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ON SUMS IN GENERALIZED ALGEBRAIC CATEGORIES

VERA PoHLOVA, Praha
(Received November 4, 1971)

The generalized algebraic category is defined as follows: Let F and G be covariant
set functors, i.e. functors from the category Set of all sets and mappings into itself.
The generalized algebraic category A(F, G) has as its objects (called algebras) all the
pairs (X, wy) where X is a set and wy is a mapping XF — XG (which is called an
operation). Morphisms from (X, wy) to (Y, wy) are all mappings f : X — Y such that
wxfG = fFwy. We remark that the composition of f: 4 — B and g:B — C is
written as fg and the image of a set X mapped by a functor F will be written XF.

The notion of the generalized algebraic category arose as a generalization of
universal algebras. But in contrary to the categories of universal algebras these
categories need not necessarily be always complete and cocomplete — the existence
of limits and colimits depending on both the functors F and G. The products,
equalizers and coequalizers have been investigated by V. TRNKOVA and P. GORALCIK,
P. PTAK, and J. ADAMEK and V. KOUBEK in their papers. (See [1], [2], [3], [5])

A necessary and sufficient condition for the functors F and G is given in this paper
so that the category A(F, G) may have sums and another one for this category to have
finite sums.

In Section I these conditions are stated together with several definitions and
conventions necessary for the understanding of their formulation. In the following
sections we give the proofs of these conditions. In Section II we introduce the other
notions and conventions used, and we recall some known facts; in Section III we
give some propositions which will be useful in Sections IV and V, where we give the
proof proper of the above mentioned conditions.

Let us remark that generalized algebraic categories are usually defined more
generally: instead of a single unary operation a whole set of operations of arbitrary
arity is considered. Namely the categories A(F ., G, {6 » AE A}) are considered, where A
is a set, §, are ordinal numbers, and F, G covariant set functors. For an arbitrary
set M let us denote by Qy the covariant functor Hom (M, —) : Set — Set. Then
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we can define the category A(F, G, {5 > AE A}) as follows: the objects are all the pairs
(X, {®}, 2 € w}), where X is a set and ] are mappings ) : XFQ;, — XG. Mor-
phisms from (X, {w}, A€ 4}) to (Y, {a),', A€ A}) are all mappings f:X — Y such
that for every 1 e 4, o¥fG = fFQ,,Aa),1

It is easily seen, however, that the category A(F, G, {§;, 1 € A}) is isomorphic to the

category A(F’, G), where F' = \/ FQ,,. Limits and colimits exist in one of the two
Aed

isomorphic categories if and only if they exist in the other. Therefore it suffices to
treat the categories A(F, G) defined above.

I wish to express my gratitude to V. Trnkova for her helpful advice and to V.
Koubek, who independently proved IIL.7.

L

Let us denote by [ the natural forgetful functor [J : A(F, G) — Set such that
(X, wx) O = X. All functors in this paper with exception of [] are set functors.

Let us denote by C, the constant functor to the empty set O, for an arbitrary set M
with 1 ¢ M by C, the functor such that OC,;; = M and for every X % 0, XCy, =
= 1. Because the category A(F, C,) is either empty or its all objects are isomorphic
(which depends on OF) we shall in this paper restrict our attention to the categories
A(F, G) where G *+ C,.

We shall write “F preserves |J” if the functor F preserves unions of arbitrary
systems of sets, “F preserves ” if F preserves sums in Set, “F preserves J*” if F
preserves counions (definition see in II), and “F preserves [ [ if F preserves products.
Let us recall here that the functors Q,; where M is arbitrary, C,, Cy and the functors
naturally equivalent with them preserve || and that they are the only ones with
this property (see [6]). We recall the notion of small and big functors: a functor is
small iff it is a colimit of a diagram the objects of which are covariant homfunctors.
A functor is big iff it is not small.

Let us denote for a set X by |X| the cardinality of X. We shall call a functor exces-
sive iff there is a cardinal « such that for every set X, |X| = o implies | XF| > |X|.

No small functor is excessive (see IIT), but there exist also big functors which are
not excessive, e.g. some functors introduced in [4]

Let us remark that by sums we mean the sums of non- empty systems of objects in
the usual categorical sense.

I1. Theorem. A necessary and sufficient condition for the category A(F,G),
where G & Cgy, Cpq, to have (ﬁnite) sums is described in Table 1, where + means
" “it has (finite) sums”, — means “it has not (finite) sums”, and [] ““it has (finite)
sums preserved by [1”. i
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Table 1.

