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Introduction. All I-groups (lattice-ordered groups) in this paper will be abelian.
In [5] the author developed the construction of free products in various varieties
of I-groups, and showed in the abelian case that the free product 4 II B is non-
isomorphic to 4 [ B, the cardinal sum, unless A = 0 or B = 0. For the most part our
structure theorems in this context will be for the special case of the free product
of two Archimedean o-groups (totally ordered groups). Our main theorems
(2.2, 2.3 & 2.11) say that if 4 and B are Archimedean o-groups then 4 1I B has no
singular elements and no basic elements, and each pair 0 < ae 4 and 0 < b € B have
uncountably many values in common. If A [ B satisfies a certain geometric condition
then A IT B can be represented as an [-group of continuous functions on the closed
unit interval, in such a way that all 0 < ae 4 (0 < be B) are given as monotone
decreasing (increasing) differentiable functions; this is true in particular of ZII Z.
Under the same geometric condition, we show that each nonzero element of 4 II B
has uncountably many values. We generalize some of our results to arbitrary free
products: theorems 2.2 & 2.3 hold for all free products.

The paper is essentially self-contained, except for occasional references to [5]
The terminology and notation is also that of [5], with one exception which we shall
point out. The symbols (=) < are used for (proper) containment of sets. If two
elements y and z in a partially ordered set (p. 0. set) P are incomparable we write y || z.

1. Preliminaries. If {4, | /16/1} is a family of I-groups, the free product 4 =
= II{A; | Ae A} is an I-group together with l-homomorphisms u,: A, — A (which
turn out to be l-embeddings) called co-projections, having the property that if ¢,:
A; — B is any family of I-homomorphisms into the I-group B, there is a unique
I-homomorphisms ¢ of A into B such that u,¢ = ¢, (A€ A). We shall consider free
products of two I-groups A4 and B, written 4 II B, and we shall suppress the co-
projections and think of 4 and B as I-subgroups of 4 1I B.
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The following results are proved in [5].
i) In G = A1I B a typical element g € G is of the form
g = v, Arga(a, )+ b(a, B),

with a(«, f) € A and b(a, f) € B, and where the indicated joins and meets are over
finite sets. This notation is different from [5].

ii) f0<aeAand 0 <beBthen0<a A beGanda|b.

ili) G contains the cardinal sum 4 [ B as a subgroup but not as an [-subgroup,
unless A = 0 or B = 0.

iv) A @ B is an I-homomorphic image of G by a map whose kernel K is generated
by {a Ab|0<aed, 0<beB}. K+0unles 4A=0orB=0.

v) G is the I-ideal generated by 4 [ Bin G.

vi) If ¢ is an I-homomorphism of 4 [ B into the I-group C, it has a unique
extension to an I-homomorphism ¢ of G into C.

A p. o. group A is semiclosed if for all a € A, na = 0 for some positive integer n
implies that a = 0. For each semiclosed p. o. group A let &(4) denote the free [-group
(in Weinberg’s sense) on A. Then

vii) for o-groups A and B, ALl B = &(4 H B).
Suppose F(X) denotes the free I-group over the set X; we then have:
viii) if X is the disjoint union of X, and X, then

F(X) = F(X,) I F(X,).

The proofs to almost all of these are to be found in § 1 of [5].

2. The structure of the free product of two Archimedean o-groups. Throughout this
section 4 and B will be Archimedean o-groups; they are as such by Hélder’s theorem,
o-subgroups of R, the additive group of reals with the natural order. G will denote
A1l B.

In an I-group Lan element 0 < s € Lis singularif 0 < g < simplies thatg A s —
— g = 0. Notice that a nonzero image of a singular element under an [-homomor-
phism is singular. If H is a p. 0. group we call x, x5, ..., X, € H positively independent

n
if whenever ) k;x; < 0, with each k; a non-negative integer, then each k; = 0.
i=1
This is equivalent to saying that all the x;’s are positive in some order extension
of the cone of H. The notion of positive independence is due to BERNAU ([1]).

Recall that in the free I-group di(H) over the semiclosed p. o. group H a typical
element is of the form x = v ; A, h(4, p), where each h(4, u) € H and the indicated
joins and meets are finite. Bernau has proved the following rather crucial result.
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2.1. Lemma. (Bernau, [1]) Let ¢(H) be the free l-group over the semiclosed p. o.
group H, and x = v, A, h(4, p) € ®(H). Then x* > 0 if and only if there exists
a 2o such that {h(2,, 1)} is positively independent.

