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Let K be a compact n-dimensional interval, { : K —» R, ¢ : K — R; it is proved
that the product {¢ is Perron-integrable, if { is Perron.integrable and if ¢ is of strongly
bounded variation (especially if ¢ is n-times continuously differentiable). This result
is a particular case of a Theorem on General Perron Integral. There is obtained
a formula for integration by parts. There is an example to show that the assumptions
on ¢ cannot be replaced by certain weaker assumptions.

1. NOTATIONS AND PRELIMINARIES

1.1. Let R be the real line, R* — the set of positive reals, # — a finite nonempty
set. Let n be a positive integer. Usually functions from intervals in R” to R are the
object of the theory of the Perron integral. In this paper there will be considered
intervals in R* and functions from these intervals to R; this makes it possible to
introduce simple notations for various operations like projections, restrictions, etc.

Let  + &£ « M = N. x € R means that x : # — R and x, is the restriction
of x to &; espeacially X, is the restriction of x to the one-point set {m} for m e /.
w e R™ may be represented by the couple (m, a), a = w(m) e R. Let |.#| be the
number of elements of .#. In a natural way, R* is a linear space. A bijection F of
{1,2,... ||} on A gives to rise to a linear isomorphism F’ : R* — R| F’ being
defined by F'(x) = (x(F(1)), x(F(2)), ..., x(F(|.#|))).

M — & is the complement of & in M let M — L +0+ L. IfueckR? ve
€RY™ then u x v = v x u is such an element z of R* that zg = u, z4_4 = v;
obviously z exists and is unique.

1.2. Let a, b € R*; define
<a, by = {x e R*| min (a(m), b(m)) < x(m) < max (a(m), b(m)) for me #};

542



{a, b) is a compact interval in R*, which may be degenerate. Put
diam ((a, b)) = max (|o(m) — a(m)]) .
WL, +0+M—%, UcR? ¥ < R* %, define
UxV =V xU={uxv|luel,veV}.
Especially, if s, t € R, w, ze R*™%, then
(1) X Awyzd =dw, zd x (s, 1) ={s X w, t X 2)

and if a,, b, € R™ for me 4, then the Carthesian product [] {@m: bm> may be
meM
defined by induction on |.#|. Obviously [] <a,, b,> = <a, by, @ b€ R¥ being
meM
defined by a,, = a,, b, = b, for me A.

1.3. If a, be R* ae R*, write

a<b, if a(m)<b(m) for med,
a<b, if a(m)=Zb(m) for med,

] = max |a(m)|,
sgn (b — a) = I] sgn (b(m) — a(m) ,

B(a,0) = {xeR*||x — a| £ «}
%(a, «) is the closed ball with the center a and radius a.

14. If ¥ = R*, let K(7") be the set of compact intervals, which are contained
in 7. Let K,(¥") be the set of compact nondegenerate intervals, which are contained
in 7. For I € K,(R*) denote by Int I the interior of I. Let J, I, H € K,(R*#). Write
J=14+HifJ =1Iu HandIntInInt H = Q. J is called the direct sum of I and H.

1.5. The following Lemma may be proved by induction on the number of elements
of A.

Lemma. If J,I, He KR*), J=1VH, I +J+H, I={uv), u<v, H=
= {w, z), W < z, then there exists such a j € # that

(1.1) Uy = Wimy > Upmy = Zmy JOr medl, m=£j
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and one of the following relations holds:
(12) ugy < weyy < o < 2y

(1.3) Wiy < Uy =z < Vg -

1.6. Lemma. If J,I, He 8,(R*), J =1+ H, I =<u,v), u <v, H={w,z),
W < z, then there exists such a j € # that

(1.4) Uy = Wimy > Vpmy = Zgy JOr me, m+j
and one of the following relations holds:
(1.5) Ugy < Wgy = vy < Zjy
(1.6) Wiy < gy = 20y < vy -
This follows by Lemma 1.5.
17. Let M e K(R*). A map 5 : K(M) - R is called additive, if E(L) = 0 for

any compact degenerate interval L< M and if Z(J) = 5(I) + E(H), whenever
J,I,He (M), J =1 4 H.

A map @ : K(M) — R is called superadditive, if the following condition is fulfil-
led: if J, 1,15, ....,],€ K(M), I; = J, Intl; nIntl; =90 for i,j=1,2,...,k,

k
i + j, then ©(J) 2 ¥ O(I)).
i=1
The set of such superadditive maps © : (M) — R that ©(I) 2 0 for I € K,(M)
will be denoted by Y(M).

1.8. Let Me K(R*), 0+ L <« M, ¢ :M - R, ue My If M — & + 0, define
E:My_g—> Rby &v) = E(u x v). If & = M, let & = E(u)eR; if veM, then
&*(vy) may stand for &(u).

Let we M. £"* is defined for all &, § & A < . Define in addition " = ¢
(in spite of that w is not defined).

1.9. Let M e K(R*), ¢ : M > R, j€ M, u, ve M, Define A(u,v) & : M 4_(;) -
- R by Au,v)é=¢ — If 0+ % < M, f,ge Mg, define A(f, g) ¢ =
=TT 4A(fuy> 93) & of course, the right hand side does not depend on the order in

le¥

which the operators A(f,;, g,,;) are applied. Observe that A(f, 9) (€ R, if & = M.
Put fy X g¢ = g, fy X gy = f; it can be shown that ;

(L.7) A(f, g) & =!;g(_1)|;| glrxiz-g
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Especially, if ¥ = ., then
(1.8) Af.9) ¢ = ;Zﬂ(‘l)m &fy X Gu-g) -

If Je K(M), J =<f,9), /,geM, [ =g, define A(J) & = A(f, g) & A(J) ¢ =0,
if J = M is a degenerate interval (in R*). Moreover,

(1.9) At ))& = A1, y)Esgn(y — 1) for y,teM.

1.10. Lemma. Let M€ S4(R™), ¢ : M — R. Define E: K(M) - R by E(J) =
= A(J) & Then E is additive.

This follows from the definition of 4(J) & and from Lemma 1.6.

1.11. Lemma. Let M e K(R*), Z: K(M) > R, ge M. Define ¢ :M — R by
&(x) = (g, x)) sgn (x — q). If Z is additive, then

(1.10) A(J)E = E(J) for Je K(M).

Proof. Lemma 1.11 can be verified easily, if |.#| = 1. Let I be a positive integer.
Assume that Lemma 1.11 is valid, if |.#| < I and let |.#| = I + 1. Choose m € A
and put & = # — {m}. Fix u € M, and define © : K(M,) » R by O(I) = Z(I x
X {qgmy> u)). O is additive (cf. Lemma 1.6).

