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ON FUBINI THEOREM FOR GENERAL PERRON INTEGRAL

JArOSLAV KURZWEIL, Praha
(Received February 22, 1972)

The approximation by means of integral sums (which is analogous to the usual
approach to the Riemann integral) is used to obtain Fubini theorem for the Perron
integral in a general form; there are found necessary and sufficient conditions for
the existence of the iterated integral.

0 Notations. Let R be the real line, R* — the positive (open) real halfline, N — the
set of positive integers. It is assumed that the linear space R”, n € N is endowed with
a norm, ||x| denoting the norm of x for xe R". If ye R", §€ R*, then B(y, §) =
= {xeR"||x — y| £ 6} is the closed ball in R” with the center y and radius §.
d(X) is the diameter of X for X < R", clX is the closure of X. If Y, Z are sets,
f:Y— Zand W c Y, then f|W is the restriction of f to W; if Z = R, then f is called
a function. U x V is the cartesian product of the sets Uand V. If f: U x V> Z,
we U then f(u, +) : V- Z is defined by f(u, *) (v) = f(u, v) and analogous notations
are used in case of three variables.

K(R") is the set of nondegenerate compact intervals in R" and if K € K(R"), then
K(K) is the set of nondegenerate subintervals of K. Int J is the interior of J for
J € K(R") and |J| is the Lebesgue measure of J.

1 Basic concepts. The generalized Perron integral may be introduced in the fol-
lowing way, which is a modification of the usual approach to the Riemann integral
(the material of this section is known, for references see Note 1,3).

Let Ke K(R"), o :K — R*. Denote by /(w) the set of such sets A =
={(Ji,w)|i=1,2,..., k} that the following conditions are fulfilled:

(1,1) e J;eR(K) for i=1,2,...,k,
k
(1,2) UJ; =K7
i=1
(1,3) IntJ;nIntJ; =0 for i*j, i,j=1,2,...,k,
(1,4) Ji e B(t, o(t;)) for i=1,2,..,k.
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If w is replaced by wx;, Which is defined by wyy() = d(K) for € K, then condition
(1,4) may be omitted and #(wky) is the set of such 4 that (1,1), (1,2) and (1,3) are
fulfilled.

Lemma 1,1. o/(w) # 0 for any w : K - R™.

Let the proof be sketched. Fix such @ :K — R* that &/(w) = 0, put K, = K
and divide K, into a finite number of L; € R(K) so that d(L;) < 1d(K) for every i.
Find such a j that &/(w|,,) = 0, put K, = L; and repeat this procedure. It follows

©
that [ K, = {z}, ze K. w(z) > 0 and therefore o(w
s=1

k) =0 for s sufficiently

large. This contradiction makes the proof complete.
For U:R(K) x K> R, A={(J,w)|i=12 ..k} €A(wg), X < K define

(L5) - S(U, 4) = _f U(Ji,t),
(1,6) Sx(U, 4) = Z U(J, ).

Observe that if f : K — R and U(J, 1) = f() |J| for J € K(K), T € K, then S(U, 4) =
k

= f(x:) |Ji] the last sum being of the type that is used in the definition of the
i=1

Riemann integral of f.

Definition 1,1. U is called (P)-integrable (Perron-integrable) in K, if to every ee R*
there exists such an w : K — R* that

IS(U, 4,) — S(U, 4,)] £ & for A, A, e ().
The set of functions U : §(X) x K — R which are (P)-integrable in K is denoted
by B(K).

Theorem 1,1. If U € P(K), then there exists such an I € R that to every € R*
there is such an w : K — R* that

|SU,4) —1|<e for Aed(w).

Definition 1,2. The number I from Theorem 1,1 is called the Perron integral of U
and denoted by (P) [x U.