A regular l-ideal K of an I-group L is one which is maximal with respect to not
containing some 0 & x € L; we say K is a value of x. 0  a € Lis special if it has
only one value. We can now state one of the principal results of this section.

2.2. Theorem. Let G = ALl B; each 0 < ae A and 0 < b € B have uncountably
many values in common.

Proof. For each positive real number r we consider the following total order
on A x B. Put(a, b)e Q,if a + rb > 0 (as real numbers) or a + rb = 0, and then
b = 0; this certainly defines an admissible total order on 4 x B. Let C, =
= {(a,b)e 4 x B|a + rb = 0}; C, may be 0 for a given r, but at any rate it is
a convex subgroup of (4 x B, Q,). For each r we may embed 4 and B as o-sub-
groups of (4 x B, Q,) in the obvious way: a — (a, 0) and b — (0, b). This extends
to an I-homomorphisms ¢, of G onto (4 x B, Q,). We set K, = Ker (¢,) and G, =
= C,¢'; in general G, may coincide with K, but each G, is a maximal l-ideal of G.

We proceed to show that the G, are distinct. Since it is clear that each 0 < ae 4
and 0 < b € B have a value in each G, our assertion will then be proved. We may
suppose r < s and select a rational number m/n (m, n > 0) such that r < m/n <'s,
i.e. —m + rn < 0 while —m + sn > 0. (There is certainly no loss in generality
in assuming 1 and hence Z, the integers, to be contained in both 4 and B.) Then
(=m,n)e Q, \ C, while (—m,n)e —Q,. If z=(—m+n)* G then z¢, ¢ C
but z¢, = 0, so that ze G, \ G,.

Notice that each G, is a value of a A b e G also. Now (a, 0) < (0, b)in (4 x B, Q,)
if and only if r > a/b. In particular if r > a/b then b — a A b¢G,, s0 a A b and
b — a A b have (uncountably many) values in common, and therefore cannot
be disjoint. A similar argument works on a, and we’ve proved

2.3. Theorem. If 0 < a€ A and 0 < b € B then neither are singular in G.

24. Lemma. Suppose 0 % (a;,b)eAd x B (i=1,2,...,n) are given. If
/”\ (@i, b;) > 0 relative to some Q, then {(a;, b;)} is positively independent. Conversely
:'lethis set is positively independent, and no positive real number r exists such that
(@i, b;) + r(a;, b;) = O with i = j, then ;\l(ai, b;) > 0 relative to some Q,.

Proof. The first statement is obvious from the definition of positive independence.
The converse argument is geometric: suppose {(a;, b;)} is positively independent,
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and no r > 0 exists as specified above. The total angle in the plane determined by the

(a;, b;) is less than 180°. Clearly an r > 0 can be found such that A (a: b;) >0
i=1

n
relative to Q,. In fact we can find r,, r, > 0 with the property that A (a; b;) ¢ C.
forall ry <r<r,. ‘ =1

(a,b,)

Call two nonzero elements (a, b) and (¢, d)in A x B separated if (a, b) + r(c,d) =
= 0 for some positive real number r. This is equivalent to saying that the origin
lies in between the two points on the line through them.

2.5. Lemma. If (a, b) and (c, d) form a positively independent, separated pair,
then in G

O<n[(a+b)*A(c+d)*]<1+1, all n=12,....
Proof. 0 < (a4 b)* A (c+d)* by 2.1. For each n >0 (na —1,nb — 1)

and (nc — 1, nd — 1) are not positively independent. (The angle between them
through the first quadrant is larger than 180°.) Thus again by 2.1

[n(a + b) = (14 1] A [n(e +d) — (1 + D] £0,
or
nfa+b)Aanlc+d<14+1.
Clearly then n[(a 4 b)* A (c + d*] <141
The next theorem improves on 2.2 in the absence of separated, positively inde-
pendent pairs. We still carry the notation of the proof of 2.2 We need a notion due

to Bernau ([1]): an I-group L is uniformly Archimedean if for each positively
independent subset {x,, x,, ..., x,} of Land 0 < y e L there is a positive integer N

such that ) m;x; £ y for all m, > N.
i=1
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A subset of regular l-ideals of an I-group L is plenary if it has zero intersection
and is a dual ideal of the set of all regular [-ideals.

