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ON LOCAL SPECTRAL PROPERTIES OF OPERATORS
IN BANACH SPACES

PAVLA VRBOVA, Praha
(Received July 12, 1972)

In his paper [5] P. R. HaLMos has introduced the notion of capacity in a Banach
algebra, particularly in the algebra of operators on a Hilbert space. The notion turns
out to be of use in investigations of properties of quasialgebraic elements of a Banach
algebra (an element a in the algebra A4 is called quasialgebraic if there exists a sequence
() of monic polynomials, with degree d(p,), such that |p,(a)|"/*® — 0 as n —» o).
In this note we shall prove some additional properties of quasialgebraic elements.

As regards operators, there arises the natural question how to define a locally
quasialgebraic operator T acting on a Banach space X. F. H. VAsILEScU proposed
in [8] a definition of to be locally quasialgebraic which relates this notion to spectra
of elements x € X with respect to T. In the present note we prove the existence
of a comparatively large set of elements xe X with extremal spectra, namely yT(x) o
> bd o(T) and o7(x) = o(T) (See [4]). This result is then used to obtain a proof
of the fact that every locally quasialgebraic operator is quasialgebraic.

The paper is divided into two parts. In the first we shall describe some spectral
properties of elements of X, the second part is devoted to the notion of capacity.
To make the paper self-contained we shall give some proofs included in [5], [7], [8].

1. Let X be a Banach space, let Te B(X) (the algebra of all linear bounded operators
from X to X) be given. Denote by @ = C (the complex plane) the set of all complex A
for which there exists a neighbourhood U, with the property that for every open
set o < U, the unique holomorphic solution of the equation (A — T)f(2) =0
on o is the function f = 0 in w. The set Q; is open by its definition. The set Q; is
called the set of analytic uniqueness of T'and the set S; = C\ Qis called the analytic
residuum of T[7]. If S; = 0 we say that T has the single-valued extension property
[2].

Let x € X be given. Take a complex number such that the equation (A — T) f(1) =
= x has a holomorphic solution in some neighbourhood of this number; denote
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by 67(x) the set of all complex numbers with this property. Further, set yr(x) =
= C \ 57(x), or(x) = 67(x) n @7 and o7(x) = C \ gg(x) = yr(x) U Sy. Clearly
77(x) = o7(x) = o(T). It is an easy application of the open mapping theorem that
U o7(x) = o(T) (or equivalently N or(x) = ¢(T)). See [7].

xeX xeX

Remark 1. The set Sy is closed, S; = (Int ST)‘. Moreover, St is the closure
of the set of all points A such that there exists an h, £ 0 with the property
A —T)h, =0, yr(h;) = 0.

Proof. The set Sy consists of all A for which in every neighbourhood U, there
is an open set w = U, and a non-zero holomorphic function f satisfying

(n=T)f(W=0
in .
It follows that @ < Int Sy and consequently S = (Int S;)~. Further, if A€ Sy
we may suppose that  is such that f has only a finite number of zeros in w. Take

arbitrary pe o such that f(u) + 0. Then y(f(n)) = 0. Indeed, (u — T)f(x) =0
so that the function h(¢) = (£ — p)™ ' f(u) is holomorphic for & = p and

(€= T)hE) = (1 — @) h(&) + (¢ — W) h(&) = f(w)

hence y7(f(1)) = (u). On the other hand, the function g(&) = (u — &)™ (f(¢) — f(r))
for & + p, g(1) = —f'(n) is holomorphic in w and

E-T)g®O)=E-T) (=8 (&) —(r—T)(n =& f(u) + f(1) = f(n)

for £ + p and by continuity everywhere in w. Thus pe 6(f(n)) as well and
92(f(1)) = 0. To prove the assertion it is sufficient to prove that every A with the
property (A — T)h = 0 for some h # 0 and y(h) = 0 belongs to Sy. Let f be
holomorphic in a neighbourhood U, of A such that h = (u — T)f(u) in U,. The
function g(u) = (4 — T)f(w) is non-zero in U,. Moreover

(u=T)g(w) =(A=T)(u—=T)f(w) =(A-T)h =0
m U,. Thus U, < Int S;. The proof is complete.

