(#) N B, = 9'(%) N B,.

Proof. We shall prove by contradiction. Suppose fe M3(%) n %, and suppose
that there are A€ &, «, f€ R, o < f3, such that

ANE(@,p)+0, udnE®@p)]=0.
Let
F,={p:ped;f(p)so}, Fy={p:ped;f(p)=B}.
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Let 4 be any interval contained in F,. Then since 4 n E(x, *) = 4 — 4° and
u[% — 9°] = 0, we conclude u[% n E(a, *)] = 0. Since the set E(a, *) has the
property €, 4 n E(a, *) = 0. Hence 4 < F,. Thus if ¢ is any interval such that
¥ < F,then ¥ < F,. Similarly if ¢ is any interval contained in F; then § < F,.

Let {¢} be the family of all intervals ¢ such that either ¥ = F, or 4 = Fj. Let
P = 4 — U%°, where the union is taken over all % € {#}, and where the interior °
is taken relative to 4. Then P is closed.

We can conclude P = F, n F,. For, if possible, let p, € P but p, ¢ F,. Then there
is an open interval S, containing p, such that S n F, = 0. Since u[4 n E(«, B)] = 0,
u[A NS~ E(*, B)] =0 and hence 4" 5 E(*, ) =0. So, An S < Fj. Hence
An S c % for some g e {4} and therefore p, € 4° which is a contradiction, since
po€ P. Thus P < F,. Similarly P = F;. Hence P = F, 0 Fy.

Let p, € P and let I be a closed interval containing py in its interior. We shall show
that I n P~ F, and I n P n F; are non void. Since p, € P, p, € F,. Hence there
is a point g of F,inI.If g€ P, then g eI n P N F,and the assertion follows. If p, € F,,
then also p,el n P n F,. So, we suppose that p, ¢ F,, q ¢ P. Since gq ¢ P, there
is 4 € {9} such that e %°, ¥ = F, and p,¢ 9. Let S,(q) denote the open cube with
center g and each side of length 2r. Consider the collection of all open cubes {S,(¢)}
for different values of r > 0. There is one and only one such cube, say S,,(q), which
will contain p, on its faces. Since q € %°, there is r;, 0 < r; < ro, such that 4 N
N S,(q9) =9°So,AnInS,(q) < Fforallr,0 <r < ry. Also AnInS,(q) &
¢ F,; for, if ZnIn S,(q) = F, then p, being a point on the boundary of S,,(q)
would belong to F, which is against our supposition. Thus there is a real number
say 0, 0 < g £ 1o, such that if 0 < r < o, then AnInS,(q) =« F,and if r > ¢
then 4 I n S,(q) ¢ F,. Since S,(q9) = U S/(q), AnIn S,(q) = F, and hence

O<r<eo
AnInS,(q) = F, We conclude that the set I n 5,(q) n P is nonvoid. For, if
InS,(q)nP=0,then every pe A nI n[5,(q) — S,(q)] is contained in an open
interval ¥° ¢ ¥ € {¥%}, 4  F,, and since 4 n I n [5,(q) — S,(q)] is closed, there
is a finite set 99, 95, ..., %°, such that

AnIn[S,(q) —S,(a)]<U%, % cF,.
i=1

and hence it is possible to obtain r, > ¢ such that A n I n S,,(q) = F, which is
a contradiction. Thus I nS,(g) " P + 0. Since AnIn S,(q) = F,, we have
InS(g)nPcInPAnF, and hence I n P F,=+ 0. Similar argument can
be applied to show that I n P n Fy + 0. From this we get

inf f(p) S, supf(p)= 4.

pelnP pelnP

So, po is not a point of continuity of f | P. Since f is of Baire class 1, this is a con-
tradiction,
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The converse of Theorem 1 is not true. For, consider n = 1 and the function g
on R defined as
g(x)=0, if x=*0,

=o, if x=0.

Then g € By; for g = lim f;, where

i~ o0

f i(x)

Il

i(1 —ix), if 0§x<%—,

Il

i(1+ix), if —¥<x<0,
1
=0, elsewhere.

Also g € 9'(#). But g ¢ M 5(#). (For n > 1, functions on X can easily be constructed
with the help of the function g so as to satisfy these requirements.) The converse,
however, is true for finite functions or Darboux functions. For finite functions this
follows from Denjoy property. If fe (%), Ue %, ae R and if U n E(*,a) * 0,
then, either f (x) < o for all x e U, in which case the result follows, or there is one
x € U such that f(x) = « and hence by the Darboux property there is ¢ € U such
that —oo < f1 (6) < « and the result follows from the Denjoy property. Thus we get

Theorem 2.
P'(B) [97 v D(B)] = MB)

Again we remark that the inclusion cannot be reversed. For example we refer to
[8, 14, 7].
The following theorem is also known [17, 9]; but we give a different proof.