Note 1,1. Assume that f:K — R and U(J, ) = f(7) |J|. In this special case
U € B(K) iff f is Perron-integrable in the classical sense and (P) [ U is equal to the
classical Perron integral. B(K) and (P) [ U may be defined equivalently by means
of major and minor functions in an analogous manner as in the classical theory of
the Perron integral. (P) [x U will be called the general Perron integral.
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Note 1,2. If Le K(K), we shall write (P) ;. U instead of (P) [z Ulgcyx1, Provided
that the latter integral exists.

A map V: R(K) — R is called additive in case that V(L) = V(H) + V(J)if H 4 J =
= Le R(K) (ie. if H,J,LeR(K), HuJ =L, IntH n IntJ =0). A map

G : R(K) - R is called superadditive provided that G(L) = ). G(J), if
i=1
k
Jiseow oo LER(K), L=UJ; and Int J;nInt J; =@ for i +j, i,j =1,2,.., k.
i=1

The set of all superadditive maps 7 : R(K) —» R such that 7(J) = 0 for Je §(K)
is denoted by Y(K).

Definition 1.3. U : R(K) x K — Ris called variationally integrable in K provided
that there is such an additive V: §(K) — R that to any ¢ € R* there exist n € Y(K)
and o :K - R* such that n(K) <e, |U(J,7) — V(J)| £ n(J) for teJe K(K),
J < B(t, (7). The set of functions, which are variationally integrable in K, is de-
noted by B(K).

The following Lemma may be proved easily.

Lemma 1,2. There is at most one V fulfilling the conditions of Definition 1,3.
Therefore it may be defined:

Definition 1,4. If V fulfils the conditions of Definition 1,3, then V(K) is called the
variational integral of U and denoted by (V) [x U.

The equivalence of the Perron integral and the variational integral is stated in the
following

Theorem 1,2. B(K) = P(K); if U € B(K), then (V) [ U = (P) [x U.
Therefore Definitions 1,3 and 1,4 may be taken for descriptive definitions of

(P)-integrable functions and of the Perron integral. In the sequel there will be
needed only the following part of Theorem 1,2:

M7 BK)< BK); if UeH(K), then (V)J. U= (p)j v,
K K
the proof of which is analogous to the proof of Lemma 2,6,

., Note 1,3. The proofs of Theorems 1,1, 1,2, Lemmas 1,1, 1,2 and of the assertions
from Note 1,1 may be found in [3]; in [3] different notations are used and there is
a very slight difference in the concepts of the integral (which is removed, if every
U:R(K) x K— R is assumed to be additive in the following sense: U(L, 1) =
= U(H, 1) + U(J, 7) holds whenever L,H, Je R(K), L=H U J, Int HnIntJ =
=0,teHnJ).
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Detinitions 1,1 and 1,2 appeared in [4] (for n = 1 and U additive) and there was
proved their equivalence to the definitions by means of major and minor functions.
The concept of the variational integral is due to R. HENsTOCK, [1].

2 Fubini Theorem. It will be assumed throughout this section that there are given
n, ny, n, € N, n= ny + n, and that there is given a representation R" = R™ x R™;
if x € R", we shall write x = (x,, x,) with x; € R™, x, € R" and we assume that ||x| =
= max (x|, [x2]), [|x], [*], [|x2] denoting the norms of x, x,, x, respectively.
Similarly if K e R(R"), there exist unique K; € R(R™), K, € R(R™) such that K = K, x
x K,. If  : K-> R*, it will be occasionally written w(t,, 7,) instead of w(t) for
7= (1, 7,)e K

Definition 2,1. Let K; € R(R™), U, : K(K;) x K; - R. Let T = K, have the fol-
lowing property: to every e € R* there exists such a ¢ : K; — R* that if (H{”, (") e
eR(K,) x T, 6? e HY < B(a{?, &(0(?)) for i = 1,2, ...,s, Int HY? n Int HY =

for i %j, i,j=1,2,...,s, then } |U(H?, 6{’)| < &. Denote the set of such T
by N(U,). : =t

Note 2,1. If Uy(Jy, t;) = |J4] for (Jy, 7;) € R(Ky) x K, then Te R(U,) iff
|T| = 0, |T| being the Lebesgue measure of T.

