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INTRODUCTION

The purpose of this paper is to extend the concept of a pure and a torsion theory
[3] and [2] with respect to a set-valued bifunctor. In the section 1., the proposition
1.1. justifies the Fieldhouse’s definition ([3], 1) of a pure theory with respect to the
usual one defined by a proper class of short exact sequences of an abelian category.
In the section 2., there is given the complete description of the orthogonal theories
of the tensor and the torsion product together with an important example of the ortho-
gonal theories of the bifunctor Ext! in abelian groups.

1. ORTHOGONAL THEORIES

Let ¢, and €, be two categories and F: ¥; x %, — Sets be a bifunctor into the
category of sets. An orthogonal theory or the bifunctor F consists of an. ordered
pair (#, Z) of classes of objects from |#,| and |#,| respectively, which are ortho-
gonally closed with respect to the bifunctor F. In other words, if we denote

Z* ={Me|%,||card F(M,L) < 1, VLe Z}
and
M* ={L €|@,||card F(M,L) < 1, VM € .4}
then
M=% and & = M*.

In such a case we shall say that .# is the left orthogonal class and % the right
orthogonal class. The orthogonal theory (., Z) is trivial if either 4 or & consists
of |, | or |&,| respectively. If |#,| = |€,| and (Z, ) is also an orthogonal theory,
we shall say that the orthogonal theory (#, & ) is commutative, furthermore the class
M Z is called the kernel of the orthogonal theory (#, &) regardless of the com-
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mutativity. Unless otherwise specified, we assume throughout this paper that the
bifunctor F is covariant in both variables since the contravariant case can be obtained
by the dualization of categories. If the bifunctor F: €° x 4 — Sets (¢° is the dual
category of %) can be factorized as F(X,Y) = Morg. (K(X), K(Y)), where € is a quo-
tient category of 4, K:% — €’ the corresponding functorial epimorphism and
Moryg. (4, B) the set of morphisms from the object A into the object B in the cate-
gory ', then every orthogonal theory of Fis called the pure theory for € with respect
to the functorial epimorphism K. The pure theory for €, where ¥ = ¢’ and K is the
identity functor, is called the torsion theory for €.

Examples. (i) Let 7 be the category of topological pairs and continuous maps
preserving the base subspaces. Since the homotopy as an equivalence relation on sets
of morphisms of  p is compatible with the category structure of J p, it induces the
desired quotient category and consequently the pure theory (7 p, %), where % is the
class of all contractible spaces.

(11) Let & be the category of pointed topological spaces and continuous maps
preserving base points. If we denote by 2 the full subcategory of 4~ having one point
connected base component, we get the torsion theory (Jif ) 9) for &, where A is the
full subcategory of pointed connected topological spaces.

The following proposition justifies the Fieldhouse’s definition ([3], 1) of the pure
theory with respect to the usual one defined by a proper class of short exact sequences
of an abelian category ([7], 368). Let % be an abelian category. Denote by &(%) the
additive category of short exact sequences of ¢([7], 375).

Proposition 1.1. Let € be an abelian category. Then any proper class ? < |6(%)|
induces the pure theory (|6(%)|, 2) for £(%).

Proof. Let E,E €|&(%)| and fi, f, € Morg, (E, E') with the structure E:0 —
—-A->B->C—-0,E:054 >B - C —>0andf; = (x,pB,7), i = 1,2. Now,
we shall define an equivalence relation on each Morg g, (E, E') which is compatible
with the category structure of &(%), since such a relation determines a quotient cate-
gory of &(%). According to [7], 372, we have the commutative diagrams

0 — Mor (X, 4) — Morg(X, B) — Morg (X, C) - Ext! (X, 4)
(1) d,—l ﬁil 7il Eil
0 — Mor (X, A’) - Morg (X, B') - Mor¢ (X, C') 2> Bxtg (X, 4')
i=1,2forvXe|%|
Since the proper monomorphism are closed under push-outs, the morphism, &;,

i = 1, 2, carry the subgroup of proper exact sequences Ext} (X, A) into the subgroup
Ext} (X, 4') ([7], 369) and hence there are the induced homomorphisms w;, i = 1, 2,
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which make the following diagram commutative (n and =’ are the canonical projec-
tions).

©)
0 - Morg (X, A) - Morg (X, B) - Morg (X, C) —=3 Extg (X, A)[Exts (X, A)

®; B: Vi %
0 — Morg (X, A") — Morg (X, B') » Morg (X, C') 2%, Extg (X, A')[Exth(X, 4)

Since f;, i = 1,2, were chosen arbitralily, we can define the desired relation on
Morg (E, E) by fy ~ fo<>m' 08 0y = 7' 08 o y,, VX €| It is easy to show
that it is the equivalence relation compatible with the category structure of &(%).
Let us find |#(%)[*. Consider again the diagram (2). If E runs through the whole
|6(%)|, then E’ € |&(%)|* <> n' < &' = 0 and since the equality n’ 0 §' = 0 holds for
VX e [%I, E’ € 2. Conversely, the implication E' € 2 = 1’ - 6’ = 0 follows immediately
by [7], 372, q.e.d.