G does not preserve IT
G preserves I1
G does not
G preserves (J*
G % Co, Cany P U preserve |J*
F preserves (finite) \/ O O O
F preserves e —
F does not (finite) J '
preserve |
(finite) F does not + iff F
Vv preserve is not — —
} (finite) J excessive

Remark. The case of categories A(F, Cy,) is easy — see IV.

I

In this paper we shall work in the Godel-Bernays set theory sometimes assuming
the generalized continuum hypothesis, which will be indicated by GCH. As usual the
class of all cardinal numbers will be denoted by Cn and the class of all ordinal
numbers by On. A mapping j : X — Yis an inclusion iff for every x € X xj = x.

IL.1. Definition. A functor F preserves non-trivial inclusions iff for everyj : X —» Y
inclusion mapping such that X # 0, jF is an inclusion.

I1.2. Lemma. Every functor is naturally equivalent to a functor preserving
non-trivial inclusions.

Proof. see [1].

Because F ~ F' implies that the categories A(F, G) and A(F’, G) with G arbitrary
are isomorphic, we shall in this paper restrict our attention to the categories A(F, G)
where F preserves inclusions and G % C,, and we shall not mention these assump-
tions in our propositions.

The sum of X and Y will be denoted by <X v Y, iy, iy). #

Let X be a set, x € X. Then for an arbitrary Y, k, : Y » X will denote the constant
mapping to x.

IL3. Definition. Let {f,, « € A} be a set of surjections with the same domain X, X +
+ 0. A surjection f with the domain X is called a counion of {f,, a € A} iff (Vx, y €

€ X) ((xf = yf) = (Vue A) (xf, = ¥fo))
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We recall some properties of set functors:

IL.4. Lemma. A functor is small iff it is a factorfunctor of a disjoint union of
a set of covariant homfunctors.

IL5. Lemma. Every functor preserves monomorphisms with non-empty domain
and epimorphisms.

Proof is easy.

IL.6. Definition. A functor F is connected iff |1F| = 1.

Note. If F & C, and a € 1F put XF, = {x € XF, xfyF = a}, where fy:X — L.
It is easily seen that F, is a functor and F = V F,. (See [7].)

aelF

IL.7. Definition. Let {f,, « € A} be a system of mappings with the same domain X.
It is called a separating system iff A # 0 and the mappings {f,, a € A} are collection-
wise monomorphic, i.e. for every x, y € X, x + y there exists o« € A such that xf, +

* Ve
A functor F preserves separating systems iff {f,,, cxeA} is a separating system

implies that {f,F, & € A} is a separating system.

I1.8. Definition. A functor F is separating iff 4 n B = 0 implies AF j, F 0
N BF jgF = 0, where j,: A —> A U B and jp : B— A U B are inclusions.

Note. F preserves sums iff F is separating and preserves {J.
Let us express 2 as a sum {1 v 1, {i, i'}).

I1.9. Definition. A point u € 1F is called a distinguished point of a functor F iff
uiF =ui'F.

Lemma. Let u be a distinguished point of F. Then for every f,g :1 » X, u fF =
= ugF.

Proof is easy. .

- Convention. Let u be a distinguished point of F. Denote uy = u fF for an arbitrary
f:1->X.

Proposition. Let A n B = 0 and AU B #* 0, then x € AF j4F n BF jF iff there
exists a distinguished point u € 1F such that x = u4.p-

Proof. see (7).
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Corollary. A functor is separating iff it has no distinguished point.
Let us denote by C,, a constant functor to a set M.

I1.10. Proposition. A functor F preserves \/ iff there exists a set M such that
F~1Ix Cy.
A functor F preserves \) iff there exist sets M and Lsuch that F ~ (I x Cy) Vv Cp.

Proof is evident.

IL.11. Definition. A cardinal « > 1 is said to be an unattainable cardinal of
a functor F iff aF =+ U XF(fF.

[ X-a,|X|<a

We recall from [2]:

II.12. Notation. Let F be an arbitrary functor, x € XF. Denote ¢, x = {Yg X,
x € YF jyF}, where jy : Y — X is an inclusion.

Lemma. For every x € XF ¢, x is either a filter or 7, x = exp X.

IL13. Notation. Denote |7, x| = min {|Y|, Ye #, x}. The number |7, | will
be called the essential cardinality of #, x.
Lemma. Let F be a functor, x € XF. Then || #, x| is an unattainable cardinal of F.