Define 3 : My, — R by 9(v) = 0({qy, v))sgn (v — q¢) = E({q, v X u))sgn .
(v = q9) = &(v)sgn (u — qqy)- As |Z| =1, by assumption A(I)9 = O(I) =
= E(I x {qgm, u)) for Ie K(Ky). AT x {qpm, u)) & = sgn (u — q,,) [4(I) &* —
— A(I) g2, g2em(w) = 0 for we K, so that A(I) & = 0 and
(1.11)  A(T X LGy, ud) & = sgn (u — q) A(I) & = A1) 8 = E(I x Gy, u)) -
(1.11) holds for I € (K ), u € Ky, and that (1.10) holds also.

1.12. Lemma. Let M € K,(R*), ¢ : M — R, q, x, ye M. Then
(1-12) A(q, J’)f = -?ZJ{A(‘L”-.? X Xgy Xy—g X yg’) .

Proof. By (1.8) the right hand side of (1.12) is equal to
> > (_I)WI f(qut—f)nx X X@nt#to(M—2yn(M—H) X qu(m—x))-
LM KM )

Let £, <M, §nA =0. The relations (M — L) H = ¢, L (M —
-—.?f)=farefulﬁl]ediﬁ';f=/uf,$=%ufforsome.ﬁc./{—j—
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— A . Thus the right hand side of (1.12) is equal to

yaedyonet sed=s 3‘,(“1)”'”’I &dy X Xu-g-x X Yx)-
» 3 n = - -

As Y (=)'=0if # — # — A + 0, the above expression is equal to
ScH=g-x

Y (=) Eqy x y4-y). (1.12) is fulfilled by (1.8).

s

1.13. Lemma. Let M € K,(R*), g€ M and let E : R(M) — R be additive. Define
&:M > R by &w) = E((q, w) sgn (w — q). Then

(1.13) &y) - &x) = Y E(Gu-2 Xu-2> X
[ EXZ=W A
X {Xg, )’y>) sgn (xvﬂ—y - ‘Lﬂ—z’) sgn (Ys’ - x.z’) .

Proof. By the definition of & it follows that &gy, X wy_4) = 0if 0 + £ <

< . By (1.8) &(y) = 4(q, y) & &(x) = 4(q, x) &, so that by (1.12) &(y) — &(x) =
= Y AMqu-2 X Xg, X4-2 X Vg). By the definition of <{a, b} in 1.2, by the
QFLcut

definition of A(f, g) € and A({f, g>) & in 1.9 and by (1.10) it follows that
A(‘Lﬂ—f X Xgy Xg—g X )’sz)f =
= ((lL/t—z X Xgy X yy—9 X Yf)) & sgn (th~.‘£’ - ‘Lft—y) sgn (J’.fz - x_g) =
= E((‘Lﬂ—z’ X Xgy Xgy-g X )’$>) sgn (xm—f - qm—z’) sgn ()’.9’ - xy)-

Finally {q4-g X Xg, Xy-g X Vo) = {du-g» Xu-2> * {Xg: Yoy (cf. 1.2), which
makes the proof of (1.13) complete.

1.14. Definition. Let M e K¢(R™), ¢ : M —» R. For Le K,(M) put Var (¢, L) =
k
=sup Y. |4(J;) @|, sup being taken over such finite systems {J,e R¢(L)|i =
i=1
=1,2,..., k}thatInt J, n Int J; = @ for i + j. ¢ is said to be of bounded variation,
if Var (¢, M) < 0.
The set of functions ¢ : M — R of bounded variation is denoted by BV(M).

@ : M — R is said to be of strongly bounded variation, if ¢ € BV(M) and ¢*e
€ BV(MZ) forevery ¥ < M,0 + & + M and every u € M 4 _ 4. The set of functions
@ : M — R of strongly bounded variation will be denoted by SBV(M).

1.15. Let M e K,(R*), ¢ € SBV(M) and let {: M — R be a bounded Baire
function. For 0 + & < M, veM _q, J€Ry(M) write f,g & de” for (V) —
- [y , & do" (see the definition in 2.3) or, equivalently, for the Ward integral. If is
well known, that the dominated convergence theorem holds for this type of integral
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(cf. [1]) and that [, £ de® exists, if ¢ is continuous. Thus |, & de® exists, if ¢ is
a bounded Baire function.
It is easy to deduce from Definition 2.1 that

J. fl} d(pl)
Je

Moreover, if H, I, Le (My), H + I = L, then

(1.15) f & de’ + jcv do’ = J & dev.
H I L

This property is called the additivity of the integral; it need not be fulfilled for the
Lebesgue-Stieltjes integral, if the latter is defined by means of the measure, which is
obtained in the usual manner from the function @ : K,(My) — R defined by &(L) =
= A(L) ¢".

Also, Fubini Theorem may be applied to f,g & dg® (see [3] or [1]). [,, &de is
defined to be the map from M_,_¢ to R which maps v on [, (¢) d(¢").

Let Le Ky(M). Define for & < M, 0 + £ + M

(1.14) < sup [&°(u)| . Var (¢, Jg).

uel o

(116 56 0.1, 2) = (1)1 ALa-o) [ 2dp
and define -
(1.17) S 9. L.0) = A(L)(0).

(1.18) S(& ¢, L, M) = (— 1)'«“'L§ do .

The right hand side of (1.16) will be interpreted in such a way that (1.16) holds for
all & < . Finally define

(1.19) TG0, L) = ¥ S ¢, L. 2).

1.16. A remark on the symbols. Reals are denoted by small Greek letters from the
beginning of the alphabet, a, f, 7, J, ¢, ». Finite sets are denoted by #, £, £, A,
&, M, N, intervals by H, I, J, K, L, M. Elements of R*, R*#, ... are denoted by
small Roman letters. Functions from intervals to R are denoted by small Greek
letters A, u, v, 8, @, ¥, &, {, 1, . Interval functions are denoted by capital Greek
letters I', ©, A, E, ®, ¥, Q. By Q, S, T, U, V, W, Z there are denoted functions with
various domains of definition. %, ¥", # are subsets of R*, R*, ... There are some
especial symbols like 4 (the difference operator, cf. 1.9), Y(M) (cf. 1.7) K(M), Ko(M)
(cf. 1.4), B(a, a) (cf. 1.3)).
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2. RESULTS

2.1. Definition. Let .# be a nonempty finite set, M € R(R¥), U : K(M) x M —
— R. U is called variationally integrable, if there exists such an additive function
Z:R(M) > R, that to every ee R™ there exist such @ : M - R* and QeY(M)
that Q(M) < ¢ and

[U(J, 1) = B(J)] £ Q) for teJefKy(M), J < Bt o).
Zis called the variational integral of U and E(J) is sometimes denoted by (V) — [, U.

2.2. It is easy to show (by means of Lemma 1.1 from [3]) that there exists at most
one Z fulfilling the conditions of Definition 2.1. There are two definitions of the in-
tegral, which are equivalent to Definition 2.1. One of them is based on major and
minor functions and is a generalization of a well known definition by Perron, in the
other one there is made use of the integral sums and this definition is a direct general-
ization of the definition of the integral by Riemann. For the above definitions of the
integral and their equivalence see [1] and also [3], Note 1.3. The generalization of
the Riemann integral was introduced in [4] the variational integral was introduced

in [2].