1.1. Let x € X be given. The following conditions are equivalent:
1° A4y oeey A€ 81(x),
2° there exist a positive k and a sequence (x,) = X such that

(A= T) oo (An = T) Xps1 = Xy, |%,| S k" for n 2 1 and

A =T1)c.(dp— T)xy = x.

Proof. Suppose that 1° is satisfied. Then there exist an ¢ > 0 and a holomorphic
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function f defined in M = U D(4;, 2¢) (D(4;, 2¢) is the open disk with center A;
i=1
and radius 2e; the sets D(4;, 2¢) are supposed to be pairwise disjoint) such that
(0 = T)f(n) = x in M. Form an infinite sequence (u;,) setting u, = 4, for every na-
tural n in the form ml + k, 1 £ k £ m. Define by induction the sequence of fun-
ctions g; on M as follows: .
91 =1, 9a) = (1 = ta-1) 7" (Gu-1(ta=1) = gn-s(W)) for p+ -y,
9n(Hn=1) = —Gn-1(tta=1) (n 2 2).
Then all g, are holomorphic in M. Using continuity of g,,, and the equality
(1= T)gnsr(1) = (£ = T) (1 = )" glttn) = (0 = T) (1 = )" gulw) =
= gn(un) + (.un - T) (ﬂ - ”u)_l gn(:un) - (:u - T) (lu - .un)_l gn(ﬂ)
for u # p, we obtain by induction (u — T) g,+1(1t) = gu(tts) in M, n = 1.
Denote by (g,); the k-th coefficient of the expansion of g, in a power series in
D(4;, €), ie. g () = Y. (9a)i (u — A;)* in D(A;, &). We shall prove by induction that
k=0
[(9.)i] < K(1/e)**" for some K. Indeed, we have limsup |(f)|'* < (2¢)™* and
k= o

consequently |(g,)i| < Ke™*~* for suitable K and 1 < i < m. Further, we have, for

)'i = Hn gn+1(:u) = _kz:o(g");;+l (ﬂ - }”i)k in D(}'l" 28) If li * i, then

~ ueall) = (= 1) (Z (@) 0 = 2 = ) =
= (5 (=1 = 20 G = 1)) (Z (0 (0 = 20 — gl =

0

Ms a

= 0((—1)" (hi = )™ (9o + -+ (A — )" (g —
— (=1 (A — )" gu(ma)) (0 — A in D(4;, 2e).
By the induction assumption we have

l(gn+l)lil = l(gn)li-fll < Ke™*7""1 for Ai = Uiy

and
K
I(g"+1)£l < K( 20(28)‘k-1+j e~in 4 (28 —k—-1 e—n) -
=

k
- Ke—k—n-l(z 2—k—1+j + 2“k*l) = Ka—k—n—'l for 2‘ =i= U -
Jj=0

It follows that lg,.(lln)l < Ke™"for n 2 1. Set X, = goun(tmn)-
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Then we have Ix,,l < Ke™™" and the equality (p — T)guss(p) = g (4,) implies
(A =T)ece(ly=T) X4y =%, for n21, (4 = T)...(4, — T)x, = x. This
proves 2°.

To prove the implication 2° — 1° it suffices to show that the function f(d) =

=§: (=1 ]'mI (4 = T)""'xpiq(A — 4)" satisfies (A — T) £(2) = x in D(,, &),

0 j¥ij=1
where ¢; = (| [] (4; — T)| k)~*. Indeed, we have
j¥i,j=1

A=T1)fD) = 0= 1) D+ (k= T)f(H) =

2= IT By = T (2 — 2 4 x 4

_n=0 jEij=1
+2 (=0 I (= T %2 — 2)" = x.
n=1 j¥ij=1 ‘
This completes the proof.
1.2. Suppose that O does not belong to Sy. If TX = X then T™' e B(X).