Proof. Let o = |7, x|, then there exists Y < R with |Y| = ¢ and x € YF jyF

and thus x = y jyF for some y € YF. We shall show that y e YF — N ZF fF.
£:Z-Y,Z]<|Y|

Presume that there exists f : Z — Y with |Z| < |Y|and y € ZF fF. Then y € (Zf) F jF
where j : Zf — Y is an inclusion. Thus x e (Zf) F(jjy) F which is a contradiction,
for |ZF| < [Y|.

Notation. For a functor F let us denote by Ay the class of all unattainable cardinals
of F.

I1.14. Proposition. 4 functor is small iff Ay is a set.
Proof. see [4].

IL.15. Proposition. (GCH). Let o > X, be an unattainable cardinal of F. Then
|oF| = 2. '

Proof. see [4].

I1.16. Definition. Put XF = { ¢, ¢ is a filter on X} u {exp X}. If f: X — Y then
Ue(#)fFiff (Ve #)(Vf = U = Y). Clearly F is a functor.
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Lemma. Let F be a functor, x € XF and f: X — Y and let there exists Z € Fx,x
such that f|Z is a monomorphism. Then Zysry = (Fxx) fF.

Proof. see [4].

I1.17. Definition. Let F be a functor. If 4, X are sets, 4 = XF, denote by F 4 x,
the following subfunctor G of F: for every set Y, YG = {y e YF, (Jae ) (3f: X = Y)
(y = afF)}; if g :Y—> Y’ is a mapping, then gG :YG - Y'G is the domain-range
restriction of gF.

I1I.

Let f and g be mappings with the same domain.We shall write f < g iff there exists
a mapping h with fh = g. Notice that < defines a quasiordering.

IIL.1. Proposition. The following properties of a functor F are equivalent:

(a) F is connected and preserves separating systems;

(b) F is connected and preserves counions;

(c) let X be a set and f be a mapping with domain XF, then there exists a map-
ping g with domain X such that f < gF and whenever f < g'F for some g’ with
domain X, then g < ¢';

(d) let X and Y be sets, x € XF, y € YF, then there exists a mapping f with domain
X v Y such that x(ixf) F = y(iyf) F and whenever x(ixg) F = y(iyg) F for some g
with domain X v Y, then f < g;

(e) let X be a set with X + 0, x, y e XF, then there exists a set M such that
F((x.5y,xy 1S a subfunctor of Q.

Proof. (a) = (b) = (c) = (d) see [2]. (a) = (e) follows easily from Lemma 5.1.
and Definition 4.1. in [6].

IIL.2. Lemma. Let F be for an arbitrary M a factorfunctor of Qy,, let F preserve
counions and let F be connected. Then F ~ Qy for some N.

Proof. Let ¢: Q) — F be an epitransformation. Clearly F = F (1 yemy,m> and
therefore by IILI1. there exists a monotransformation p:F — Q; for some L.
Denote (1) e”p™ =f:L— M and N = Lf, and j : N - M the inclusion. Thus
there exists unique f’ with f = f’j. Let r : M — N be the retraction, i.e. jr = 1,
put re" = n. Then nu¥ = f’. By the lemma of Yoneda there exists a transformation
7:Qy— F such that (1y)7" = n. As p is a monotransformation, (1,)e"u™ =
=f=fj=nujO,=njFu™ implies that (1,)e” = njF. Hence we obtain
easily that since ¢ is an epitransformation so is 7. Further let gt*¥ = j7¥ for some
g h:N > X. Then f'h=fhQ, =n"hQ, = nhFp* = ht*¥pX = go¥pX =
= nugQ, = f'g. Since f is an epimorphism, it follows that g = h. Thus 7 is also
a monotransformation and F ~ Q.
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II1.3. Construction. For a functor F preserving inclusions and a set X with a col-
lectionwise epimorphic system of mappings {v;: X; > X, i€} and a set M let us
construct the following transfinite sequence:

W, = X x {0}, '
Wy = Wy L (WoF — U X;Fv,F) x M x {1}),
iel

Wors = Wy U (W,F — U WyF) x M x {a + 1}) for o = 1,
Pea

W, = U W, for a limit ordinal «.

Bea
X,{vi,iel} and M will be called parameters. We shall say that the sequence
{W,, 0.€ On} stop iff there exists « € On with W, = W, .