2.3. Let A: R™ — R be defined by A(y) = [] y(m). Let M e K(R*). { : M - R
me

is called variationally integrable, if U : R¢(M) x M — R defined by U(J, ) =
= {() A(J) A is variationally integrable (observe that A(J) 4 is the Euclidean volume
of J). Write (V) — [, { dA instead of (V) — [, U in such a case. If { is Perron-in-
tegrable, let (P) — [, { dA be the Perron integral of { over J. It follows from the
equivalence of the definitions of the integral mentioned in 2.2 that { is variationally
integrable iff it is Perron-integrable and that (V) — [, { dA = (P) — [, { d4 in such
a case.

More generally, let ¢ : M > R. {: M — R called variationally g-integrable, if
U: (M) x M - R defined by U(J, t) = {(t) 4(J) ¢ is variationally integrable.
Write (V) - [, { dg instead of (V) — [, U in such a case. Again, there is an equivalent
definition of the integral by means of major and minor functions and the integral is
usually called Ward integral.

2.4. The main result of this paper are Theorems 2.6 and 2.7. The following nota-
tions and assumptions are common for both of them.

(21) & is a nonempty finite set, c,deR*, c<d, K ={c,d), qekK,
U : R(K) x K — R is variationally integrable, = : RK(K) - R being its varia-
tional integral, £ : K — R is defined by &(x) = 5(<q, x)) sgn (x — q).
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(2.2) there exist such n:K — R* and ©eY(K) that |U(J, 1)| < (1) ©(J) for
te J e Ky(K).

(2.3) ¢ €SBV(K), W:R(K) x K » R is defined by W(J, 1) = U(J, 1) o(t).

2.5. It will be proved later (cf. Lemmas 3.1 and 3.7) that & is a bounded function
of the first Baire class, if (2.1) and (2.2) hold. Thus T(¢&, ¢, J) (cf. (1.19)) is well
defined for J € K,(K) provided that (2.1)—(2.3) hold.

Define I'; : R(K) - R by
(24 r(J) =T ¢, J), if JeSK(K),
I'7(J) = 0if J is a compact degenerate interval.

2.6. Theorem. Let (2.1)—(2.3) be fulfilled. Let ¢ be continuous. Then W is varia-
tionally integrable.

Moreover I'y, is the variational integral of W.

2.7. Theorem. Let (2.1)—(2.3) be fulfilled. Let there exist continuous increasing
functions 9; : K(;; = R for ie A that

(2.5) 0()) =[14(Jy) 9 for JeKy(K).
ieN
Then W is variationally integrable. Moreover, I'y is the variational integral of W.
2.8. Note. In conditions of Theorem 2.7 ¢ is continuous (cf. 3.5).

2.9. To prove Theorems 2.6 and 2.7 it is to be verified that I'; is the variational
integral of W. The continuity properties of ¢ (which guarantee that I'y is well defined)
are examined in § 3. In § 4 there are established some properties of functions from
SBV(K), which are needed later. The proofs of Theorems 2.6 and 2.7 have a large
part in common; this common part is contained in § 5. The proof of Theorem 2.6
is finished in § 6, the proof of Theorem 2.7 is finished in § 7. In § 8 there is an example
to demonstrate, that the assumptions on ¢ cannot be replaced by certain weaker
assumptions.

2.10. Theorem. Let {:K — R be Perron integrable, ¢ € SBV(K). Then the
product {¢ : K — R is Perron integrable. '

Moreover, define Z: R(K) - R by E(J) = (P) — [;{dA if Je Ky(K) (of. 2.3),
E(J) = 0 if J € K(K) is degenerate and define & by (2.1). Then & is continuous and

(2.6) (P) - fJCgo di =T @,J) for JeRK(K).
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For the proof put U(J, t) = {(t) A(J) A, n(t) = |{(1)|, 9:(u) = u(i) for ue Ky =
< RY, ie A. U is variationally integrable by 2.3 and = is the variational integral
of U by 2.1. Define W by (2.3). (2.1)—(2.3) and (2.5) are fulfilled, so that Theorem
2.7 may be applied. It follows that W is variationally integrable and, by 2.3, {¢ is
Perron integrable. Moreover, I'y is the variational integral of Wand by (2.4) and 2.3

T(¢, @, J) = T'(J) = (V) — LW =(V) - LC(p di=(P) - _[ch di.
£ is continuous by Note 2.8.

The proof of Theorem 2.10 is complete.

2.11. For illustration, let (2.6) be written in detail for 4" = {1, 2} with somewhat
changed notations. Let J = {a, b), a, be R*'?, g < b and write a,, a,, ... instead
of agy, agy, ..., ay, by instead of Jyy, &(b, +) instead of &, etc. (2.6) reads in
this case

JJ J ai,b1)
+J &+, ay) de(-, ay) -J. &(by, *) do(by, ) +
{ayi,bi) {az,b2)

+ L \ >f(a1, Ydo(ay, ) + &by, by) @(by, by) —

- f(bh az) (P(bl) az) - f(ala bz) (P(au bz) + 5(111, az) (P(an az)-

(2.6) is a formula for integration by parts.

2.12. Let { : R" — R be locally Perron integrable, let @ :R" >R be I./Vl-times
continuously differentiable and have a compact support. Let y be the mixed derivative
of ¢ of order | A, i.e. if & = {1,2,...,n}, then = (0"[dxy, ... Ox() @. Choose
geR” and define :R" > R by &x) = (P) — [0 (dA.sgn(x — g). Let
K e R(R"). Then, by Theorem 2.10, (P) — [, {g dA exists. If g € K € K,(R") and
if K contains the support of ¢, then by (2.6)

(P) —JC(pd,{ = (—1)"f Ede = (—1)”j &y da.
K K K
Thus { may be identified with a distribution.

2.13. Let ¢ € BV(K) and let { : K — R be variationally g-integrable. It can be de-
duced from Theorem 2.6 in an analogous manner as in 2.10 that {¢ is variationally
¢-integrable, whenever ¢ € SBV(K) is continuous.
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Let there exist continuous functions g; € BV(K;,) for ie 4 and let o(x) =
= l_[ 0i(X()- It can be deduced from Theorem 2.7 that {¢ is variationally g-integrable

for (p € SBV(K).
In both cases (V) — [, {p do = T((, @, J).