Proof. Denote by X the unit ball of X. According to the open mapping theorem
X, < kTX, for some positive k. Given an x € X we can define a sequence of elements
x, € X such that Tx, = x, Tx,,, = x, and |x,| £ k"[x| for n > 1. It follows that
0 € 87(x) by 1.1. Together with the assumption 0 ¢ Sy it gives O e 01(x) for every x
and consequently, 0 € o(T). The proof is complete.

13. o(T) = Sy v {2: (2 — T) B(X) # B(X)} = S;u {2:(A - T) X + x}.
Proof. Clearly S;u {2:(2 = T)X #+ X} = Sy u {A:(4 — T) B(X) + B(X)} =
< o(T). To prove the assertion it suffices to show that
oT)c Sru{l:(A—-T)X + X}
or equivalently,
O n{ii(A-T)X = X} < o(T).

If A€ Qr then 0€Q,_; and it follows that (A — T)™' e B(X) by 1.2. The proof
is complete. :

The following collorary is related to [1].

1.4. Let H be a Hilbert space, let Te B(H). If T* has the single-valued extension
property then o(T) = 6,(T) (the approximate point spectrum).

Proof. Take an S e B(H). A complex number A does not belong to o,(S) if and
only if inf |(2 — S) x| > 0. The last inequality is equivalent to the fact that (4 — S)
Ix|=1
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is one-to-one and its range is closed. This is, in its turn, equivalent to the
existence of an operator R such that R(A — S) =1. Indeed, denote by P
the projection on (4 — S)H then (A — S|(A— S)H)"'P(A— S) =1 On the
other hand if R(A— S)=1I then |x| <|R||(2 -~ S)x| for every xeH and
1 xiln_fll(/l — S)x| 2 [R|™'. Hence, ¢,(S)={i:B(H)(A — S) + B(H)}. Since T*

has the single-valued extension property we obtain by 1.3 o(T) = o(T*)* =
= {A:(2 — T*) B(H) + B(H)}* = {4 : B(H) (A — T) + B(H)} = o(T).

L5. Theorem. Let Te B(X). Then each of the sets {x:y(x) > bd o(T)},
{x 1 o1(x) = o(T)} is nonmeagre (i.e. it is not of the first category) in X.

Proof. Denote by L, (resp. L,) a countable dense subset of bd o(T) (resp.
o(T) \ Sy). Since L, < bd o(T) it follows (1 — T) X # X for every A€ L,. Moreo-
ver, the set (1 — T) X is of the first category in X by the open mapping theorem
and so is the set U (4 — T) X. Taking an x ¢ ) (A — T) X we obtain L, < y4(x)

AeLy :L

and consequently, bd o(T) = L < yy(x). 1
To prove the theorem it remains to prove that the set {x : 67(x) = o(T)} is non-
meagre in X. If o(T) = Sy then a4(x) > Sy by its definition so that o4(x) = o(T)
for each x € X. Hence assume that o(T) \ S; # 0. Given A€ o(T) \ Sy we have
(A= T)X + X by 1.2. Again, the set U (4 — T) X is of the first category in X

2eL>

and we have y;(x) > L, for every x ¢ U (2 — T) X. It follows that o7(x) = yr(x) U

AeL>
U Sy o L; U S¢ = o(T). The proof is complete.

Remark. On the other hand, let us mention that the set of those elements x € X
for which ¢4(x) & o(T) may consist only of zero element. Take, for instance, the
example presented by R. C. SINE [6] (See also [4]), i.e. the isometric shift in [,,
T(¢,, &5, ...) = (0, &4, &,, ...). The operator Thas the single-valued extension property
and o4(x) = o(T) for every 0 + x € l,. Indeed, since T is isometric, we have
|2 = T)x| = (1 = |2]) |x| > 0 for |4| <1 and 0 + xel,. It follows that T has
no eigenvalue in the open unit disc and clearly it has the single-valued extension
property. Further, suppose that a complex number Ao, IAOI < 1 belongs to QT(x)
for some x = (x,)7 €l,. Then xe(1— T)X and xeKer (2* — T*)* for 1 in
a neighbourhood U, of 1,. The only eigenvector corresponding to T* and to A*

is x;, = (A*" 1T so that ) A""'x, = 0 for all A€ U,. It follows that the power
n=1

series Y, u"~'x, converges also for all [u| < |4o| and Y u""'x, = 0. Thus x, = 0
m=1 : n=1

for w21 and x = 0. Since |T| = 1 it follows that ¢(T) = D(0, 1) = a4(x) for

every x € l,.