2.6. Theorem. For G = A 1l B the following are equivalent.

1. G is a subdirect product of reals.

2. G is Archimedean.

3. A E B has no separated, positively independent pairs.
4. {G,|r > 0} is a plenary set.

. A E B is uniformly Archimedean.

W

If any of the above hold each nonzero element of G has uncountably many values.

Proof. The implications 1. — 2. and 4. — 1. are trivial; 2. « 5. is due to Bernau
([1]), and 2. — 3. follows from lemma 2.5. It suffices therefore to prove that 3. — 4.;
we show'in fact that every 0 < g € G has uncountably many values in {G, | r > 0},
whence the last statement is also proved.

Select 0 < g = v, A, a(4, u) + b(4, ), with a(4, p) € 4 and b(4, p) € B. Since
G = &(A [ B) we have by lemma 2.1 that {(a(4o, 1), b(2o, 1))} is positively inde-
pendent for a suitable 1,. Since we have no separated, positively independent pairs we
can deduce from lemma 2.4 and its proof that uncountably real numbers r > 0 exist
such that A (a(lo, 1) + b(4g, p))* ¢ G,. Clearly then g ¢ G,, for all those r > 0,
and so our proof is complete.

If A @ B has no separated, positively independent pairs, we see from 2.6 that G
has a representation as a subdirect product of reals. We shall investigate this embed-
ding more closely; for the moment we study the general situation where A [ B
may have separated, positively indepedent pairs. Using the notation established in the
proof of 2.2 we consider E = n{G, | r > 0}; E is an l-ideal of G, and in view of what
has been said we may characterize it in several ways. First, E is the l-ideal of all ele-
ments of G having no values which are maximal l-ideals. Before showing this we need

some terminology. Call 0 < g€ G primary if it is of the form g = A (a; + b)*,
i=1

»and {(a;, b;) | 1 £ i £ n} contains a separated pair. In view of lemma 2.5 an element
of that form cannot have a maximal [-ideal as one of its values. We conclude then

thatif g = A (a; + b;)™ as specified above, then every such expression has the same
i=1

property; in particular, the term primary is well defined. We remark here that if
0 < x e G can be written as a join of primary elements, and x = v, A (a(4, p) +
+ b(4, p))* then each x; = A ,(a(4, ) + b(4, p))* is primary if x, > 0.

If 0 < x € Gis a join of primary elements it cannot have a value which is a maximal
l-ideal, and so x € E. Conversely, if 0 < x€ E and x = v ; A (a(A, u) + b(%, p))*>
then by the proof of 2.6 each x, = A (a(4, u) + b(, n))* is primary, whenever
x; > 0.
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We now summarize the above discussion; if S is a subset of a group K, let <S)
be the subgroup of K generated by S.

2.7. Proposition. Let G = ALl B and E = n{G, | r > 0}. Then

E={0<xeGCG | x is a join of primary elements)

={xeG [ x = 0 or no value of x is a maximal l-ideal}

E = 0 if and only if A @ B has no separated, positively independent pairs.

The object we wish to examine is G/E; certainly it is a subdirect product of reals
using the representing ¢: G/E — II{G/G, | r > 0} induced by the canonical maps o,:
G/E - G|G,. We shall look at the real valued functions (a + E)¢ and (b + E) o
for 0 <aeAd and 0 < be B. For each r > 0 we have the natural o-isomorphism
G/G, ~ (4 x B, Q,)|C,; identifying G/G, with (4 x B, Q,)/C, we see that (a + E) o,
is determined by the projection of a on the line {(x, rx) | x € R}; thus

(a + E)o, = a/(r* + 1)"/?, likewise (b + E)o, = br[(r* + 1)'/2.

It follows that o represents a + E (resp. b + E) as a bounded, monotone decreasing
(resp. increasing) differentiable function, and G/E is represented as an l-group of
bounded, continuous functions on the positive reals. If we extend the positive reals
by 0 and oo, we may extend the functions to be defined at these two points in a con-
tinuous manner. Topologically, this set of “extended’” non-negative reals is isomorphic
to the closed unit interval [0, 1]; we therefore have the following result.

2.8. Theorem. Let G = AL B and E = n{G, | r > 0}. Then G[E is l-isomorphic
to an l-group of continuous real valued functions on the closed unit interval, such
that each 0 < a € A (0 < b € B) is represented as a strictly decreasing (increasing)
differentiable function a(t) (b(t)) satisfying a(0) = a and a(1) =0, (b(0) = 0
and b(1) = b.)