3. CONTINUITY PROPERTIES OF ¢
In this section it is assumed that (2.1) and (2.2) hold.

3.1. Lemma. ¢ is bounded.

Proof. Choose ¢ R* and find w:K — R* and Qe Y(K) by Definition 2.1.
By (1.13)

(B1) [ —&x) = Y |E(Kgu-gXp-2> X {Xg,ya2))| for x,yekK.
0+ Zew

Keep x fixed. In the sum on the right hand side there can be taken into account only
such #’s that either ¥ = A" or {q4_g, X4_g) is nondegenerate (in R*~¥). By
Lemma 1,1 from [3] there exists such a finite set {(J; %) ]i =1,2,..., k} that
J-e.RO(<q”_g,, Xp-g)s i€ J; = B(t, o(xe x 1;)), Int J;nInt J; = @ for i + j,

U Ji=Lap-o Xp-gy. If |xo — yg| £ min  o(xy x t;), then by Definition
i=1,2,..,k
2.1 (cf. 1.3), then

IU(J.‘ X {Xg, Yoy, t; X xz) - E(Ji X {Xg, J’f))l = Q(Ji X {Xg, Y.Q’>)| s
i=1,2,...,k.

By the additivity of £, the superadditivity of @, by Q(K) < ¢ and (2.2)
k
(3-2) IE«‘U‘—.% Xy_g) X {Xg, yg’))[ = Z IU(Ji X {Xgs Yoy, t; X xz’)l +

+ Q(J X {Xg, J’y>) Z 71(1 X Xg) 9(-’ x {Xg, J’.z’>) + €.

[U(<x’ y>’ x) - E(<x’ y>)l é -Q(<x7 y>)

and

(3-3) |2(¢x, »D)| £ n(x) O(Kx, p)) + &

It follows by (3.1), (3.2), (3.3) that to every x € K there exists such a neighbourhood
2(x)in K that ¢ is bounded on %(x). As K is compact, ¢ is bounded.
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3.2. Let .# be a nonempty finite set, M € 8,(R*), @ e Y(M), ee R*. Denote
by (O, M, ¢) the set of such x € M that for every 6 e R™ there exists such a J e
€ Ko(M) that x e J = %(x, 6) and ©(J) = &. Obviously, #(0, 4, &) is finite (possibly
empty). Define #(0, #) = (0, M, k™). (O, ) is countable (i.e. empty,
finite or infinite countable). *=*

M — #(0, M) is the set of such x e M that if x e J, € K(M) for k = 1,2, ...
and diam J, — 0 for k — oo, then @(J,) - 0 for k — oo.

For # « JM,0 + ¢ + M define O] #] : R(M,) » Rby O[£](I) = O(M 4_, x
x I). Obviously O[ #] € Y(M,).

Define #(0, #) = #(0[7], £). £(O, #) = M, is countable. M, — (0, #)
is the set of such ue M, thatif uelL, e RO(M},) for k =1,2,...,diam L, - 0 for
k — oo and I € R¢(M 4 ), then O(I x L) - 0 for k — oco.

3.3. Lemma. If @ cY(M), me ¢ < M, ue ¥(O, #), then u, € #(0, {m}).

Proof. Let ue My, ugy, ¢ (0, {m}). Then to every ee R* there exists such
SeR™ that if uyyeHe Ky (M), H < B(ug,, §), then O(H x M 4_q,) < e.
It follows that u € My, — ¥(@, #) and the proof of Lemma 3.3 is complete.

34. Lemma. (i) Let X <« N, O+ A £ N, ueKy_y Let veKy, vy ¢
¢ #(0, {k}) for k € A". Then & is continuous at v.

(ii) ¢ is continuous at x € K, if xy ¢ £(0, {j}) forje N

Let there be proved (i). Put x = u x vandforweKyputy =u x w.If & = &,
L (N — H)*0, then (xg, yg» is a degenerate interval; if £ < A", then
LGpegs Xp—gy X Xy Yoy = Ldy-ao U X Vy_gy X Vg, Wg). By (3-1)

(34) Iéu(w) - éu(v)‘ é@ ; XIE«‘LV—% U X vy_gy X Vg, Wg’>)| .

Choose ¢ € R* and find @ : K — R* and Q e Y(K) by Definition 2.1 (putting # = 4"
and M = K). Let 0 + % < o and let the interval (g -o 4 X Vy-g) be non-
degenerate. By Lemma 1.1 from [3] there exists such a finite set

{(Tis 1)) € Ro({qp—g u % Ux-g9) X {Qu-gstt X Vy—g) I i=12..,1

that t,el, < B(t, o(t; x vy)), Intl;nIntl; =@ for i *j, i,j =1,2,....] and
1
UL =gyt X vy_g). Put 8(£) = min a(t; x vg) Let |w — o] < 5(2)
N

i=1 i=1,2,...
and let {vg, w) be a nondegenerate interval. Then

i X Vg €{gg, U X Uy—g) X {Vg, Wg) < B(t; % vg, 8(Z))
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and by Definition 2.1

[UI; x Cvgy wed, ti X vg) — E(I; x {vg, wed)| £ QI X (vg, we))
for i=1,2,..,1.

It follows by the additivity of Z and the superadditivity of Q and by (2.2) by QK) < ¢
that

(3-5) IE«‘]W—.% U X vy_g) X {Ug, Wg'>l =<
, ;
< Yt x vg) O x {vgy we)) + .
i=1

By the assumption that vy, ¢ (0, {k}) for ke # and by Lemma 3.3 it follows
that v, ¢ #(0, £)for0 + £ = A sothat O(I; x {vg, wgp) can be made arbitrarily
small by making |w — v| small. Thus the continuity of &* follows from (3.4) and (3.5),
as g€ R* is arbitrary. The proof of (i) is complete. The proof of (ii) is analogous.

3.5. Let (2.5) hold. It is easy to prove that (0, #) =0 for § + ¢ < A (cf.
Lemma 3.3). By Lemma 3.4 (ii) ¢ is continuous.

3.6. Lemma. Let y : K — R and let for m € A" there exist a countable set 7 (m) <
< Ky, that

Dif AN, 0FH + N, ueKy_y, vEKy iy & T(m) for me A, then x*
is continuous at v,

(i) if x € K, Xy ¢ T (m) for m € N, then y is continuous at x.
Then y is a function of the Baire class.

Proof. By (2.1) K = {c,d), ¢,de R, ¢ < d. The sets 7 (m) can be enlarged, so
that without loss on generality it may be assumed in addition that J(m) is dense
in K,y and ¢y, dpy € Ky for m e A7, Find such sets €, = 7 (m)fori = 1,2,...,
m € A that the following conditions are fulfilled:

Cim=Wim;|J=01,2,..i},
Wimo = Cimys Wim,i = d{m} >
Wimj < Wimj+1 for j=0,1,2,..,i~-1,
Cim < Civim> UCim= T(m).
i=1 :

Observe that these conditions imply that
(3.6) if v¢T (M), Winmjc) <V < Wimih+i

for i = 1,2,... then ||w;,, iiy+1 — Wim,j| = 0 for i » oo.
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Let ¢, = H Cim (cf. 1.2).
meA
For x e K — €, define
Fx, i)y ={me N |xpe Cim) -

Obviously A" — #(x,i) + @ and for me & — #(x, i) there exists a unique je
€{0,1,...,i — 1} that w; ,, ; < Xy < Wi m+1- Put

i,m,j
V(x, i, m) = {Wimjs Wim j+1) >

V()= [l ¥ im).
meA — F(x,i)
Let x; be the restriction of y to the finite set 4; and let p; : K — R be a continuous
extension of y; and let the following condition be fulfilled:

(37) min y(Xgn X ¥) £ p(x) £ max (Xpeen X ) -
ye¥'(x,i) ye¥(x,i)

Such an extension can be constructed step by step. At first y; is extended to the set

of such x € K, that | #(x, i)| = |#7| — 1, then to the set of such x € K that | #(x, i)| =

2 || — 2 ete.