The operator T* has not the single-valued extension property and yT.(x) is empty
or ypx) < bd o(T*) = {4 :|A] =1} for every x e, [10].
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The following theorem (with the exception of 1°) is included in [97]. We shall give
now an elementary proof.
Denote by #(T) the set of all functions holomorphic in a neighbourhood of o(T).

1.6. Let fe #(T) which is non-constant in each component of definition. Then

1° f(ye(x)) = vym(x) for every xeX
2° f(o1(x)) = oy (x) for every xeX
3° Sy = f(S1)-

Proof. Let x€X be given. The inclusion f(yr(x)) = v,r(x) being trivial for
77(x) = 0 we shall suppose that y,(x) + 0. Given 1, let g€ #(T) be such that

f(2) = f(2) = (z — A) g(2). Suppose that f(2)€ &, (x). Let (x,) be a sequence
corresponding to f(4) and to the operator f(T) by 1.1. Set y, = ¢"(T) x, forn = 1.
Then the sequence (y,) satisfies

(T—= 2 Yus1 = (T =2 g" " Y(T) xps1 = g"(T)(T = A 9(T) Xps1 = 9(T) X = ys
(T=2 vy =(T—2)g(T)x, = x.

It follows that A€ 67(x) and consequently, f(yr(x)) = 7,(r)(%)-

On the other hand, take 1 € y;(r)(x). The function f is non-constant so that A — f
has only a finite number of zeros in some neighbourhood of o(T) so there exists
a ge F(T), g(z) + 0 for all z and A — f(z) = (A4; — 2) ... (4, — 2) g(2)- Suppose
that all 4; € 57(x). By 1.1 we can choose elements x,, such that

(A’l _ T)"'()'m - T)xn+1 = x,,,

!x,,l < k" for n = 1 and some positive k, (1, — T)... (4, — T) x; = x. Put
Yn = (1/g)"(T) X, -

Then (A — £(T)) Yus1 = yaand |ya| < (|(1/g) (T)| k)" for n = 1,(2 — f(T)) y; = x.
Thus A € §1,(x) which is a contradiction. Hence 4; € y(x) for some i and

A= f(4) e f(yr(x)) -

This completes the proof of 1°.

Now we shall prove f(S7) = Sy Take 4 such that (A — T) h = 0 with a suitable
h + 0, yr(h) = 0. Then also (f(2) = f(T)) h = 0 and by 1° y,p\(h) = 0 as well.
This proves the inclusion f(Sr)  Sy(r). Further, let 4 be such that (A — f(T)) h < 0
with an h = 0, y,qy(h) = 9. To prove the inclusion S,y = f(Sy) it is SufﬁClent
to show that f(2) e f(Sy) for each such 2.

By 1° 2(h) = 0 as well. Let 2 = f(2) = (z — &) .. (z = 4,) g(2) with g € #(7)
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and g has no zeros. We have 0 = (1 — f(T))h = (T — Ay) ... (T — 4,) 9(T) h.
Suppose that all A; € Q. Let j be the greatest index such that

(T=2)...(T= 2,)g(T) h = 0.
Denote by y = (T— Aj41)---(T—4)g(T)h £0. If j=n set y=g(T)h
Since 1/g € #(T) we have g(T) h #+ 0.
Since (4; — T) y = 0 we have (1 — T) (2 — 4;)™' y = yfor A % 2;. Since ;€ Qr
it follows that y(y) = (4,). On the other hand, ® = yz(kj > 77(y) which is a con-
tradiction. It follows that at least one 4; € Sy and 4 = f(4;) = f(Sr). We proved 3°.