In particular, if A B has no separated, positively independent pairs G has such
a representation.

In the absence of separated, positively independent pairs it turns out that G has
no singular elements. We shall state this result so, as to leave open the question
of whether this is true without said assumption.

2.9. Theorem. In G suppose 0 < x = A(a; + b,)* is given. If x is singular it is
i=1
primary. Therefore, if E = 0, G has no singular elements.

Proof. Suppose x is not primary; we know there are uncountably many r > 0 such

that x¢, = /\ (a,, b))e Q, \ C,. We can easily choose a positive real number s and
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(c,d)e A x B with the properties that (¢, d) e Q, \ C, and x¢, — (¢, d) e Q, \ C,.
Hence y = x A (c 4+ d)* > 0, and both y and x — y have G, as their value. We
conclude that y A (x — y) > 0, and so x is not singular.

If E = 0 then G has no primary elements, and as every positive element of G

is of the form A (a; + b;)* we conclude that G has no singular elements.
i=1
By now the reader must be wondering about what can be said about primary
elements, with regard to their values for example. Suppose 0 < x = A (a; + b;)*
i=1

is primary; we have a real number r > 0 such that (after reindexing if necessary)

a;+rb;=0foralli=1,2,..,k and {(a;, b)) | 1 < i < k} contains a separated

pair. We suppose in addition here that the (a;, b;) (1 < i < k) are rationally linearly

independent. For each.(k — 1)-tuple (s,, s3, ..., 5) of positive real numbers we define

a partial order on A x B by: (x,y)€ O(s,...,5,) if x +ry >0, or x +ry =0
k k

and then x = ) ga; while g, + ¢85, + ... + g5, >0, or ¢, + Y g;5, = 0 and
i=1 i=2

K
Y. qisi > 0, or etc. ..., or g_;S,—; + ¢S, = 0 and g, = 0. (In view of the inde-
i=2

pendence of the (a;, b;), 1 <i < k, this partial order is well defined.) In each
O(sz, ---» s) the (a;, b;) are all positive, for i = 1,...,n, since if i =k +1,...,n
then a; + rb; > 0. Moreover the (a;, b;), 1 < i < k, are Archimedean equivalent.

Let Q(s,,...,s;) be any total order of A x B extending (s, ..., s), and let
C(s35 ..., 5;) be the common value in (4 x B, Q(s,, ..., s;)) of the (a;, b;), 1 < i < k.
Embed A and B in (4 x B, Q(s,, ..., s)) in the obvious way, and let ¢(s,, ..., 5)
be the extension of these embeddings to G. Let '

G(s2 oy 51) = C(525 -0y ) P20 -y ) 7%
For each (k — 1)-tuple G(s,, ..., s;) is a value in G of each (a; + b))*, 1 S i <k,

and hence of x. But the G(s,, ..., s;) are distinct; the argument is similar to the one
used to show the G, are distinct. Thus x has uncountably many values.

And x is not singular: there are uncountably many (k — 1)-tuples (s, ..., 5;) for
which

0 < (ay, by) — (ay, by) < (ay, by) < (a3, b;) < ... < (a by),
relative to (s, ..., 5). (All that’s required is that 1 < s, <2, and s; = s, for
i>2)Solety=x A ((a, — a;) + (b, — by))"; if the k — I-tuple is as we have
required then y¢(s, ..., s) = (ap, b,) — (ay, by) > 0 while (x — y) ¢(s2, ..., 8) =
= (ay, by) — [(a, b,) — (ay, b;)] > 0. Thus (x —y) A y >0 in G proving x
is not singular. )
We recapitulate the preceding:

n
2.10. Proposition. Suppose 0 < x = A (a,. + b,~)+ is primary in G. If the subset
i=1

355



of (a;, b;) satisfying a; + rb; = 0 (r > 0) that contains a separated pair is linearly
independent then x has uncountably many values, and is not singular.

The author strongly suspects that each nonzero element of G does have uncountably
many values, and that G has no singular elements at all, without any additional
assumptions. The above methods do not seem to generalize to prove this. Apart from
proposition 2.10 we can say one more thing about G from a global point of view.
Recall that 0 < x in an I-group L is basic if the set {y e L|0 < y < x} is a chain.
The following important observation is now a simple consequence of our previous
results.