Note 2,2. In the terminology of [3] the corresponding statement to Te N(U,) is
that h is of variation zero in E (cf. [3], § 26).

Theorem 2,1. Let U, : R(K,) x K, » R, U, : R(K,) x K, x K, > R, U = U,U,
(ie. U(J, 1) = Uy(Jy, 7y) Up(J3s 74, 73) for J = J, x J, € RK(K), T = (15, 15) € K),
UeP(K). Let T be the set of of such t,€ K, that Uy(-, 1y, *) € P(K,). Then
K, — Te N(U,).

For ©, € T define ¢(t,) = (P) [x, Us(*, 1y, *), for 1, € K; — T choose ¢(t,)eR
arbitrarily and define W(J, t,) = Uy(Jy, 7y) ¢(y) for (J5, 1,) € R(K;) x K,. Then
We P(K,) and

2,1) P) LU - () j W

((2,1) may be written shortly (P) [¢ U = (P) [k, U;[(P) [x, U]).
Theorem 2,1 is a consequence of Theorems 2,3 and 24.

Note 2,3. Theorem 2,1 differs from Theorem 44,1 in [3] that U is not supposed
VBG* (and U need not be additive, cf. Note 1,3).

Note 2,4. If f: K - R is Perron integrable in the classical sense (cf. Note 1,1),
put Uy(Jy,7y) = |J4], Us(J2 74, 72) = f(t4, 72) |Jo]. Then (P) [, f(zy, +) exists
almost everywhere and (P) [x f = (P) [, (P) [x, f(zy, *). Symmetrically (P) [xf =

= (P) fxz (P) fxlf(',‘fz)-
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Definition 2,2. Let {(J*, 1) | i = 1,2, .., k} e o(w,y). Let {(L57, 259) |j =
=1,2,..,1% e A(wy,) fori = 1,2,... k. Put
(22)  A={JP x LD, (P25 ]i=1,2,. .,k j=1,2,..,19).
The set of all such 4 denote by #1,,(®x;) and put

o1 p(w) = (@) N 1 2(w) for w:K- R,

Lemma 2,1. o/, ,(0p) = & (@) ;1 5(0) © () for w: K — R*.
This is obvious.

Lemma 2,2. o/, ,(w) # 0 for  : K - R*,
Proof. For o, € K, find by Lemma 1,1

A(y) = (HD(0,), 09(01)) € R(K:) x K, |j = 1,2, ..., (o)} € (0o, -))

and put p(o,) = min w(oy, 69(cy)). It is p:K, > R* and by Lemma 1,1
j=1,2,...,1(61)

there exists {(J{, (") [i=1,2,..., k} € of(p). Put 1D = I(z)), 2§D = ¢P(c(?),

LG9 = HP(ED) for j = 1,2,.., 19, i =1,2,.., k.

Definition 2,3. U = U,U, is called (P, ,)-integrable in K, if for every e R*
there exists such an o : K — R that |S(U, 4,) — S(U, 4,)| < efor 4;, 4, € A1 2(w).
The set of functions, which are (P, ,)-integrable in K, is denoted by P, ,(K).

Theorem 2,2. If U € B, ,(K), then there exists a unique I € R such that for every
e€ R* there exists such an o : K - R* that |S(U, A) — I| < e for Ae A H(w).

This is obvious.

Definition 2,4. The number I from Theorem 2,2 is called the (P, ,)-integral of U
and is denoted by (P, ,) [x U.

Theorem 2,3. P(K) = B, »(K); if U e B(K) then (P, ,) [x U = (P) [x U.
This follows immediately from Lemma 2,1.
Lemma 2,3. Let X; € R(U,) for ie N. Then U X;e N(U,).

ieN
The proof of Lemma 2,3 is quite straightforward.