Theorem 3.
‘ My(B) N B, = D(B) N By

Proof. Suppose that fe .#5(%8) n %, but f¢ P(A). Then there are A€ & and
o € R such that the sets

ANEM* o)+ 0+ AnE(@,*), A4cE*a)uvEo?*).
Since f € #5(%#), we have
plAnE* a)] >0, p[4dnE(*)]>0.

Let {#} be the collection of all intervals % such that ¥ = 4 n E(*, a) or ¥ <
< A n E(x, *). Then the set P = 4 — u%°, where the union is taken over all
4 € {9}, and where the interior %° is taken relative to 4, is closed. Since f is in Baire
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class 1, there is p, € P such that f(x) tends to f(po) as x tends to p, through P. Since
A=[AnE* «)]U[4nE*)], poe A E(* a) or pye A n E(a, *). Suppose
po € A N E(*, «). Then f(p,) < a. By the above property of f there is > 0 such
that I; n P < E(*, «), where I, is the closed cube with p, as centre and each side
of length 26.

We assert that A nI; N %° = 0 for all ¥ € {¥}, 4 = E(w, *). For, suppose that
AnI;n%° 0 for some 9e{%}, ¥ = E(x, *). Then there is g€ 4° n I N %°.
Also p, ¢ 4°. Let {S,(q)} be the collection of all open cubes with center g and each
side of length 2r, for different r > 0. Then as in the proof of Theorem 1 there is a real
number o, such that if 0 <r < g, then A I; S,(q) = E(o, *) and if r > o,
then 4 N I; 0 S,(q) ¢ E(x, *) and the set I, n S,(q) N P is nonvoid. Let sel; n
nS,(g) nP. Since Anl;n S,(q) < E(o,*) for 0 <r <o, Anl;n S,(q) =
< E(e, *) and since f€ #5(B), A1, S,(q) < E(x, *). So, s € E(x, *). But this
contradicts I; n P < E(*, «). Thus

AnIl;n%° =0 forall Y¥e{%}, ¥ < E(x,*).

Since 4 N [E(x, ¥) — U%°] = P, where the union is taken over all ¥e {9}, ¥ <
< E(a, *), and since I; n P < E(*, ), we infer that A n I; n E(«, *) = 0 and hence
AnI; < E(* a). Since pye AN Ij, poe¥® for some %€ {%}, ¢ < E(*, a). This
contradicts the fact that p, € P. This completes the proof.

It is known that the inclusion in Theorem 3 cannot be reversed [17]. From
Theorems 1 and 3, it is natural to ask if there is any relation between the classes
2'(#B) n B, and 9(B) N B,. For finite functions clearly fe P'(%) n %, implies
fe (%) n #, and hence

DBNBNTF <« YB)N B, T .
But this relation is not true in general. In fact, neither of the relations
D'(B) B, = DB) and DAB) B, = D'(B)

is valid. For, as is mentioned, the function g on R, where g(x) = 0, x + 0 and
g(0) = oo, is such that ge 2'(%#) N %, but g ¢ (%); and the function f on R
constructed in [4] is such that fe 2(%) N #, and f vanishes almost everywhere
(but not identically vanishing) which shows that f ¢ 2'(%). For n > 1, functions
can easily be constructed with the help of these functions to satisfy the requirements.

It is known that if f: X — R is an approximately continuous function then f
is of Baire class 1 [6]. Also for each o e R the sets {x : f(x) < «} and {x : f(x) > o}
satisfy the property . For, if peI n {x : f(x) > a} where I € %, then by the de-
finition of approximate continuity, the set {x : f(x) > a} has metric density 1 at p
and hence I n {x : f(x) > a} is of positive measure. So, from Theorem 3 we get
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Corollary. If f: X — R is approximately continuous then f has the Darboux
property.
This is proved in [12] by considering interval function.

4. We shall further require some additional notations. If x = (xl,xz,...,x,,)
is a point in X then f,, will denote, for fixed x,, the function ¢ on R"~' defined by

P(xXa, X35 o0 X,) = [, (X2, X500 X,) = f3x4s Xa, o0y X,,) -

Also if I is a closed interval in R" given by I = [aby; a,, by; ...; a,, b,] then I
and I' will denote the closed intervals in R and R"™! given by I; = [ay, b,] and
I' = [a,, by:...;a, b,], respectively.

