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Let X be a Banach space, let B(X) be the algebra of all linear bounded operators
from X to X. Denote by C® the algebra of all infinite times differentiable complex
functions defined on the complex plane C with the topology of uniform convergence
of every derivate on each compact set in C, i.e. with the topology generated by a -

family of pseudonorm |¢| ,, = max sup | D” f(z)|, where K is arbitrary compact set,
|p|sm zeK

m a non-negative integer, p = (pl, pz), |p| = p; + p, and

D"f: .alplf (z

P1 p2
0z4' 0z%

zy + izy).

A spectral distribution is a multiplicative vector-valued distribution %: C* — B(X)
for which %(1) = I. Denote by a the function a(1) = 1 for A€ C. An operator
Te B(X) is said to be generalized scalar if there exists a spectral distribution % such
that %(a) = T. This class of operators was introduced in paper [2] of C. FoIas.
In this paper the author proved a theorem describing structure of certain class of
invariant subspaces of generalized scalar operators, so called maximal spectral
spaces [1]. It is the purpose of this note to give another characterization of these
invariant spaces which is an analogy of the finite dimensional case. The presented
methods are closely related to [3].

First we shall recall some definitions and known results concerning generalized
scalar operators included in [2], [1].

Let Te B(X) be a generalized scalar operator. Denote by o(x) the set of all complex
numbers A for which there exists a holomorphic solution of the equation

€-T7) /) =x-

in some neighbourhood of 1. Set o7(x) = C \ o4(x). We have or(%(¢) x) = supp ¢
for xe X, pe C*. If F = F~ < C then X(F) = {x : 04(x) < F} is a closed hyperin-
variant subspace with respect to T. The space X(F) is maximal spectral, i.e. it has
the following property: if Z = X is a closed subspace invariant with respect to T
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and o(T| Z) < o(T| X1(F)) then Z < X(F), and o(T | X;(F)) < F. Further, if we
denote by X€ the linear subspace spanned by all elements of the form %(¢) x with
@ € C* such that supp ¢ = G, G open, x € X arbitrary, then X (F) = ) X°. It follows

GoF
that x € X4(F) if and only if %(¢) x = 0 for all ¢ € C* such that supp ¢ N F = 0.
Now, we shall begin with certain considerations concerning the decomposition
of the unit on compact sets in the space C*®.
If e C® we shall denote by [¢p(z)dz = [[p(x + iy)dxdy (z = x + iy).

1.1. Let m be a nonnegative integer. Then there exists k,, > 1 with the following
property: Let K be arbitrary compact set, let (G;)i=;, be a covering of K, i.e.
K < Int Gy U Int G, such that K \ G; % 0 and d(G;) £ 1 (i = 1,2). Denote by

e =mind(G;, K \ G3_;) > 0. Then there exist ¢, ¢, € C® with the properties:
i=1,2
@1 + @, =1 in a neighbourhood of the set K, supp ¢; < G; and sup |D/p;| <

< kM T?xz d(G)* for i =1,2 and |j| < m.

Proof. Let i = 1,2. There exist compact sets K; such that D(K;, ¢/3) = G; and
K < K, UK, (D(M, §)is the set of all A for which d(4, M) < §). Take a nonnegative
function ¢, € C*, [@, = 1, supp ¢, = D(0, 1)™. Let u; be the characteristic function
of the set D(K;, /4). Define functions

Yilw) = Jui(u — 127%el) @o(4) dA = (¢f 12)‘2fui(/1) @o(12(n — 2)fe) dA.

It follows that 0 < y; < 1, y,(u) = 1 for pe D(K,, £/6) and supp y; = D(K, ¢[3) =
< G;. Further,

DIy, = (f12)°* [ui) Don(12n = 2/8)

so we obtain sup |D/y;| < (g/12)72" V! sup |Digo|? d(G))?. Set @1 =¥y, @, =
= ¢,(1 — ¢,). Since K = K, U K,, we have ¢, + ¢, =1 in a neighbourhood
of K. Clearly supp ¢; = supp ¥; = G;. The Leibniz formula yields the following

estimate for ¢, and j = (jy, j,), il m

k,1=0 k

e (1)(7) e tot il sup 0 =
(k,)*(Jj1,J2)