2.11. Theorem. G = A II B has no basic elements.

Proof. It suffices without loss of generality to consider primary elements. Suppose
therefore that 0 < x = A (a; + b;)* is primary. There is a unique positive real number
i=1

r with the property that a; + rb;, = 0 for each i = 1, ..., n, and there is a separated
pair among the (a;, b;) for which equality holds; we may take this pair to be (ay, b;)
and (a,, b,). Let (¢, d) = (ay, by) — (a3, b); then {(a;, b;) |1 =i < n} U {(c, d)}
and {(a;,b;)|1 =i < n}u{—(c,d)} are both positively independent sets. Hence
y=xA(c+d)* and z=x A (c +d)” are strictly positive and disjoint in G.
Clearly then x is not basic.

We close this section with a result on weak order units. (An element 0 < x € L,
an l-group, is a weak order unit if x A y = 0 implies y = 0.)

2.12. Proposition. Suppose 0 < x = A (a; + b;)™ in G; x is a weak order unit
i=1
if and only if each a; = 0 and each b; = 0.

Proof. Suppose each (a;,b;) 2 0and let 0 < ye G, say y = v, A, (c(4, p) +
+ d(4, w))*. For a suitable Ay, {(c(Zo, 1), d(Ao, 1))} is positively independent. When
we adjoin the (ai, b;) to this positively independent set we still end up with a positively
independent set. It follows then that x A y > 0, and so x is a weak order unit.

Conversely, suppose without loss of generality that 0 > a,. Choose (¢, d)e A x B
as follows: if r = —allbl, pick ¢ > 0 and ¢ + rd < 0. By lemma 2.4 the pair
{(a, b,), (¢, d)}, and hence the set {(a;, b;) | 1 < i £ n} U {(c, d)}, is not positively
independent, which implies that x A (¢ 4 d)* = 0; x is not a weak order unit.

2.12.1. Corollary. Suppose 0 < ge G and g = v ; A, (a(A, p) + b(A, p))* where
for some Ay each (a(2y, 1), b(4o, 1)) > 0 in A H B; then g is a weak order unit.

The converse of 2.12.1 is false; for example, if 4 | B has no separated, positively
independent pairs it is clear from theorem 2.8 that g = |(—1 + 1)| is represented
by a continuous function which is zero at one point in the interior of the interval
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only; it is therefore a weak order unit. But a representation of g as in corollary 2.12.1
would be represented by a continuous function which is strictly positive everywhere.

3. Generalizations. We attempt here to extend some of the results of § 2 to free.
products of arbitrary I-groups. To begin we record a fact about divisible hulls. If L
is an l-group, its divisible hull Lis an I-group by defining £ > 0in Lif n = 0in L
for a suitable positive integer multiple. The containment of Lin L is as an [-subgroup.
Categorically, the divisible hull may be characterized as follows: L is a divisible
I-group and L is an I-subgroup of L, while if o is an I-homomorphism of L into the
divisible I-group D, there is a unique extension of « to an I-homomorphism & of L
into D. From this observation we can easily prove.

3.1. Lemma. For I-groups A and B let G = AII B. Then G = A1l B.

Proof. From the categorical point of view this is obvious. For the functor L— L,
is co-adjoint to the-full embedding functor E that embeds the category of divisible
I-groups in the category of all I-groups. The divisible hull functor necessarily preserves
all co-limits, and in particular free products. (See [6], p. 67, proposition 12.1.)

The reader is invited to furnish a more mundane proof, using the remark directly
preceding this lemma.

The first result we generalize from § 2 is the following.

3.2. Theorem. Let G be the free product of l-groups A and B, 0 < ae A and
0 < be B. Then a and b have uncountably many values in common, and they are
not singular.

Proof. Suppose the theorem holds whenever 4 and B are o-groups. If 4 and B
are arbitrary and 0 < ae 4, 0 < b € B, select prime l-ideals M and N of 4 and B
respectively such that a ¢ M and b ¢ N. The canonical [-homomorphisms 4 — A/M
and B — B|N induce an [-homomorphism ¢ of G onto A4/M I B/N; note that ad,
b¢ > 0. By our assumptions a¢ and b¢ have uncountably many values in common,
and are not singular. The same conclusion must hold for a and b in G.

So we must prove our theorem for the case when 4 and B are o-groups. In view
of lemma 3.1 and the well known one-to-one correspondence between the I[-ideals
of an I-group and those of its divisible hull, we may assume that 4 and B are divisible

for the proof of the first statement.