Proposition. p,(x) — x(x) for i » o, x e K.

Let Proposition be proved in case that [ 4| = 1 ie. A/ = {m}. If x € 7 (m), then
w(x) = x(x) for all sufficiently large x: If x e K — 7 (i), then y is continuous at x.
There exist integers j(i) that

w y <X < Wi+ for i=1,2,...

i,m,j(i

By (3.6) ||Wim,jcy+1 — Wim,jiy]| = 0 and by the continuity of y at x and by (3.7)
1i(x) > x(x) (#(x, i) = 0 as | 4| = 1). Thus Proposition holds, if |4 = 1.

In the general case Proposition will be proved by induction. Assume that there is
such a positive integer n that Proposition holds, whenever | 4| < n. Let |47 =
=n + 1, xe K. If possible, find such m e A4 that x,;, € 7(m) and put u = x,.
By the induction assumption p¥(y) = x*(y) for i - 00, y € K 4 _ (. 50 that p(x) —
— y(x) for i » oo. If x,, ¢ J(m) for me A", then there are such integers j(m, i)
formeA,i=1,2,...that

Wi jomi) < Xmy < Wimjmi+1 for i=1,2,...

By (3.6) |Wim,jimiy+1 — Wim,jom,ip] = O for i = co. Moreover, y is continuous at x
by assumption (ii) of Lemma 3.6. Thus by (3.7) p,(x) — x(x) for i — co. It follows
that Proposition is valid, whenever |4°| = n + 1 and, by induction, Proposition, is
valid, if A" is any finite set. Proposition is proved and this makes the proof of Lemma
3.6 complete.
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3.7. Lemma. ¢ is of the first Baire class.

Proof. Put 7(m) = &(0, {m})for me A", y = £ By Lemma 3.4 the assumptions
of Lemma 3.6 are fulfilled and by Lemma 3.6 £ is of the first Baire class.

4. FUNCTIONS OF BOUNDED VARIATION AND OF STRONGLY
BOUNDED VARIATION
Let ./ be a finite set, M € K4(R™), g € M.

4.1. Definition. For ¢ € BV(M) define V[¢] : M — Rby V[¢] (y) = Var (o, {q,y))-
.sgn (y — q) if (g, y) is a nondegererate interval, V[¢] (y) = 0 otherwise.

4.2. Lemma. Let ¢ € BV(M). Define ¥ :K{(M)— R by ¥(J) = Var (o, J) if
J € K6(M), ¥(J) = 0 otherwise. Then ¥ is additive.

The proof is omitted. It follows from Lemmas 4.2 and 1.11 that

(4.1) A(J)V[e] = Var (¢, J) for Je Ky(M).
Moreover,
(4.2) AN V[e] = A1) V[e] for I,JeK(M), I<J.

4.3. Lemma. Let  : M — R and let A(J)y = 0 for J e K(M). Then y € BV(M)
and Var (, J) = A(J) ¥ for J € K¢(M).

The proof is omitted.

4.4. Lemma. Let # be a nonempty finite set, J € 8(R?),{ : J > R, f, g€ J. Then

tg) — () =0*Z Afyr95) 077

Feg
Proof. By (1.8)

A(fJ: gf) Cf"—’ = Z (— ])IJ—#I Cf"_#(g:r) :
Hcs

Hence

z A(f.ﬁ gJ) Cf’_" =x;;(_ ])IJ!’I Cf""—’r(gx) Q(”) s

0x5<g
o) =¥ (=n¥h
PR
It is easy to show that Q(0) = —1, Q(#) = Ofor@ & # + #, # < fand Q(f) =
= (—1)"I. It follows that Lemma 4.4 holds.

555



4.5. Lemma. Let ¢" -2 BV(My) for every £, 0 % £ < o, ad o' = @
(cf- 1.8)). Let 0+ A < M. For A =« L < M define y[A', “%’](rj\/I iR by
(A A =V[e™ =], y[ A, L] = AMy_ ) V[o™-2]if o & ) "

= Y y[A, L] for 0+ A < M. Then ¢ Pury[A] =
el
(4.3) |[A(H) @*| < A(H) Y[ if Hcl, O+ 4 + "
YEM 5, HeSK(My),
(4.9 |A(H) ¢| < A(H) Y[ 4] for HeK(M).

Proof. (4.4) holds by (4.1). To prove (4.3), apply

Lemma 4.4 Withf — M — A
J = M.,{t—.#’ C = A(H) (P,f =qQu-x9 = ). Then

A(H) ¢* — A(H) ¢-% = % Aay, ys) A(H) ¢y,
O+Fcu-x ’

|[A(H) ¢’ < [A(H) o «=x] + 3 |A(H x <45, 9.5)) Pru-x-9] .
OFFSM-X
By (4.1)
|4(H) g 4=x| < Var (¢*4-%, H) = A(H)V[o™*~*] = A(H) ,[ ¢, 5],
and for @ + 4 < M — A by (4.1) and (4.2)
|4(H % {44, y5)) @4=% 2| < A(H x {44, y)) V[0 #~-5] <

< A(H x M) V[gta-5-5] = AH) y[H', & © #] .
It follows that (4.3) holds.

4.6. If ¢?#-2eBV(My) for every &£, 0 + & < M, then, by Lemma 4.5, ¢ €
€ SBV(M).

4.7. If ¢ € SBV(M) and if Y[A'] are defined as in Lemma 4.5, ¢ + ¢ < M,
then

Var (¢7, J) S A Y[AH] for yeMy_n, J€ER(M,).
4.8. If ¢ € SBV(M), then, by Lemma 4.5,

i‘/’(") — o) = % “//(m}(”{m)) - W(m)(“{m)ﬂ

meM

for u, ve M. Especially, ¢ is bounded.