1+ ¥ <j> <jf) (5/12) 727" max sup | DVoo|* d(G2)*
(k,1)*(J1:J2) lilsm

(g12) 727 vk d(G,)? =1+ (¢/12)7*~ 1! max sup [DIgo|* .

lilsm

Il

sup

sup |Dig,|

IIA

IIA

. max d(G))* (2V' = 1) -

i=1,2
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Since (¢/12)**1! < d(G,)* we have
sup |D/g,| < (¢/12)~4~Y max sup | D/go|* max d(G;)* . 219!
ljilsm i=1,2

Set ‘
K = 2™ 12**™ max sup | DIgo|* .

ljlsm

Then we obtain

sup |Dig,| < k,e™* "V max d(G))* for |j|<m.
i=1,2
It is easy to verify that we have the same estimate for the function ¢, as well.

1.2. Let T be a generalized scalar operator. Then there exists a natural number
p such that X(F) = (2 — T)? X for every closed set F.
I¢F

Proof. The operator T possesses a spectral distribution %, so there existsa K > 0,
a natural number m and a compact neighbourhood U of the set a(T) such that
|%(0)| < K|@|ym for every ¢ eC”. Let (\J2)7' <c < 1 be given. Denote by
b=(J/2.¢c—1)(4+22)"" < 1. Choose a p natural such that ™™ <
< (2k,(b~'c)*)™", where k,, is a constant corresponding to m by 1.1.
To prove the inclusion (A — T)? X < X(F)(F = F7) it suffices to prove
A¢F

that ”Il(q)) x = 0 for every ¢ € C* with the support disjoint with F and for every
xeN (A — T)?X. It is easy to see that it suffices to consider only ¢ with supports
A¢F
inchfded in arbitrary isosceles rectangular triangle D with the hypotenuse d < 1,
D n F = (. Now, consider a required triple x, ¢, D. Cover D by two similar triangles
with hypotenuses dc so that the number ¢ corresponding by 1.1 to this covering
be equal db. Hence, by 1.1 there exists a function ¢, with support in one of the
smaller triangles such that sup le(pll < ky(db)=*7 V1 (de)* = k,(db)~V! (b~ 1c)*
and |%(¢) x| < 2|%(¢@,) x|. We can define, by induction, a sequence of triangles
D, and sequence of function ¢, with. properties: d(D,) = dc", supp ¢, < D,,
sup | DIg,| < k,(de"~'b)~* "V (de")* = k,(b™'c)* (dbe"~ ")Vl for |j|<m and
|%(0) x| < 2"|%(0o, ... ¢,) x|
By induction we obtain
. 1 1 \MI
sup [Dig; ... ¢,| < (kn(b™'c)*)" (db)~V! (1 + -4 .+ )
c

cn—l

for | jI < m and all n. Indeed, applying the induction hypothesis, we obtain

sup [Dg; ... 0u0n41] éhf (’k‘) <le> sup [D®Pg, ... | sup | DU Ri2"Dg | <
k,1=0

OO [N

,1=0
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1 1 k+1 X .
.<1 +-+... 4+ _1> (dber)™/imdatkrt
c c"
. 1 1\M!
= (kn(b™ 1))+ (db)~V! (1 T —") .
c [4

Denote by A, = () supp @@, ... ¢,. The number A, belongs to D so there exists
a yeX such that x = (A — T)? y. Then we have

|%(p) x| < 2"|%( (p(p1 @) X| =2 ... (Ao — a)?) y| £

< 2'%(9) y| K max sup ]k > <k> <112>D("”)((,o1 coe @) DUTTRRTDG, — a)?| <

jl<m Dn

< My (2, (b~ 0)* e (1 TR l) .
C'l
The last term tends to zero according to definition of p. We proved the inclusion

N (A = T)? X = X{(F). The relation o(T | XT(F)) < F implies the reverse inclusion.
A¢F

The proof is complete.
An immediate consequence of 1.2 is the following collorary related to [3], [4], [5].

1.3. Let S be a linear transformation (without assumption of continuity)
commuting with a scalar generalized operator T.

Then SX1(F) = X{(F) for F = F~.

In view of the preceding collorary we can reformulate the Theorem 3.5 in [5]
as follows:

1.4. Let T be a generalized scalar operator in a Banach space X which has
no critical eigenvalue (i.e. range (A — T)X has finite codimension for every
eigenvalue X). Let S be a linear transformation eommuting with T.

Then S is continuous.
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