Lemma 24. Let XeN(U,), ¢:K, =R, W(J, 1) =U,(Jy, 1) $(r;) for
(1, 1) € K(Ky) x Ky. Then X € R(W). @

The proof follows from the preceding Lemma, as X = U X, with X, = {x eXl
()] = r}-
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Lemma 2,5, Lot &: K, = R, HO € S(K,), of e HO < B(od, o) for i =
=1,2,..,5, Int HP " Int HY) = 0 for i +j, i,j = 1,2,...,s. Then there exists
Ay ={(IP, )| i=1,2,.., k} e L(&) such that J = HP, 1) = o{) for i =
=1,2,...,5s.

The proof follows from Lemma 1,1, for either K, = (J H{? holds or cl (K, —

s i=1

— UHY) is a finite union of intervals from K(K,) whose interiors are mutually
i=1

disjoint. R

If Ue P, 5(K), J; € K(Ky), put Q = Ulgy, xksyxs,xx,- It is easy to deduce from
Lemma 2,5 that Q € B, 5(J; x K,), it will be written (P, ,) [;,xx, U instead of

(P1.2) [1, %k, Q-

Lemma 2,6. Let U € B, ,(K). Put V(J,) = (P, ;) [;,xx, U for J; € K(K,). Then
to every ¢ € R* there exist o : K — R™ and n € Y(K,) in such a way that n(K,) < ¢
and

23 M) = TU0, % 1, (6 4] S 1(0)

ift,eJ e R(K,), (LD, A9) |i=1,2,.. k} e d(a(zy, *)), J; x LD < B((ry, 25)),
o(ty, AY)) for i =1,2,..., k.

Proof. To ee R* find w : K —» R* according to Definition 2,3 and put n(J,) =
sup |S(U, C,) — S(U, C,)|, sup being taken for Cy, C, € o, 5(w;, xx,)- It is easy to
verify that 5 € Y(K,), n(K,) < ¢ and (2,3) holds, as S(U, C,) can be made arbitrarily
close to ¥(J,) while C, may be put equal to {(J; x L, (4, 49)) | i = 1,2, ..., k}.

Theorem 24. Let U,:R(K,) x K, > R, U, :R(K,) x K; x K, >R, U=
= U,U,, Ue P, ,(K). Let T be the set of such t, € K, that U,(+, 1y, *) € B(K>).
For 1, €T define ¢(ty) = (P) [, Us(*, 7y, "), for 1,€ K, — T choose ¢(1,)eR
arbitrarily and define W(J,, 1)) = U,(Jy, 1y) ¢(t;) for (Jy, 7,) € R(K)) x K;.
Then

(2.4) K, — TeN(U,),
(2,5) to every ee R™ there exists such a v: K — R* that

ISk, —1yx (U, A)| e for Aeddy,(v),

(2.,6) We P(K,) and (P)f W= (P,,,) J U.
K, Ky
Proof. Let us start with the proof of (2,4). Let X, for re N denote the set of
such 7, € K| that for every w, : K, — R™ there exist 45", A% € #(w,) is such a way
that
|S(U2(.’ T1s ')’ A(Zl)) - S(UZ('5 T1s ')’ A(22))I g r-l .
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Obviously K, — T= UX, and — by Lemma 2,2 — (1,4) will be satisfied, if it will
reN
be proved that X, e ®(U,) for re N.

Let r € N be fixed, let e € R* and let w : K — R correspond to ¢ according to Defini-
tion 1,2. To 7, € X, find

(2.7) Ay(ty) = {(LP(z1), 1(x1)) € K(K,) x Ky | j
Ay(r)) = {(£9(x,), 19(x1)) € K(K,) x K, |J

Ay(ty), Ay(r,) € #(w(ty, *)) in such a way that
|S(U2(" Ty, *)s Ax(11)) — S(Ua(*5 705 *)s 12(171))] zrt.

Put &(r,) = min ( min (D(TI, 29 (11)) min  o(ty, 1Y(7))). Tot, €K, — X,
=1,2,...,I(t1)

ji=1,2,.