4.9. Lemma. Let ¢ € SBV(M) and let y[A'] be defined as in Lemma 4.5. For
me M let T(m)e My, be the set of points of discontinuity of Y[{m}]. Let # be

556



the set of points y € M that y,,, € 7 (m) for some me M. Let te M — W Then to
every e¢* € R™ there exists such a 6* € R* that

AT Y[AH] S e*, if teJeK(M), J < Bt,0*), 0+ A <M.
Proof. It is easy to see that it is sufficient to prove the following

Proposition. Let te M — W, 0 + 4 < & = M, e, € R*. Then there exists
such a 5, € R* that

AT 2[H L] S ey if teJeKoM), J < B(10y)

(x[4, £] being defined in Lemma 4.5).
Let j € " By definition of y[#", #] and by Lemmas 4.2 and 1.10

AJp) 1[H, L] = AMg_y % Jy) v[tu-2] =
= Var (qo‘u:—.z’, Mg _4 x Jx) < Var ((pqﬂ_g, Mgy_;, X J{j)) _

= A(Mg_yjy x I i) V[o*a-2] = A(J ) 2({j}, &) = A(T ) YL} -

Proposition holds, as y[{;j}] is continuous at #;,.

4.10. Lemma. Let ¢ € BV(M) be continuous. Then V] is continuous.
Proof. By Lemmas 1.13 and 4.2

(4~5) IV[¢] (y) - Vle] (x)| §0#gzcﬂvaf (0, Quu-2s Xu-2> % {Xg, ){w))

for x, ye M.
If
(4.6) Var (¢, {qu—o» Xy_gp X {Xgu)) Z € >0

for some u € Mg, then u % x5, and — by the continuity of ¢ — there exists such «,
0 < a <1, that

(4.7) Var (¢, {quu-o X -y x (1 — a) xg + au, ud) = %e.
Let x € M and % be fixed. Then to every e € R there exists such a § e R* that
Var (‘Pa -2 Xm-2> X {Xg, Y$>) se¢ if yeM, ”y - x” =9.

Otherwise (4.6) holds for some ee R* and for u =v,, 1 =1,2,...,v, > x for
1 — oo. It follows that there exist such o;, 0 < «; < 1 for I =1,2,3,... and such
a subsequence i, of positive integers that (4.7) holds for u = v;, and o = o, and that
the intervals ((1 — o) Xg + s, v, I =1,2,3,... are mutually disjoint. This
contradicts the assumption that ¢ € BV(M). Lemma 4.10 is proved.
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4.11. Lemma. Let ¢ € SBV(M) be continuous. Then to every ¢ € R* there exists
such a € R* that
(4.8) Var (@7, J)Se, if X, 04 + M,
YEM 4y, JeRK(My), diamJ <6,
(4.9) Var(p,J) < ¢ if JeKy(M), diamJ <.

Proof. Let there be proved (4.8). By (4.3) Var (¢?, J) < 4(J) y[#'], by Lemma
4.10 Y[ "] is continuouns and (4.8) follows by the compactness of M. The proof of
(4.9) is analogous.

4.12. Lemma. Let a,beR, a < b. Let o:<a, b) - R be nondecreasing and
continuous, o(a) < o(b), let & < <a, b) be countable, x€ R*, » = 1. Then there
exist such a function p, : {a, b) - R and such a set %, < {a, b) that U, is open
in<a, by, & < U,, 1, is nondecreasing and

(4.10) WB) = 1(@) = #~(elb) - o(@).

(4.11)  o(v) — o(u) = %" v) — plu)), if w,vela by, <u,v) <,.
Proof. Let Z = {z;|i = 1,2,...}. For any i such that a < z; < b find a;, b, €

ela, by, a; < z; < b;

(4.12) o(b;) — ofa;) < %72 .27 Y(a(b) — o(a))

and put ¥; = (a;, b;). If z; = a, put a; = a and find such b, e {a, b), b; > a that

(4.12) holds and put “/f = {a;, b;) (a halfopen mterval) Proceed analogously, if

z; = b. Define %, = U ¥";. It may be written %,, = U W, W ; being openin {a, b

and mutually dls]omt k finite or infinite. Let #7; = (uj, v) (W; = Luj,v))ifaeu,

andu; = a, #'; = (uj, v;>if be %, and v; = b). Define p, as folllws: if t € a, by —

— Uy, put (1) =% Y (o(v;) — o(uy)) (n(t) = 0 if te<a, by — %, and there
Wjic<a,t>

is no #'; = (a, t)); if te#,, find 1 that t e #, (I is unique) and put pf) =

=%y (o(v;) — o(uy)) + 2(a(t) — o(u;)) (1t) = (a(t) — o(u,)), if there is no
Wjic<a,ur) k

Wi = <a,u)). p, is well defined, as Y (o(v;) — o(u;)) < oo; it is nondecreasing
j=1

and continuous. Let u,ve {(a, b), u < v, {u,v) = %,. There exists such an [ that
{u, vy = #",. By the definition of p,

1{0) = 1(u) = #(o(v) — o(u))

and (4.11) holds.
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Put &; = {i| ¥"; = #°;}. Obviously &; n &, = 0 for i & h. It may be shown that
there exist such a positive integer m, such q(h) € (u,vy for h=0,1,2,...,m and
such integers p(h)€&; for h = 0,1,2,...,m — 1 that u = ¢(0), g(h) < q(h + 1),
<q(h), q(h + 1)y = ¥ 4y for h =0,1,2,...,m — 1, g(m) = v, p(hy) * p(h,) for
h; #+ h,. It follows that

) = 1) =3 (ulalh + 1) = la(h) =
< T2 Ho(h) = o) 7o) — o) 3 27
By the continuity of p,, it follows that

1v)) — ;) < % Y(o(b) — o(a)) ¥ 2771

i 5

and finally

10) = 1a) = 3, (l0) = ) =
< o(b) ~ o(@) Y, % 27" = elb) — ola).

j=1 ieé;

(4.10) holds.

4.13. Lemma. Let a,be R, a < b. Let o:{a, b) > R be nondecreasing and
continuous, o(a) < o(b), let Z = <a, b) be countable, ye R*, y = 1. Then there
exists such a v : {a, bY — R that v is continuous and nondecreasing and that

(4.13) w(b) — v(a) < y7Y(o(b) — o(a)),

(4.14) if zeZ, «eR*, a 2 1, then there exists such a feR* that «(o(v) —
— o(u)) = v(v) — v(u) whenever u,vela,b), u <v, {u,v) < %(z, p).

Proof. Define v =) pyss1,, 1, having the same meaning as in Lemma 4.10.
i=1
Obviously v is continuous and nondecreasing. (4.13) follows from (4.10), (4.14)
follows from (4.11).

5. COMMON PART OF PROOFS OF THEOREMS 2.6 AND 2.7
In this section (2.1)—(2.3) are assumed to be valid, but there is made no use of the
assumption that ¢ is continuous or of (2. 5) Lemma 2.5 was already proved in sectlon

3 (cf. Lemmas 3.1 and 3.7), so that I'y is well defined by (2:4).
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5.1. Lemma. ['; is additive.
Proof. For & < A define I's[£] : 8(K) - R by

(5.1) I[2] () = S 0, 7, 2), if JeSK(K),
I'[£](J) =0, ifJisacompact degenerate interval .