As to the properties of orthogonal theories one can prove the similar propositions
as in [2], 228 -9, including the fact that both left and right orthogonal classes are
closed under isomorphic copies.

2. AN APPLICATION

Unless otherwise specified, we assume throughout this section that all the men-
tioned groups are abelian. First, let us introduce some notation important for this
part of the paper.

o/ B — the category of abelian groups,

g — the full subcategory of ordinary torsion groups,

&  — the full subcategory of ordinarily torsion-free groups,
2  — the full subcategory of divisible groups,

#  — the full subcategory of reduced groups,

G, — the ordinary torsion subgroup of the G e |/ 4],

Gz — the reduced subgroup of the G e IJzMZ[, ie.

Gr = G/D, where D is the maximal divisible subgroup of G,
Gg: — the ordinary torsion part of Gg,
G,r — the reduced subgroup of G,,
Ggrr — the ordinarily torsion-free group of Gg, i.e. Ggr = GR/GR,,

Q  — the group of rational integers,
N  — the set of natural numbers,
P — the set of natural prime numbers,
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Z(p") = Z|p*Z, peP, keN,

% = {Ge |44 |Ext' (Q, G) = 0} — the cotorsion groups,
Z(p™) — the Priifer p-group, pe P,

Q) ={mlneQ|n=T]pi", picJ = P,o,eN},

1]G. — the coproduct of the groups G,,

[1G. — the product of the groups G,,

G — the coproduct of copies of G with the index set I.

We shall say that G; € 7 has the primary decomposition disjoint with the primary
decomposition of G,eJ if G, =[] G,, and Gz [1G,, and I, n1, =90
provided that I, I, < P. pely pelz

A formal symbol H p*®, where e(p) = 0 or 1 or o is called the restricted Steinitz

number (RSN). If e( p) can have only the value 0 or 1, it is called the strongly restricted
Steinitz number (SRSN).

Proposition 2.1. Let A, Be |o/%|. Then
A®B=0<{4,® B,= A, ® BB, = A|A, ® B, = A[A, ® B|B, = 0} .

Proof. (=) The sequence 0 —» A, - A — A[A, = 0 is exact and since the tensor
product @ is the right-exact functor in both variables, B ® A/4, = 0. Consider the
exact sequence 0 » B, » B — B[B, — 0. Since A[A, is the flat Z-module, B, ®
® A[A, = B|B, ® A[A, = 0 and by symmetry 4, ® B/B, = 0.

Hence we have the exact sequences Tor! (4/4,,B)=0—-> A4, ® B,» A® B, ~ 0
and Tor' (B/B,, A) =0 — B, ® A — 0 which imply the desired result. (<=) The
right hand side implies 4, ® B = 0 and consequently 4 ® B = 0, q.e.d.

Corollary 2.2. If A ® B = 0 then either A or B is the ordinary torsion group.
If Ac T then A® B = 0 < {Ax @ Bg, = A ® Bg[Bg, = 0.}.

Proof. The first part of the proof follows directly from the proposition 2.1. since
A|A, is flat and AJA, ® Z = A|A, = A|A, @ B[B,. The rest of the proof is an
immediate consequence of the first part of the proof and the fact that the tensor
product of the ordinary torsion and divisible group is always the zero-group, q.e.d.

Corollary 2.3. Let Ac 7, Be|#/B|. Then A® B =0 iff both the following
conditions are satisfied:

x

(i) Bg, possesses the primary decomposition disjoint with the primary decomposi-
tion of Ag-
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(ii) Bg/Br: is p-divisible for any prime p which determines the primary decomposi-
tion of A,

Proof. (i) By [4], 255, Ax ® Bg, = Ag ® Bg,, where A and By, are the basic
subgroups of Ap and By, respectively and since the basic subgroup is a direct sum
of cyclic subgroups and the bifunctor ® preserves coproducts, (i) immediately
follows.

(ii) By [4], 255, A ® Bg/Bg, = [JAY?”, where r(p) is the rank of Bgr/pBgy and p

p
runs through the set of primes which determines the primary decomposition of 4,
q.e.d.

Remark. Notice that By ¢ 7 implies the weaker condition in (ii) — it is sufficient
to consider By = pBg.

Theorem 2.4. There is a one-one correspondence between the orthogonal theories
of the tensor product in abelian groups and the set of restricted Steinitz numbers.