IIL4. Lemma. Let F be a functor preserving inclusions such that for every
cardinal « there exists a cardinal  with |BF| < f and p > « and if y is a cardinal
with conf § <y < B then y is not an unattainable cardinal of F. Then every
sequence 111.3. with arbitrary parameters stops.

Proof. Let M, X and {v;, i €I} be parameters. For o = max (|X|, [M|) let B be
a cardinal with all the assumed properties. We shall show by the transfinite induction
that for every & € On with & < we have |W;| < B. As |Wy| < « < B and |fF| < B
we have |W,| < B. Let §€ On, 1 < 6 < B such that for every £ €8, |W| < B.

(a) If & is a limit ordinal, then |W;| = | U W] < B.
&ed

(b) If 6 = & + Lthen |[Weyy| = |[We U (WeF — U W,F) x M x {€ + 1})| £ B.
ned
We shall show that U W;F = W,F and thus Wy = W, ,: for any x € W,F, /x,wﬂ”
dep .
is an unattainable cardinal of F and || #,w,| < B, thus || #, 4, > conf g. So there
exists Y < Wj such that |Y| < conf f and x e YF. There must exist 6 < f with
Y = Wy and thus x € W;F.

IIL5. Corollary. Let F be a small functor preserving inclusions, then every se-
quence IIL.3. with arbitrary parameters stops.

Proof. For every o we shall obtain f§ by setting f = max (oz, sup Ar)’, where ’
denotes ‘“‘the succesor of a cardinal™.

IIL.7. Proposition (by V. Koubek) (GCH). Let F be a functor preserving inclusions
which is not excessive. Then every sequence I11.3. with arbitrary parameters stops.

Proof. Presume that there exist parameters M, X, {v,-, i €I} such that the sequence
{W;, 8 € On} constructed in II1.3. does not stop, then by IIL5. there exists a cardinal «
such that every cardinal f > « is singular provided it is not an unattainable cardinal
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of F and |BF| £ B. As F is not excessive there exists a cardinal § > max (o, [M], | X[,
N,) with |8F| < f. By IL15. (GCH is assumed) f is not an unattainable cardinal of F.
Thus Bis singular. As Wy + W, there exists x € WyF — U W,F. Forevery V€ £, w,

veB
and for every y € § we have V & W, and therefore W W; % 0 for every 6 € . We
can prove by the transfinite induction in the same way as in III.4. that [W,,l <8
As | #.w,|l is an unattainable cardinal of F (see Lemma I1.13.) we have || #.w,| <
< B. Thus there exists U e ¢, y, with |U| < fB. We shall show by the transfinite
induction that there is a mapping f : W; — f such that f/ U is a monomorphism and
sup W,f = . As f is a singular cardinal and |U| < B, there exists a sequence

{Y, £econf B} such that § = U ¥, and for every ¢econff we have |V¢| > f
e conf g

and Y, < Y, and for limit ordinal £, Y; = U Y, and |Y;,, — Y| = |U| and |Y;| =

neg

2 |U|. For & € conf § denote T; = U W,. As |U| < |Y;| there is a mapping f, : Ty —

ye¥e
— Y, such that f,/U is a monomorphism. If ¢ e conf # and for every 7€ ¢ such
fu: T, > Y, are defined that f,.,/U, = f, and (V,41) fy+1 0 (Yye1 — Y,) + 0 and
Fl(T, U) are monomorphisms, then we can define f, as follows: if ¢ is a limit ordi-
nal, then f, = U f,and if ¢ = n + 1 then as |U| £ |Y,,{ — Y,| there exists a mapping
nes
Ju+1:Tyey = Yy such that f,.,/(T,+; — T,) AU is a monomorphism and
Sa+ I/T,, = f,- Thus for every Ve ¢, x, sup Vf = p. If we suppose GCH then for Z =
= U 2° we have |Z| = B because f is a singular cardinal and then = N, where 4
dep

is a limit ordinal. We shall show that |ZF| > B, which is a contradiction. Define
a mapping ¢ : 2° —» ZF as follows: for h:f — 2 put he = x fFu,F where p, is
a mapping B — 2 defined for é € § as oy, = h/S. Show that ¢ is a monomorphism:
presume that there are hy, hy €2? with hy # h, and x(fu,)F = x(fu,) F = =.
Then for every Se #,;r g Sty O Siy, € £, (see 1L12)). For § = min {§' € p,
0'h, = &'h,} we have (S 0 0) w,, = Sw,, 0 Sp,. Since g, is obviously a mono-
morphism, by Lemma I1.16. it follows that #, ;, = (Z,,r4) u,,F; hence (S ) e
€ #.;rp But for every S€ Z op 4, sup S = B because f/U is a monomorphism and
then by Lemma I1.16. ¢,/ s = (£ x) fF and thus for every S € £,y , there exists
Ve #,.x with Vf < 8.