Fix then 0 < a€ 4,0 < be B, and let M (N) be the value in A (B) of a (b) with
cover M (N). In view of divisibility 4 ~ 4’ X M; X M amd B~ B' X N, X N,
where A’ (resp. B') is an o-group isomorphic to A/M (B/N), and M, (resp. N,) is an
o-group isomorphic to M/M (N/N). (H X K denotes the lexicographic product
of H over K.) Let L = A’ X B' X (M, I N,); we have an o-homomorphism of 4

into Lby a = (a’, m;, m) - (a’, 0, m;) where a’ € A', m; € M, and m € M. We have

357



a similar o-homomorphism of B into L. Let {: G — L denote the induced I-homo-
morphism; it is onto since the images of 4 and B in L generate L. M, and N, are
Archimedean o-groups, and so by theorem 2.2 ayy and by have uncountably many
values in common in M| II N, and hence in L. Thus a and b have the same property
in G.

Certainly divisible I-groups have no singular elements, so we cannot take 4 and B
divisible here; but we can embed G in its divisible hull 4 II B, and then proceed with
the construction of the previous paragraph. Using the same notation, e.g.\y: A 11 B —»
— L as described there, we recall that it’s a consequence of the proof of 2.3 that
ay A by = (a A b)Y and ayy — ay A by have a value in common in M, II N,
and hence in L, so that a A b and a — (a A b) (both elements of G) have a value
in common in A II B. Then in G they must have a common value, proving that
a is not singular in G;anidentical argument applies to b. Our proof is now completed.

3.3. Theorem. Suppose G = A1l B is a subdirect product of reals. Then G has
no basic elements, and so every nonzero element has infinitely many values.

Moreover, if G is a subdirect product of integers it has no singular elements,
and every nonzero element has uncountably many values.

Proof. Select 0 < ge G and a value K of g which is maximal l-ideal in G. If
K B Athen K n A is a maximal [-ideal of 4; if K 2 A we pick any maximal [-ideal
of A. At any rate we have a maximal [-ideal M of A contained in K, and likewise
a maximal l-ideal N of B contained in K. Let : G — A/M 1I B|N be the onto I-homo-
morphism induced by the two canonical [-homomorphisms. Its kernel K(M, N)
is the I-ideal generated by M and N (corollary 5.3.1 in [5]), and we conclude im-
mediately that K(M, N) < K. Thus gn > 0 and so by 2.11 it is not basic. But then g
cannot be basic in G either.

Since G is Archimedean, an element 0 < x € G is basic if and only if it’s special.
Therefore G has no special elements, and so all nonzero elements have infinitely
many values. (This paragraph expresses what is merely standard lore in the theory
of I-groups; proofs may be found in [2].)

If G is a subdirect product of integers then in the first paragraph of the proof K,
M and N may be taken so that G/K, A/[M and B|N are all cyclic. # is then onto
Z 11 Z, and since Z [ Z has no separated, positively independent pairs, we conclude
from theorems 2.6 and 2.9 that gn has uncountably many values and is not singular;
the same two facts must be true of g in G.

3.3.1. Corollary. If F(X) is the free I-group on the set X then each nonzero element
of F(X) has uncountably many values, and F(X) has no singular elements.

Remark. The last assertion was first proved by CONRAD and MCALISTER in [3]
The proof of the corollary is a consequence of Weinberg’s theorem to the effect that
free I-groups are subdirect product of integers. ([7])
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Obviously, if G = AII B is a subdirect product of reals then 4 and B are also;
conversely if 4 and B are subdirect product of reals, is 4 II B a subdirect product
of reals? Theorem 2.6 says that for Archimedean o-groups the answer is no unless
A B B has no separated, positively independent pairs. What if 4 and B are subdirect
products of integers, can we then assert that G = 4 I1 B is also a subdirect product
of integers? We give some partial affirmative answers.

3.4. Proposition. Suppose A and B are cardinal sums of Archimedean o-groups.
Then G = ALl B has no basic elements. If furthermore, A and B are cardinal
sums of copies of Z then G is a subdirect product of integers.

Proof. Let A = #, R, and B = [, S,, where each R; and S, is an Archimedean
o-group. The regular l-ideals of 4 and B are therefore maximal. So if 0 < ge G
and K is a value of g in G we can, as in the proof of 3.3, find maximal Il-ideals M
and N of A4 and B respectively, contained in K. If # once again denotes the I-homo-
morphism of G onto 4/M II B/N induced by the two canonical maps, we obtain
that gn > 0. As before gn is not basic and hence neither is g in G.