5 Ty},
S (7)),

It

find
Ay(7)) = {(IP(7,), 2(11)) e K(K,) x K, |j = 1,2, ..., (ry)} € ((zy, *))
and put 4,(t,) = 45(7)), &(r) = min (1, AY(7,)). Let (HY, 6P) e K(K,) x X,
J=1,2,..,1(t1)

forj=1,2,...,s,0 e HY < B(¢?”, &(¢’) forj =1,2,...,5,Int H? " Int H® = 0
forj #i,j,i=1,2,...,s. By Lemma 2,5 there exists {(J{, t") | i = 1,2,...,k} €
€ o(&) so that J) = H‘li), o® = ¢\ for i = 1,2,...,s. Without loss on generality
we may assume that

sgn (S(U,(+, 1, +), 4,(z1?)) — S(U4(+, 12, *), 4,(ry))) = sgn U, (J, ©§°)
if 1?eX, and U (J?, 1?) + 0. Put
(28) A ={(JQ x LPY), P, AEP)) |i=1,2,...kj= W 1),
= (I x LPGP), GO PN 1= 1,2,k = 1,2, )}
It may be verified easily that
S(U, 4) — S(U, 4) =

= X U ) [SU 7 ) Aoe1)) = SU(+, 7, *), A(7))] 2

n(‘)ex,-

2t Y U0 )] 2 Y (U o)

- n(‘)eXr
On the other hand 4, e, (), hence |S(U, A) — S(U, A)| < e, so that
Y |UHS, 61)| < reand (2,4) holds, as £ € R* may be chosen arbitrarily to a fixed r.
j=1
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In order to prove (2,6) it is to be proved that to any ¢ € R* there exists such an
w, : K, > R* that

29) S(W, 4) - (P,.) j U

<e for A, ew).

Let e¢€ R* be fixed. Find such an w : K - R™* that
(2,10) |S(U, A) — S(U, A)| £ 4 for A, de o, (o).

Let 1, € K; — T, to every such 7, find A4,(t,) € &(w(t,, +)) and such a &(z,) e R*
that 7, € J, € R(K,), J; < B(ty, §(1,)), (M, 0) € A,(t,) implies J; x M < B((4, o),

o(ty, 6)). (Using notations of (2,2) we may put &(t,) = min  o(t,, 1Y(1,)).)
i=1.2,...,1(6)1

Put

‘Qx = {tie K = T[|¢(c))] + [SU:("> 71, *), 4o(m))| = 1},

Qr ={uek —T|r- 1< [6(z1)] + [S(Ua(+, 71, ), Aa(1y))| < 7}
for r = 2,3,... By (2,4) Q,e %(U,) for re N. By Definition 2,1 there exists such
a & :K > RY for reN that 2 |U,(H, 6?)| < ¢f(r. 27+%) provided that

i=1 . . .
(H, 6) € K(K;) x Q, o? € HY = B(a{’, &(c%?)), Int H{® A Int H{? = @ for
i+j, i,j=1,2,...,s. Finally put Ay(t,) = Ay(r,) for 1,€K, — T and
w,(ty) = min (§(t,), &(r,)) provided that ;€ Q,, reN; w, is defined for

1,€K,—T, as K, —T=UQ, and Q,n Q, =90 for r s, 1,5€N.
reN

Let 7, e€T: to every such 7, find 45(t,) € #(w(zy, *)). and then find such
a A9(1,) € #(w(y, *)) that

S+, 71, <), 4P(x1)) = (er)| = HSUA+5 71, °)s A59(1y)) = ¢()] -

Find suchan ,(t;) € R* thatt, € J, < B(1;, ©4(c1)), J1 € K(K), (M, 0) € 4§ (e)) v
U AP(z,) implies that J, x M < B((t;, 6), o(ty, 6)). Choose 4, = {JP, 1)) | i =
=1,2,..,k}ed(w). If ©PeT and U,(J, 1) [SU,(-, 7, *), AL(P)) -
(] >0, put AL(e)  AD(ED), A = AD(EP): otherwise (for << T)
put 4,(t{?) = AP(z(?), A,(z{?) = 43(x{"). Using the notations of (2,7) and (2,3)
define 4 and A by (2,8). It is not difficult to verify that 4, 4 € #/(w), so that