IIL.8. Lemma. Let F be an excessive functor preserving inclusions, let o =
= max (No, |1F|) be a cardinal such that |X| = « implies |XF| > |X|. Then the
sequence 111.3. does not stop provided parameters X, M, {v;, i €1} fulfil one of the
following conditions: '

(a) o« < |X|, |I| £ |X| and for every i€, |(Riv:) F| £ |X|, M # 0;

(b) & < |X], I =2, (Xov0) F U (Xyv,) F # XF and |X| = |X — (Xovo 0 X vy)|
and M * 0.
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Proof. First we shall show that |[XF — UI(XiVi) F| = |X|. If (a) is fulfilled, then

as |(X;v,) F| < |X|and |1] £ |X| we have | UI(Xiv,-) F| £ |X]. As |X] 2 o, |XF| > |X]|
and thus [XF — U (X)) F| = |XF| > |X|. If (b) is fulfilled than clearly either
iel

|X,vy — Xovo| = |X| or [Xovo — Xyvi| = |X| for |X| = N,. Assume that |x,v, —
— Xovo| = |X|. Let U Y, = X,v; — X,v, be a disjoint decomposition with |R| = |X|
reR

and |Y,| = |X| for every r € R. Then there exist isomorphisms g, : (X;v; — Xovo) -
— Y,. For every r € R define a mapping f, : X — X as follows: xf, = xg, if x ¢ Xov,,
xf, = x if x € Xyvo. There exists & e XF — ((Xovo) F U (X,v,) F). Clearly for every
Ue fex, Un(X — Xgvo) # 0 and U n (X — X,;v;) # 0. Verify that for every
reR, &, FeXF — ((Xovo) F U (X,v,) F): if e.g. &f,F € (Xqvo) F, in other words
XoVo € Fesr x> then there would exist U e #¢ x with Uf, < Xgv,, for by Lemma
IL16. (F:x)fF = Feprx- But for every Ue fey, U (Xvy — Xo¥) # 0 and
therefore also Uf, n (X — X¢vo) # 0. If y, 7, € R and 7y = r, then &f, F # &f, F
for if &f, F = &f,,F then &f, Fe(Xovo U Y,,) Fn(Xovo U Y,,) F = (Xovo U (Y, 0
NY,)) F = (X,v,) F, which would be a contradiction. Thus |XF — ((Xovo) F L
U (X,v,) F)| = |R| = |X|. Further we shall show by the transfinite induction for
both cases (a) and (b) together that for every 6 € On, |W;, F — W;F| > |X|: This
is true for 8 = Osince [W,F — WoF| = |(Wo u (XF — U (X;v;) F x M x {1})) F —
iel

— WoF| = ||(XF — U XvF) F| — |1F|| 2 |XF| > ]X] for |XF| > |X| = a 2 |1F|
iel
and (XF — UX»;F x M x {1}) n W, = Oand hence by IL.9. |(XF — U (X;v;)) F x
iel iel

x M x {1}) F n WoF| < |1F|. Let 6 be an ordinal such that for every yed,

|W, . F — W,F| > |X|. Let § be limit. We proved that |W,F — W,F| = |W,F|,

therefore, as |W,| = |W,F — W,F|, we have |W,| = |W,F|. Amappingf,,: U W,F -
0+ Bed

— W; where me M, defined by xf,, = (x, m, §) where § = min {&', x € W,F}, is

a monomorphism, therefore |W;| = | U W,F|and thus |W,F| > |W,| = | U W,F|.
0%+ ped 0 ped

AWss1 — WF| = ||(WsF _Hs W,F) F| — |IF|| = ||W,FF| — |1F|| > |X|. If & =
= + 1 then |W;.,F — Wy, F| 2 ||W;,,F — W,F| — |IF|| = ||XF| — |1F|| >
> |X|. Thus the sequence {W;, § € On} does not stop.

Iv.

IV.1. Lemma. The only functors assigning to every set either the empty set or
a one-point set are Cy, Cy and Cy,.