Theorem 4. If f: X — R is such that the approximate partial derivative w.r.
to xy, (6f/6x,);,p exists (possibly infinite), except perhaps on a denumerable subset
and f is Darboux function of Baire class 1 relative to x, (i.e. when x,, X3, ..., X,
remain fixed) and f,, is approximately continuous in R*~' for fixed x; then

(0f]0x\)ap € M 5(B).

Proof. We shall prove that the set E((9f[0x,),,; *, &) satisfies the property €
relative to 2 for arbitrary o€ R. The proof for E((0f/0x,).p; a, *) is similar.

We suppose o = 0; for o + 0, we are to apply this argument to the function

h:X — R given by
h(xy, xp, o0 X,) = f(X05 0 X,) — Xy .

(This is permissible, since the sum of a Darboux - Baire-1 function and a continuous
function is a Darboux - Baire-1 function).
Let I € # and let

E=(¢n 8 ng)eln E(<ﬂ> * 0)_
0X1/ap

Set g(x,) = f(xy, &3, ..., &) Then g is a Darboux function of Baire class 1 from
R to R. Also the approximate derivative g,, of g exists (possibly inﬁnite) except
on a denumerable subset of R. Finally, if g,, = 0 almost everywhere in a closed
interval [a, b] = R then by a known result [1, 15], g is non decreasing in [a, b],
and hence g,, > 0 everywhere in [a, b]. From this fact and from the fact that ¢, e I},
g.,(¢1) < 0 we conclude that the set I, N {X; : gop(x;) < 0} is of positive linear
measure. Hence there are two points 7, and {; in I, such that n, < ¢, and g(n,) >
> g(4y), that is, f(ny, &y &) > f(Cys Easvvnr &) Let & = {f(n1, &5s000 &) —
— f(l1s Eps -y E)}[2. Since f,, and f,, are approximately continuous from R"!
to R, each of the sets

S = {(x2s o0 %)  fpi(X2s oees Xa) > F(Es s &) — 8}
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and

T = {(X20 o %,) t fru(X0 oo %) < fe(Ens oo &) + 8}

has metric density 1 at the point (,¢5 ... &,) € R"~'. Now I' is an interval on R"~*
containing the point (¢,&5 ... &,). Also the set S N Thas metric density 1 at (8265... &)
in R""1. Hence I' n (S n T) is of positive measure in R*™*. Let (ky, k3, .-, k,) €
eI' n (S N T). Then we have

. kn) > f'll(éb ERRE) 6n) + f;‘(éz, ceey f")

5 > f(Chs ko ooy Ky)

(1) f(’?lakz’-'

We conclude from this relation that the set

) {xlifh = xy §C1§<ﬁz‘> (xl,kz,...,k,,)<0}
0X1/ap

is of positive linear measure. For, if this set is of linear measure zero, then the function
¢(xy) = f(xy, ky, ..., k,) is such that ¢, > 0 almost everywhere in the interval
[, ;] and hence, as above, ¢ is nondecreasing in [#y, {,] which contradicts (1).
So, the set defined in (2) is of positive linear measure for every point (k,, k5 ... k)
in I' n (S T). Since I' n (S A T) is of positive measure in R"™!, we conclude
that the set

3) {x — (x1 e x)ixs el (s x) €It A (S A T); (a‘lf)

1/ ap

(x) < 0}

is of positive measure in R". Since the set in (3) is a subset of the set

or(2))

the set in (4) is of positive measure. This completes the proof.

It is not known whether the approximate partial derivatives of functions satisfying
the hypothesis of Theorem 4 belong to Baire class 1. If this is true then it follows
from Theorems 4, 1 and 3 that such approximate partial derivatives will enjoy Denjoy
property and Darboux property. However, if f : X — R is such that the approximate
partial derivative w.r. to x,, (9f/0x,),,, exists finitely and f,, is continuous from R*~*
to R for each fixed x, then (9f/dx,),, is of Baire class 1[16]. Hence we get from
Theorems 4, 1 and 3

Corollary. If f : X — R is such that the approximate partial derivative w.r. to x,
(9f[0x1),p exists and for each fixed xy, f,, is continuous from R"™! to R, then

(f?ilp c (@) 9(A).

0x,

This result is an improvement of Theorem 2 in [11].
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