(2,11) IS(U, 4) = S(U, 4)| < de.
Obviously
(2,12) IS(U, 4) — S(W, 4,)| <

§ IS(K,—T)xKZ(U; A) - le_r(vV’ A1)| + ISTsz(U’ A) - ST(VV’ A])l .
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It follows from the choice of w; that

(2,13) ISk -1y xx(Us A) — Sg,—1(W, 4,)| =
= | ol U (I, ED) [S(U,(+, 12, +), 4,(x) — ¢(1$?)] <
= Z Z lU1(J(1i), rf’){ r = 23/2’” = 8/4.
reN t1(DeQ, reN

Let t?e T If
(2,14) Uy(J9, 70) [S(US(+, 71, +), 450(x)) — (:7)] > 0,
then
0 < U, (JP, 1) [S(UZ( ™9, +), 4,(7{Y)) — d)(r“))] <
< 20,09, 0[S 9. ). A7) = S(U-, <, ), L)
if (2,14) does not hold, then
UL (I, 70) [S(UL(+, 719, +), 4x(=)) — ¢(z)]] <
S UL(IP, o) [S(UL(+, 182, +), A5(182)) = S(UL(+, 142, +), Ao(2$2))]
so that
(2,15) |U(J, r(')) S[(Uz( 0, 0), Ax(79) — qﬁ(r”))]l <
< 20,49, 40) [S(UA(-, 9, ), Ae%) = S(U-, o0 ). D))

holds, if 17 e T.
It may be seen that S(U, A) — S(U, ) = STXKZ(U A) — Srxx,(U, 4) =
= ¥ U(IP, 1) [SU(, 1, +), Ay()) = S(U(+, 72, +), Ay(2$?))]. Hence it

1 (DeT

follows by (2,11) and (2,15) that

(2,16) ISru,(U, 4) — S¢(W, 4,)| < e
This together with (2,12) and (2,13) gives

(2,17) |S(U, 4) — S(w, 4,)| < 3¢

and (2,9) holds by (2,17) and (2,10), as A€ &/, ,(w) may be chosen in such a way
that S(U, 4) is arbitrarily close to (P, ,) [x U. The proof of (2,6) is complete.

It remains to prove that (2,5) holds. By (2,4) and Lemma 2,4 there exists such
a ¢, :K; - R" that

(2,18) |Sk,-r(W, C))| < 4e for C,e(E)).
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By Lemma 2,6 there exists such a ¢ : K — R* that

(2,19) < le

Ski-myxx(Us 4) = X T(Pl,z) U

Ty (DeKy — J (D) XKy

for Ae oy ,(£), A being described in (2,2). Finaly by (1,7) and by Definition 1,3
there exists such a 9, : K; » R that

Sg-r(WC)— 3 (P)| W

a1(NeK—T My (D

(2,20) < le

for C; = {(MP, ") | i =1,2,...,m}e(9,). Put ¥(z) = min (&(x), &(7,), 94(7y))
for t = (7, 7,) € K. Obviously v: K — R* and if 4 € o, ,(v) (cf. (2,2)), then 4, =
={(JP, ) |i=1,2..,k}e(&) N (), so that we may put C; = 4, in
(2,18) and (2,20). Moreover, by (2,6) (P; ) [;,crxx, U = (P) [0 Wfori =1,2,...
..., k. Hence (2,5) holds by (2,18), (2,19) and (2,20). The proof of Theorem 2,4 is
complete.