We obtain condition 2° as follows:
oren(X) = Y5y (%) Y Spry = f(r2(x)) © £(S1) = f(v2(x) © S1) = f(o2(x)) -

2. Denote by P} the set of all monic polynomials (i.e. the leading coefficient is 1)
of degree n, by P! the set of all monic polynomials. By d(p) we shall denote the degree
of pe PL.

Definition. Let 4 be a Banach algebra with a unit over the complex field, let a € 4
be given. Denote by cap, a = inf |p(a)| and by cap a = 11m (cap, a)'/*. The number

pePn!

cap a is called the capacity of a.

The norm in A4 is submultiplicative so that cap,,,a < cap, a. cap,, a and thus
lim (cap, a)'/" exists and cap a = inf (cap, a)'/".
n n

Let K be a compact set in the complex plane. Consider the algebra C(K) with norm
|f]x = sup |f(z)|. Then the capacity of the identical function a(i) = 4, i.e.
lim ( mf | p|k)"/" is known as the CebySev constant of the set K and we shall denote
n—oo peP,l
it by cap K. Set cap 0 = 0.

The present definition of capacity differs slightly from that given in the paper
of P. R. HALMos [5]. We shall give now a shorter proof of some results included

in [5].
2.1. capa = mf |p(a)|””(") 1nf Ip(a)llld(p)
Proof. The relation cap a = mf | p(a)|'/4® follows immediately from the definition

of capacity. Further, the 1nequa11ty |p(a)|a < | p(a)| gives
inf |p(a)|Y4® < inf |p(a)] @ .
pePt peP!

On the other hand, we have

cap a £ inf Ip(a)ll/nk < inf |pk(a)|!/m
pePrict pePnt
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for every natural k, n and this implies

cap a < inf inf |p*(a)|!/™ = inf inf inf |p*(a)|!/™ = inf inf |p(a)|,”" = inf |p(a)|;/*® .
k,n pePpt n pePn! k n pePpl peP!

This completes the proof.
22. cap a = cap o(a) .
Proof. According to 2.1 and to the spectral mapping theorem

cap o(a) = inf |p|,{4” = inf |p(a)]s/*® = capa.
peP! peP!

Definition. An element a € A4 is said to be algebraic if p(a) = 0 for some p e P.
An element a is said to be quasialgebraic if there exists a sequence of polynomials
P, € P such that |p,(a)|'/*®” — 0. It follows from 2.1 that

2.3. The following assertions are equiualeﬁt:
1° there exists a sequence of monic polynomials (p,) such that |p,(a)|'/*®” — 0,
2° capa = 0,
3° there exists a sequence of monic polynomials (p,) such that |p,(a)],"*" — 0.

24. Let ae A be quasialgebraic, let f be a function holomorphic in a neigh-
bourhood of o(a). Then f(a) is quasialgebraic.

Proof. According to 2.2 we have cap a(a) = 0. According to a classical theorem
[3] (285—291) there exist monic polynomials #, of degree n with roots in o(a) such
that lim |t,|,{n = cap o(a) = 0. Write 1, in the form t,(z) = (z — 4,) ... (z — 4,).

Define functions f, (i =1,2,...,n) by the following two postulates: fy(z) =
= (f(2) — f(4))(z — )" for z * A, fi(z) = f'(%;) for z = A,. All functions f;
are holomorphic in the same neighbourhood of o(a) as f is and we have |f;]|

<

a(a) =

< 2|f'| o d(o(a)). Set f,(z) = Hlf,‘,(z) Then we have |f,],@) < [2f'|o@ d(o(a)]"
= n

Further, take the polynomial q,(z) = [](z — f(4;)). The order of g, is n and
i=1

4.(f(2)) = f.(2) t,(z) for z % A;, by continuity equality holds everywhere. Further,
the following estimate is true

|9al oy = 1an o flatay = |fatalotey = |Fulata |talotey = 2| o d(0(a)) - [talatay -

The last term tends to zero as n — oo and this implies that 0 = cap f(o(a)) =
= cap o(f(a)) = cap f(a).