It is sufficient to prove that I's[ #] is additive for & < 4" (cf. (1.19) with # = A,
M =K). Let H,LI, Je R¢(K), H + 1= J, I = (u,v), u < v, H=<w,z), w< z.
Find j e # by Lemma 1.6 (with # = ). If j € &, then by Lemma 1.6 Hy, + I, =
= J, and I'([Z] is additive by the additivity of the integral (cf. (1.15)). If j ¢ 2,
then Hy_ o +Iy_o = Jy_p and the additivity of I's|#] follows from
AHy_g)x + Al y-g) x = A(J 4-g) x, which is valid for any y : K, _, — R. The
proof of Lemma 5.1 is complete.

5.2. To complete the proof of Theorem 2.6 or 2.7 it remains to verify (cf. Definition
2.1) that to any &, € R™ there exist such w, : K —» R* and Q, e Y(K) that Q,(K) < ¢,
and that

(52)  |W(J, 1) = T(J)| £ () if teJeRy(K), J< Bt w)).

This will be done in sections 6 and 7. The aim of section 5 is to establish an estimate
for [W(J, t) — I'y(J)|. In accordance with Definition 2.1 and with (2.1) it will be as-
sumed that there are such @ : K — R* and Q e Y(K) that

(5.3) U, 1) — ()| £ QU), if teJefK(K), J < %t o).
The choice of w and Q will be made in sections 6 and 7.
5.3. Let t, y € K. It follows from (1.10), (1.9) and (1.8) that
)=, 2 (=DM et x o) + sen (v = ) B YY)
Define t[.#] :K — Rfor @ &= 4 <= A and 7, : K - R by

(5'4) T[‘/‘/] (y) = (_1)Ml+1 f(t.ﬂ X J’/~m) s

7o(y) = sgn(y — t) E(Kt, yD) .
Thus ‘

(5.5) &= Y f#] ++E].
O My
Observe, that t[.#] for @ + # < A and 1, are bounded functions of the first
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Baire class. Let 0 + 4 < A, £ = N, Je K(K)- By (1.16)
SG[A], ¢, 9, L) = (=) 4(J4- ) J t[#] de.
e

Put £ =N —M)NL. A +0+ LM then Jy,=Jg. 4 x Jy and by
integration over Jgq.« (cf. (5.4) and 1.15 — the Fubini Theorem)

[, 100 = a0 [ L1,
so that

(5.6) SELAY, 9. 7, 2) = (~1)1 AU 1) j o[.4]do.

If 7 0, LM =0, then ¥ = £ and (5.6) holds by (1.16). If ¥ = 0 + &,
then & < M, [;,1[M]do = A(Jg) (¢ . ([ A]), so that

(5) SC[ 4], 0., %) = 4(3) (o - .47

If # =@ = & then (5.7) holds by (1.17). Thus (5.6) holds for # + @ and (5.7)
holds for o = . (Observe that always 4" — A =+ 0.) Like in 1.15 the right hand
side of (5.6) is given such an interpretation that (5.6) holds for 2#" = @ also.

Put # = & 0 JM; obviously & = # U A and £ n A = 0. By (1.19) and (5.6)

(59 T[] 0.9) = 3, SElA]. 0.9, 2) =

= T ()M A, j [ M]do ¥ (~1)7 =0
KX - Ty g
as A + 0.
Let y € (1, (1)) A K. By (5.3)
|2t )| = [UKL »5 1) + Q<L ¥)) s
if {t, y) is a nondegenerate interval. By (2.2)
|2t )| < n(2) Ot ¥D) + Q(<t, y))
and, by 0, Q e Y(K)
(59) |Z(<t, )| = n(t) ©(9) + Q(J)

provided that te J e R(K), J = B(t, o(t)), ye J and {t, y) is nondegenerate. Of
course, Z({t, ¥Y) = 0 if {t,y) is a degenerate interval. Assume that J = (a, b,
a,beK,a<b.For LN, L+N St/ —ZL put wl,Z,F)=a, x
Xby-g-s€Ky_ g
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Let  + £ < . It follows from (1.16), (1.18), (1.14), (L.7) (with .2 = ) and
(5.9) that

(5.10)  [S(zo 0, I, L) = (1) () + Q) Y, Var (9", Jy)

— if & = A it is meant that ¢¥U40) = ¢.

It remains to discuss S(to, ¢, J, 9). Define ¢[t] :K - R by o[t](y) = ¢(2).
By (1.17)

S(to, @, J, ) = A(J) (r09) = ¢(t) A7) 1[Z] + 4(J) (zo(e — o[1]))-
By Lemma 1.11 A(J) 7, = Z(J); thus
150, 9. ,9) = o(t) Z0)| < 4(7) (vl — oL11) .
By (5.3), (5.9) and (1.8)
(5.11) |S(z0, @, 7,0) — W(J, )] = |o(0)] () +
+ (n(0) ©()) + () X lo(w(J. 0, #) = o(1)]
provided that t € J € K(K), J = %(t, o(t)). By (5.5) and (5.8)
(5.12) T ¢, ) = T([E]. 0. J) ,
by (2.4), (1.19), (5.12), (5.10) and (5.11)
(513) WU, 0 = )] = Jo(r)] @) + (n(r) ©() + Q1) 2(J, 1),
QU= Y Y Var(p 9", Jy,) +;§”|¢’(W(~’, 0,.9) = (1),

0PV Sch-2

if te J e K(K), J = B(1, o(t)).

6. PROOF OF THEOREM 2.6, CONTINUED

‘Let &, € R (cf. 5.2). By 4.8 there exists such a x € R* that |¢(t)| < x for re K.
To & = &,(2%) " find w and Q by Definition 2.1 and define Q, € Y(K) by

Q, = xQ + 3ey(x O(K) + QK))™! (20 + Q).
Obviously Q,(K) < &,. As ¢ is continuous, there exists such a w; : K —» R* that
61 1T oln(0,0,9) ~ o] S deslx 06) + OK)
if JeKe(K), J < Bt wt)).
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By Lemma 4.11 there exists such a w, : K — R* that
(6.2) ) Y Var(o"" ), Jg) < dey(x O(K) + QK)) 7!,
0PN gch—2
if JeRo(K), J < B(t wy1).
Define w,(f) = min (o(t), 5(t), wy(t)). It follows from (5.13), (6.1) and (6.2) that

[W(J, 1) — T(J)] £ Q,(J),if te J e K¢(K), J = B(t, ,(1)), which makes the proof
of Theorem 2.6 complete.

7. PROOF OF THEOREM 2.7, CONTINUED

By 4.8, 47, and Lemma 4.3 there exists such a x e R* that |o(f)| + Q(J, 1) < x
for te K, J € K¢(K) (cf. (5.13)). By (5.13)

(1.1 WD) = T £ #000) + () 0. 1) 6(0)
if teJeQy(K), J < %B(1, o).