Definition 2,4. Let U, : 8(K;) x K; » R, X = K;. U, is said to be of bounded
variation in X (BV in X), if there are x€ R* and ¢ : K, — R in such a way that
Y UL (39, )| £ x for any {(JP,«P)|i=1,2,..., k} € #(¢).
71 (Dex

U, is said to be of generalized bounded variation in X (BVG in X), if there are
X, « X for r e N in such a way that X, = X and U, is BV in each X,, re N.

reN
Note 2,5 If W:R(K,) x K, >R, WeB(K,), T<K,, K, — TeR(W),
Y:K, >R, ¥(t,) = 1fort,eT, Wy, 1) = W(Jy, 1;) ¥(x,) for (J,, 1,) € K(K,) x
x Ki, then We B(K,) and (P) [x, W= (P) [ W.
The following theorem is the converse to Theorem 2,4.

Theorem 2,5. Let U, :K(K,) x K; >R, U,:R(K,) x Ky x K, >R, U=
= U,U,. Let T be the set of such t, € K, that U,(+, , ) € B(K,). For t, € T define
&(t1) = (P) [k, Us(*, 74, *), for 1, € Ky — T put ¢(t,) = 0 and define W(J,, 1,) =
= U,(Jy, 7y) ¢(ty) for (Jy, 7y) € K(K,) x K,. Assume that

(2,21) K, — TeR(U,),
(2,22) to every ee R* there exists such a v: K — R* that
Sui-myxx, U,A)| S e for Aedd ,5(v),
(2,23) We B(K,),
(2:24) U, is BYG in K,.
Then U B, 5(K) and (P, 5) [x U = (P) [«x, W.

295



Proof. It is sufficient to prove that to any ¢ € R* there exists such an w : K - R*
that

(2,25) hm@~meF5merM@

Fix ee R*. By (2,24) there are such X, = K, {, : K; > R* and x,e R* forre N
that U X, = K, and

reN

(226) S |Ui0, ) < %,
0 (Dex,
holds for A = {(J{, ") | i =1,2,...,k} e (). Without loss on generality it
may be assumed that the sets X, are mutually disjoint and it is easy to show that
(2,26) holds for any A e (&), ¢ being defined by &(t,) = &/(t,) for 1, € X,, reN.
For 7, € T find r e N such that 7, € X,. By the definition of T there exists such
a 9, :K,—>R" that

(2,27) IS(UL(+, 74, *), A2) — ¢(14)] S &, . 2*%) for A,eo(9,).
Find v by (2,22), ¢ being replaced by 4e. By (2,21) and Lemma 2.4 there exists such
ag:K, » R" that

(2,28) : Y IW(J(li), 'r(li))l =< ie

71 (DekKy—=T
for 4, = {(J9, <) |i =1,2,..., k) € (). By (2,23) there exists sucha 5 : K, —
— R* that

(2,29) S(w, 4,) — (P) J.K W' <l for A,esl(n).

Put (1) = min (8,,(72), W(1), &(t4)s (7). n(zy)) for © = (r,, 7,) € K. Let
Ae o, ,(»). Then — using the same notations as in (2,2) —

Ay = {(JP,0) i = 1,2, .., k} e (&) 0 (o) n L(n),

(@3, 287, j = 1,2, ..., 1P} € #(9;,), s0 that by (2,27), (2,28) and (2,29)

Fm@—wLﬂg;

1

k P > s . k . »
< | S U0 ) TUD 0, 9) = TUOP, ) 9] +
i=1 j i=

=1

J

k - . .
+|u0e )6 - ) [ W] s
i= K,
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1)
é Z Z lUl(J(li), T(li))| lz U(L(Zi:f). ,r(]i)’ A(Zi,j)) _ (i)(r(li))l +
reN 1,(DeTnX, F=
()
+ l Z UI(J(II')’ f(li)) y Uz(L(zi'j), P, /'l(zi,j))| +
Jj

ek, —-T =1

+] Y U D) o) + de <

11 (DeKy~T

Y L (U)o 2 ) ek de+ de S o2t 4 de =0

reN t1(DeTnX, reN

and (2,25) holds, which makes the proof complete.
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