In this correspondence if | p® is a RSN, the corresponding left orthogonal
peP

class is M = { U G,}**, where
peP
10, if e(p)=0,
G,=<Z(p), if e(p)=1,
Z(p*), if e(p) = oo.

Moreover, M precisely consists of the ordinary torsion groups G = Gg @ D,
De 9, where the primary decomposition of Gg consists of the p-groups with
e(p) = 1 and the primary decomposition of D consists of the p-groups with e(p) =1
or c0. On the other hand, the corresponding right orthogonal class M* consists of
the groups B such that By, is p-divisible for each p e P with e(p) = 1 and By[Bg,
is p-divisible for each p € P with e(p) = 1 or .

Proof. We shall construct the inverse map from the set of orthogonal theories
into the set of RSN’s. Let (.#, Z) be an orthogonal theory of ®. By the corollary 2.2.
either #/ =« J or & < 7. Since ® is the commutative bifunctor, we can assume
that # < . If there exists a non-zero p-group M € /4 but My = 0 for every such
a group, we shall set e(p) = oo. If there exists a p-group M € 4 such that My + 0,
we shall set e(p) = 1. Otherwise, set e(p) = 0. Now, if e(p) = 1, then .# contains
all the p-groups. For, M € .# being the p-group with My + 0 implies by [4], 80
that My possesses a non-zero direct summand Z(p*) e 4. Since the bifunctor ® is
right-exact Z(p™) e 4, for each 1 < m < k and the exact sequence 0 — Z(p*) >
— Z(p**') - Z(p) - 0 implies that Z(p™) € 4, for each 1 £ m < 0. Let G be an
arbitrary p-group with e(p) = 1. There exists the universal epimorphism ¢ :
: 11 Z(p"®) - G induced by the injective monomorphisms Z(p*®@) — G, where k(g)

geG
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is the exponent of the order of the element g € G. Hence by the right exactness of ®
which preserves coproducts, G € . To finish the proof it is sufficient to show that
for a given RSN the corresponding left orthogonal class .# precisely consists of the
groups G = Gp @ D satisfying the hypothesis, since the rest immediately follows
from the corollary 2.3. According to what we have just proved, every such a group
G = Gr @ D e M. First, let there exist a non-zero g-group M e .# with e(q) = 0.
Since My + 0implies Z(q) € # and by the corollary 2.3. Z(q) e M N M* <« D " T,
we have My = 0. The corollary 2.3. also implies that Q(J) € 2, where J = {pe
eP|e(p) = 1 or oo} since by [4] 255, Z(¢*) ® Q(J) = Z(¢*)"®’, where 1(q) is
the rank of Q(J)/g Q(J) * 0, it yields the contradiction M = 0. Secondly, let there
exist a non-zero g-group M € ./ with e(q) = co and My =+ 0. Then similarly, the
corollary 2.3. implies the contradiction Z(q)e M N M* = D N T, qe.d.

Proposition 2.5. Let (.#, &) be an orthogonal theory of ® in abelian groups with
the RSN [] p®.

peP

Then it possesses the following properties:

(i) (A, Z) is the commutative orthogonal theory.
(ii) The kernel of (M, Z)is {De D n T | D = [[Z(p), e(p) = 1 or o0}.

In the following we shall investigate the orthogonal theories of the bifunctors Tor!
and Ext! ([7], 150, 63).

Proposition 2.6. Let A, B € |/ #|. Then Tor (4, B) = 0 iff the primary decomposi-
tion of ‘A, is disjoint with the primary decomposition of B,. )

Proof. If we apply Tor on the exact sequences 0 —» A, > 4 — A[4, > 0and 0 —»
— B, » B - B[B, - 0, we shall get the equality Tor (4, B) = Tor (4,, B,) by the
left exactness of Tor and the fact that any ordinary torsion-free group is flat.

Since Tor preserves coproducts and Tor (Z(p*), G) = {g € G| p*g = 0} ([7, 130),
it is sufficient to prove that Tor (4,,, B,) = 0, for every p, g € P, p # g. Consider
the exact sequence 0 — A4,, > A,, > A,,/4,, ~ 0, where 4,, is the basic subgroup
of A4,,. Since 4,,, is a direct sum of cyclic p-groups and Atp/Z,p is a divisible p-group,
it is sufficient to prove that Tor (Z(p®), B,) = 0. But this is immediate since
Tor (Z(p*), B,,) = {b € B,, | 3(k € N) such that p*» = 0} = 0 g.e.d.

Theorem 2.7. There is a one-one correspondence between the orthogonal theories
of the torsion product Tor in abelian groups and the set of strongly restricted
Steinitz numbers. In this correspondence, if H p*® is a SRSN, the corresponding

peP
left orthogonal class is M = {Z(p) | pe P and ¢(p) = 1}**.