By (4.3) (or (4.4)) Yy : Kgy — R is nondecreasing for m e A" (Y is defined in
Lemma 4.5 with M = K, # = A"). Let J(m) be the set of points of discontinuity
of y,,; for me A

Let ¢, € R*. For m e A4 apply Lemma 4.13 replacing {a, b) by K, o by 3,,, &
by 7(m)andybye; *. 3|47 [] A(K.;)9;; it may be assumed without loss on gener-

)

ieN —{m

ality that e; ' . 3|47 T] A(K(3)9; = 1(of course, y is replaced by 3¢5 ', if 4~ = {m}).
ieN — {m}

Find v by Lemma 4.13 and write v,, instead of v. Define Q, : 8(K) = R by
(1) =Y AUm) vm T A(Jw) 9.
meA” ied — {m}

It is easy to verify that Q; € Y(K) (cf. Lemma 1.10) and that Q;(K) < ¢,. To & =
= £,(3%) ™! find w and Q by Definition 2.1. Define

Q, = %Q + &,(30(K))™' 0 + Q.

Obviously Q, e Y(K) and Q,(K) < ¢,. It remains to find such w, : K — R* that
(5.2) holds.

Put #" = {x €K, l X(m € 7 (m) for some me A} If te K — #, then by 4.8 ¢ is
continuous at t. There will be distinguished two cases:

(i) teK — #. By 438

lo(w(J, 0, #)) — o(1)] < i;fl‘ﬁ(i)(W(J, 0, £)my) — Ve(tem)| »



by 4.7
Var ("9, J ) < A(Jg) Y[ £].

Therefore (cf. Lemma 4.9) there exists such a ws(f) e R* that
n(?) (4, 1) £ &,30(K))™1, if JeKy(K), Jc Bt ws1)).

Put w,(f) = min (o({), ws(?)). (5.2) holds by (7.1).

(ii) te #". Then t,, € 7(m) for some me 4. Put o = max (x 5(t), 1), z = t(.
By the choice of v, and by (4.14) there exists such a w (f) e R* that » (t) (9,(v) —
— 9(4)) £ v(v) — va(u) whenever u, ve Ky, u < v, {u,v) < B(tyy, ws(t)). It
follows that

n(t) Q(J, 1) ©(J) < (1) 'l—.IA’A(J“)) 9 =
SATm)vm [1 4(Jn) % 2 Q5(0) if JeRy(K), J < B(1, w4(l)) -
ieN —{m} :

Put w,(f) = min (o(t), we(t)). Again, (5.2) holds by (7.1). The proof of Theorem
2.7 is complete.

8. AN EXAMPLE

In this section there will be used common notations, i.e. the basic space will be R?
and not R'+?}, the points in R? being denoted by x = (x,, x,) with x;, x, € R.

8.1. For y,6eR* let J[y,d] =<0,9) x 0,8 = R?, D[y] = J[y, 7] —
— J[47, 4y] and let o, : J[1, 1] > {0, 1} be the characteristic function of D[y] for
0<y=<1Fork=0,1,2,... let m(k) be an integer, m(k) = k + 2, m(k)[k - o
for k —» co. Define ¢ : J[1,1] - R by

B.1)  (xpx2) = 3 (k + 1)71 22V, L (x,, x,) sin (2"®rx,) sin (2"®rx,) .
k=0

Let 4 : J[1,1] - R be defined by A(x,, x,) = x;X, and let (P) — [, ¢ d1 denote the
Perron integral of y over I, if I is a nondegenerate subinterval of J[1, 1] and y :
: J[1, 1] > R is Perron-integrable (cf. 2.3).

8.2. Lemma. { is Perron integrable and (P) — [, ;;{dA = 0.

Proof. For any a, € (0, 1) { is continuous on J[1, 1] — J[«, ] and it is well
known that it is sufficient to prove that

(8.2) lim f {dA=0.
J[1,11-J[a,B1

a=0+,0-0+

564



It is easy to see that

(8.3) f {di=0 for k=1,2,...
J[1,11-J[27k,27k]

Let o, f€(0, 1), B < « and let j be the greatest integer that o < 27/,

f {dA =0,
€0,2-9yx(p,27 )
so that

(8:4) : Lm = Lc di,

with &% = J[277,277] = J[a, B], ¥ = <&, 277) x <0, B). ¥ is contained in the
closure of D(277), hence

(8.5) [((xp, x2)] S (G + 1)71 229 for (x4, x,) e .

Let p be the greatest integer that 277 — p. 27"D*1 > 4, et g be the greatest integer
that g . 27 "W*1 < B Put

¥y= 27— p. 27D 270y X <0, ),
¥y =<0, 270 = p 27Oy X (0, g 27Dy
Py = (0,277 = p. 27Oy x (g 27O gy

Read [, { dA = 0if 77, is a degenerate interval. Then
. ffdl= (dA+ ] ¢di+ {da.
v ) v, V5
It follows from the definition of { that [, {di =0 = [,, { dA so that by (8.4)

J(u: rda.
€ Y3

- —-m(j)+1 -m(j)+1
2j——p.2"'(’) —ot§2"'(” ,

ﬁ _ q . 2—m(j)+l < 2‘m(j)+1

and by (8.5) |[y,{ d4| < 4(j + 1)~* it follows (cf. (8.3)) that [J5tt 13- 57 € dA] <
< 4(j + 1)~ . 8.2 holds and the proof of Lemma 8.2 is complete.

8.3. Define ¢ : [1,1] —» R by
o(x1, x2) = Y, 2720 g, _ (x4, x,) sin® (2"Wrx,) sin® (2"®rx,) |
k=0
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If (x4, x,) € D(27¥), then
(£o) (x1» x5) = (k + 1)7* 2% sin* (2"®nx,) sin* (2"®nx,)

and [p-i{@ dA = x(k + 1)7', x € R* being independent of k. Hence the product
{¢ is not Perron integrable.

If (x4, x,) € D[27¥], then

?L (x5, x,) = 2702k 35in2 (2mO k) cos (2"Mnx,) sin® (2"Prx,) .
x

1

It may be shown that a(p/(?x1 fulfils the Holder condition with any exponent ¢, 0 <
<& < 1. Moreover, if o :<0,1) - €0, o) is continuous, w(0) = 0, w(x) > 0 for
a > 0, o(a)foe — oo for & — 0+, then there exists such a function m : {0,1,2,...} »
—1{2,3,4,...} that m(k) = k + 2, m(k)[k > oo for k — oo and that

vy = )

0 a
—(PL(UI, v,) — T@(ul, u,)| £ Po(max (jv, — uyl,
0x, 0x,

for (uy, u,), (vy, v5) € J[1, 1]. Analogous conclusions are valid for d¢[dx, as
o(x1, x2) = @(x,, x;) for (xy, x,) e J[1, 1].
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