If the R; and S, are all cyclic, then A/M ~ Z ~ B|N, and so since Z1I Z is
a subdirect product of integers (see 4.1, 4.2 and 4.2.1 in [5]), gn has a value D such
that (Z 11 Z )/ D is cyclic. But then g has a value in G with the same property; it follows
that G is a subdirect product of integers.

The essential ingredient in the proof of 3.4 is the fact that a regular I-ideal of
a cardinal sum of subgroups of R is maximal. Recall that an [-group L is called
hyper-Archimedean if every I-homomorphic image of L is Archimedean. This is
equivalent to the condition that every regular [-ideal of L be maximal ([2], theorem
2.4).

Suppose L is a hyper-Archimedean [-group which can be represented as a subdirect
product of integers. Is it true that for each maximal I-ideal M of L, L/M is cyclic?
The author has been unable to answer this question. If every regular I-ideal of L has
a cyclic factor we call L an absolute subdirect product of integers. Small cardinal
sums of copies of Z have this property.

3.5. Theorem. If A and B are hyper-Archimedean l-groups then G = ALl B
has no basic elements. If moreover, A and B are absolute subdirect products of
integers then G is a subdirect product of integers.

Proof. Same as the proof of 3.4.
4. The functor. IT B. In this section we prove the foilowing theorem.

4.1. Theorem. Let C be an l-ideal of the l-group A, and B be any l-group. The
I-homomorphism ¢ of CII B into ALl B induced by the containment of C in A
is one-to-one; however, if (CLI B) ¢ is an l-ideal of ALl B then C = A.
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Proof. First assume A is an o-group and C is a convex subgroup. Without loss
of generality we may assume A and B both are divisible; we can therefore write
A =M X C, where M is an o-group isomorphic to A/C. Let K = M X (C I B);
there are obvious l-embeddings of 4 and B in K. They induce an I-homomorphism
of AIIB into K. If 0 < g = v; A, c(4, p) + b(A, p) e C1I B then

g9 = Vv, A, c(Ap)+ b4, n)e AL B

and g¢0 = (0, g) > 0; it follows that g¢ > 0 and hence that ¢ is one-to-one.

If 4 is not an o-group we proceed as follows: let 0 < ge CII B = H and P
be a prime l-ideal of H not containing g. Take a prime l-ideal Q of C contained in P:
let Q =P nCif PP C, otherwise any proper prime of C will do. The canonical
map C — C/Q induces an [-homomorphism «: H — C/Q II B; since P = Q, go > 0.
Let Q' = {ae 4 ||a] A |c| € Q,all ce C}; then Q' is a prime of A such that ' N C =
= Q, and we have an o-embedding C/Q — A4/Q’; (note that C/Q ~ Q' + C[Q".)
By the first part of our proof the induced I-homomorphism f: C/Q I B - 4/Q’' I B
is one-to-one so that gaf > 0. On the other hand if y: ALl B — A/Q' II B is the
I-homomorphism induced by the canonical map 4 — A[Q’ then ¢y = «f; the situation
is described below by the corresponding commutative diagram.

CLB AL B
§ i
Cclou B s AlQ'L B

Hence g¢y > 0 and so g¢ > 0, which shows ¢ is one-to-one in the this case.

To show that (C LI B) ¢ is not an I-ideal of 4 II B, unless C = 4, simply examine
the following commutative diagram.

CII B AL B
| I
B A/C1I B

7 is the I-homomorphism induced by the canonical map 4 — A/C. The remaining
two arrows are the “projection” of C II B on B and the containment of Bin 4/C LI B.
If (C 11 B) ¢ were an [-ideal of A LI B then B would be an I-ideal of 4/C II B, which
is impossible unless 4/C = 0, that is C = A.

Summarizing then, the functor . II B preserves convex l-embedding as l-embed-

dings, though except for the trivial case, never as convex l-embeddings. It still leaves
open the question of whether the functor preserves I-embeddings in general.
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In §4 of [5] we showed that projective (abelian) I-groups are subdirect products
of integers; moreover free products of projective I-groups are projective. Applying
the theorem just proved we get:

4.1.1. Corollary. If A and B are l-ideals of projective l-groups then AIl B is
a subdirect product of integers. There are no singular elements in A1l B, and any
nonzero element has uncountably many values.
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