Proof. This is obvious since if G + C, then XG =% 0 for every X =+ 0.
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IV.2. Proposition. A(F, G) has sums or finite sums preserved by [ if and only
if one of the following conditions is satisfied:

(a) F preserves sums or finite sums, respectively;
(b) OF =0and G = Cyy;
(c) OF =+ 0 and either G = C, or G = Cy,.

Proof. The sufficiency is easy to see. To prove the necessity assume that neither
(b) nor (c) is satisfied, that is in other words that G # Cy for every set M. Then
by IV.1. there exists X = 0 with |[XG| = 2 and thus we have a, b € XG with a = b.
By IL.8. Note, it suffices to verify that F is separating and preserves unions. First
suppose that F is not separating. Let u € 1F be a distinguished point of F. Consider
algebras (X, k,), (X, ky), where k,, k, are constant mappings. Let (X v X, iy, i,)
be the sum of {X,X} in Set. Then there exists no operation w:(X v X)F —
— (X v X) G such that {(X v X, w), iy, i,) is the sum of {(X, k,), (X, k;)} in
A(F, G). Indeed if the contrary were true then ai;G = b i,G. The equality holds
since uyiF =uyi,F =uy,y and so ai;G = uyk,i;G = uyiF = uyi,F =
= uyxk, i,G = bi,G. Since Xi; N Xi, =0 and a i;Ge(Xi;) G and ai,Ge(Xi,) G
we have a i;G = ai,G = vy, Where v is a distinguished point of G. Consequently
a = vy = b as i;G and i,G are monomorphirms. This is a contradiction.

Second suppose that F is separating but does not preserve e.g. finite unions. Then
there exist by IL.8. disjoint sets X and Y such that (X UY)F — (XF U YF) 0
and (X UY) G| =2 2. Let a,be(X UY)G and a + b. Then, considering any two
algebras (X, wy) and (Y, wy) with underlying sets X and ¥, we obtain two different
direct bounds {(X VY, w,), jx, jyp and (X UY), ®,), jx, jy> Where jx, jy are in-
clusions X - X Y, Y- X UY, respectively. Define wl/XF = wZ/XF = wy and
@, |YF = @,[YF = oy, 0,[(X UY)F — (XFUYF) =aand w,[(X UY)F — (XF u
U YF) = b. But obviously if {(X UY, w), jx,jy> is the sum of {(X, wy), (¥, oy)}
then o is the only operation such that {(X U Y, ®), jx, jy» is a direct bound.

V.

We emphasise again that we consider categories A(F, G) where F preserves
non-trivial inclusions, G # C, and in this section also G + C,, as this simple
case is described in IV. We remark that C;; = C; =~ Q,.

V.1. Theorem. Let F be not separating and let A(F, G) have finite sums, then G
is connected and preserves counions.

Proof. Recalling IIL1., we shall show that G satisfies IIL1.(d). For arbitrary
X,Y, xo€XG and y, € YG consider algebras (X, k,,) and (Y, k,,), where k,, : XF —
— XG, k,, : YF — YG are constant mappings to xo and y,, respectively. Then there
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exists their sum {(S, @s), vy, vy). Let <X Vv Y, iy, iy) be the sum in Set; we have
f:X v Y- Swithiyf = vy and iyf = vy. This f is the mapping desired in IILL(d).
Actually, as F is not separating, the existence of a distinguished point ue 1F
guarantees that xo(ixf) G = yo(iyf) G, as xo(ixf) G = uxk,(vy) G = uyvxFos =
= usws = uy(vyF) 05 = uyk,;vyG = yo(iyf) G. If g : X v X — Z with xo(ixg) G =
= yo(iyg) G = z,, then {(Z, k,,), ixg, iyg) forms a direct bound and hence f < g
which completes the proof.

V.2. Theorem. Let F be not separating and let F preserve unions or finite unions
then A(T, G) has sums or finite sums, respectively, if and only if G preserves
counions and is connected.