Let X be a Banach space. 2.3 provides different methods how to define locally
quasialgebraic operators in the algebra B(X). In his paper [8] F. H. Vasilescu took
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the local version of 3° which turned out to be the local version of 2°. We shall begin
with some definitions: Given an x € X, denote by r(T, x) = lim sup |T"x|*/". Clearly

r(T, x) is the radius of the minimal disk outside of which x = (1 — T) f(u) for
a holomorphic function f,.
Denote by cap, (T, x) = inf r(p(T) x) and by cap (T, x) = mf r(p(T) X)),

pePnl

2.5. cap y¢(x) < cap (T, x) < cap o4(x) for every x€X.

Proof. Clearly y,ir(x) = {4 : 4| < /(p(T), x)} = o,(r)(x). It follows |al,, .z, ) =
< 1(p(T), x) < |al,, .z, (recall that a is the identical function). From 1.6 it follows
that |plv'r(x) = I |'Pp(7')(x) = T(p(T) x) = |a|‘7p(1')(x) |p|0’r(x) for each pe P! and
consequently cap y;(x) < cap (T; x) < cap o7(x). The proof is complete.

Now, we shall give an example of an operator for which the inequalities in the
preceding proposition are strict.

Let S be the left shift on the space I,. Denote by e; = (¢}, &5, ...) such that E = 6y

Then Si tie; = i £+ 1e;. Denote by X the Banach space of all bounded sequences
X = (x,j,= 1x,,e I lzvlith the supremum norm, |x| = sup |x,|. Define the operator
Te B(X) by the formula (Tx), = Sx,. Since x, = il""le,, satisfies Sx; = Ax;
for |A| < 1 if follows that |A| < 1 is an eigenvalue oflT |T| =1 so that o(T) =

= D(0, 1)". Further, Sy = D(0, 1)”. Indeed, (1 — S) Z,u" le, = 0 in D(0, 1) and
S50l = 1/(1 = Ju). Thus DO, 1)7 = Sy € () = D(0, 1)

Take a sequence (4;) of complex numbers such that (1, 4,,...)” = D(0, &)~ for
some 0 < ¢ < 1. Form a sequence x, = (x,) = X such that Sx, = ,x,, lx,,{ =1.
We shall show that 0 = cap yr(xo) < cap (T, x,) = cap D(0, &)~ < cap or(xo) =
= cap D(0, 1)~. Clearly o4(xo) = Sr = D(0,1)".

Observe that |p*(T) x,|'* = (sup |p*(S) x,|)** = (sup |p*(4,)))""* = sup |p(4,)| =
= |P|po,p- and r(p(T), xo) = |P|pco,)-- From the last equality it follows that
cap (T, xo) = cap D(0, ¢)~.

Take 0 <6 < 1 arbitrary. Set fy(u) = Y (1" — ") (n — )~ e,y for u =+ 2,

1
pe D(0,9), e D(0, 1). The function f; can be extended to an analytic function f,
in D(0, 8) and |fi|po,5 < |x2| [1/(1 — 8)]. Moreover, we have (u — S) fi(1) = x,
in D(0, 8). It follows that D(0, 1) = &7(x,). Now, take ¢, 0 < ¢ < ¢ < 1 and define

gu(1) = (1 — 4,)"* x, for |u| > & Then (u — S) g,(1) = x, and |g,(1)| £ 1/(¢' — &)
for |u| > €. Thus 87(x,) = (|4 2 &) and yy(x,) = 0.

Definition. An operator Te B(X) is said to be locally quasialgebraic if for every
x € X there exists a sequence of monic polynomials p, such that r(p,(T), x)'/4®» - 0,
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2.6. Every locally quasialgebraic operator is quasialgebraic.

Proof. Let Te B(X) be locally quasialgebraic. By definition of cap (T; x) and
by 2.6 it follows that cap y7(x) =0 for every x € X. Choose an x # 0 such that
y7(x) o bd o(T) by 1.4. Then cap o(T) = cap bd o(T) < cap yr(x) = 0. This
completes the proof.
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