Moreover M consists of the groups whose ordinary torsion subgroup has the
primary decomposition from the set J = {pe P | e(p) = 1}. On the other hand,
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M* consists of the groups whose ordinary torsion subgroup has the primary
decomposition disjoint with the set J.

Proof. We shall construct the inverse map from the set of orthogonal theories
into the set of SRSN’s. Let (/#, & ) be an orthogonal theory of Tor. If there exists
a non-zero p-group M e ., we shall set e(p) = 1 and otherwise e(p) = 0. First, we
have to show that if ., = {Z(p) | e(p) = 1}** then .#, contains no non-zero g-group
forqeP, q¢J ={peP|e(p) = 1}.

Since Tor (Z(p),G) = {geG | g = 0} ([7], 130), A% consists of the groups
whose ordinary torsion part has the primary decomposition disjoint with the set J
and hence .#; contains no non-zero g-group M, for ge P, q ¢ J (Otherwise M e
€My N MY and Tor (M, M) + 0 by the proposition 2.6.) To finish the proof, it is
sufficient to show that if (.#, &) is an orthogonal theory of Tor with the SRSN

I p°P, then . consists of the groups whose ordinary torsion part has the primary
peP
decomposition from the set J. Since Tor is left exact, M € ./ implies that M, e ./

has the primary decomposition from the set J. By the proposition 2.6., & consists
of the groups whose ordinary torsion part has the primary decomposition disjoint
with J and consequently . precisely consists of the groups whose ordinary torsion
part has the primary decomposition from the set J, q.e.d.

Proposition 2.8. Let (., Z) be an orthogonal theory of Tor!. Then it possesses
the following properties:

() (#, Z) is the commutative orthogonal theory.
(i) The kernel of (M, %) is F.

Theorem 2.9. There is a one-one correspondence between the orthogonal theories
(A, Q’) of Ext!, where Qe .# and the set of SRSN’s. In this correspondence,
if T]p*® is s SRSN, the corresponding left-orthogonal class # is {{Q} v

peP
V{Z(p)| peP, e(p) = 1}}**. 4

Moreover, # consists of the groups whose ordinary torsion part has the primary
decomposition from the set J = {pe P|e(p) = 1}. On the other hand, M* consists
of the cotorsion groups which are p-divisible for Ype J.

Proof. First, let us define the inverse map from the set of orthogonal theories
(A, Z), where Qe ./ into the set of SRSN’s. Let (#, &) be such an orthogonal
theory of Ext. If there exists a non-zero p-group M e .#, we shall set e(p) = 1 and
otherwise e(p) = 0. We have to show that .#; = {{Q} U {Z(p) | pe P, e(p) = 1}}**
contains no non-zero g-group for g € P, g ¢ J. According to [4], 243, Ext (Z(p), G) =
= G/pG and since Z(q) is the cotorsion group ([4], 85) the existence of such a non-
zero group M e .4 and the right exactness of Ext imply the contradiction Z(g) e
e MO ME
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To finish the proof it is sufficient to show that if (#, %) is an orthogonal theory,
where Q € .4 and with SRSN [ p*” then .# precisely consists of the groups whose

peP
ordinary torsion part has the primary decomposition from J. Since Ext is right

exact, . is closed under subobjects and according to what we have just proved,
M e A implies that the primary decomposition of M, is from J. By [5], 370, Q € .#
implies & < ., hence it is sufficient to show that .# contains all the p-groups,
for Vpe J. Since . is closed under subgroups and group extensions ([2], 224),
Z(p")e M, for ¥(ke N) and Vpe J. Hence with respect to the existence of basic
subgroups it remains to show that Z(p®)e .#, for Vpe J. Consider the exact
sequence 0 — Hom (Z(p®), L) - Hom (Q(p), L) -» Hom (Z, L) =~ L - Ext (Z(p®),
L) - Ext (Q(p), L) —» Ext(Z, L) = 0, for VLe &. Since each divisible group is
injective, it is sufficient to consider only the groups Le & n £ and this immediately
implies the short exact sequence 0 — Hom (Q(p), L) - Hom (Z, L) - Ext (Z(p™),
L) — 0, since Q(p) as the torsion-free group is contained in .#. Hence, to prove that
Ext (Z(p®), L) = 0, for VLe Z, all we have to show is that the homomorphism

¢ : Hom (Q(p), L) -» Hom (Z, L)
f f/z

is surjective, for VLe Z. Let g e Hom (Z, L). Since Ext (Z(p), G) = G/pG ([4], 243),
% consists of the p-divisible cotorsion groups, for Vp e J and the existence of the
homomorphism fe Hom (Q(p), L) such that p"f(1/p") = g(1), for Vn € N immediately
follows, g.e.d.

Remark. A method of generation of orthogonal theories of the bifunctor Mory,
where € is an abelian category is described in [6].
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