Proof. The necessity is a consequence of V.1. To prove the sufficiency consider
any system of algebras {(X,, ®,), @ € A}. Denote by R the class of all mappings r
with domain V X, such that if B is the range of r then there exists an operation

acA
op : BF — BG such that {(B, wp), {ix,r, x € A}) forms a direct bound of {(X,, »,),
« e A}. By IIL.1.(a) G is connected, which implies (via the fact that (1, w,), where @,
is the only mapping 1F — 1G, is the terminal object of the category A(F, G)) that

R # 0. Obviously there exists a mapping f with the domain V X, such that for
acA

x,yeV X,, xf = yf iff xr = yr for every r e R. Obviously, there exists a set of

acA

surjections R’ < R, such that f = (J*R'. Denoting S = Im f, we shall show that
there is an operation wg : SF — SG such that {(S, ws), {ix,f, x€ A}) is a sum of
{(X,, »,), x€ A}. As F preserves unions and f is onto S, in order to describe an
operation wg we need only to define the values of wg in x(ix f) F for x € XF, o € A.
We put x(iy,f) Fos = xw,(iy,f) G. This definition is correct since as soon as
x(ix,f) F = x'(ix,f) F, where a,0’€ A and x € X,F, x'€X,F, then x(iyr)F =
= x'(ix,r) F for every reR, as evidently f<r implies fF < rF. Hence
x0,(ix,r) G = xX'w,(ix,r) G and, as G preserves counions also xw,(iyf) G =
= X'(ix, f) G = x'(ix, f) G. It is easily seen that {(S, ws), {ix.f, x€ A}> forms
a direct bound of {(X,, w,), » € A}. It is a sum since each direct bound of {(X,, w,),
a € A} can be represented as {(B, wg), {ix,r, a € A}> for some r e R. Thus f < r, in
other words there exists ¢ with fo = r and so ix f@ = iy r for every a € A. As f
is onto S, such ¢ is unique. By an easy calculation we obtain that ¢ is a morphism,
which completes the proof.

V.3. Proposition. Let F not preserve unions or finite unions and let the category
A(F, G) have sums or finite sums, respectively. Then there exists a set M such that G
is a factorfunctor of Qu.

Proof. In this argument it is essential that we make use of the following fact:
Let G be a functor such that there is a set M and m € MG such that for every Y with
|Y| = |M| and for every y € Ythere is ¢ : M — Y with mpG = y. Then G is a factor-
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functor of Q. This holds as the transformation ¢ : Q, — G such that (1,) e¥ = m,
existing in virtue of the lemma of Yoneda, is clearly an epitransformation.

So, let F not preserve unions, then it is easily seen that there exists a disjoint system
of sets {X;, i eI} such that for every iel, |X;| 2 ¥, and(UX)F UX;F + 0.

iel
In case that F does not preserve finite unions we can suppose that I = 2.

(a) Turning first to F separating, choose arbitrarily operations w; : X;F - X;,G
and denote by {(S, ws), {;, i €I}> the sum of {(X;, w;), iel}. Then for every Y
with |[Y]| = | U X;| and y € YG consider a direct bound (Y, wy), {v;, i € I}) such that

iel
for every iel, v; = iyW, where ¥ is a monomorphism U X;—Y and for
iel
x € X;F holds xv;Fwy = xw;v;,G while for x e YF — {J (X;v;) F we have xwy = y.
iel

(b) If on the other hand F is not separating then the existence of sums guarantees
that G is connected. Since if G were not cqnnected, then by IL.6. we could write
G = G, v G,. However, any two algebras (X, wy) and (Y, wy) such that uywy € XG,
and uywy € YG,, where u is a distinguished point of F, have not even a direct bound.
Hence, for arbitrarily chosen x; € X; we have {x;} G = {a;}. Put w; = k,, and denote
by (S, ws), {;, i €I}> the sum of {(X;, w,),iel}. Then for every Y with |Y| =
>|U X ;| and for every y € YG consider a direct bound {(Y, wy), {v;, i €I}> such that

iel
for every i e I, v; = ix,py, where p is the projection of | X; on U X;/~, where ~ is
iel iel
an equivalence defined by a ~ b iff there exist i, je I with @ = x; and b = x;, and ¥
is a monomorphism |J X;/~ — Y. An operation wy is defined as follows: for x € X ;F

it is xv;Fwy = xwiv:g and for x e YF — U (X)) F, xoy =

It is easily seen that in both cases (IZ.I) and (b) there exists se( UX,-ui)F -
- U (Xu;) F. According to the above argument, it suffices to prove tha'slfor every Y
witlle: Y| = l[{ X;| and for every y € YG there exists ¢ : S — Y with (swg) ¢G = y.

We know that there exists ¢ : S — Y with ;0 = v, for every i e I. In both cases (a)
and (b) it is easy to see that <p/UX,u, is a monomorphism and hence so is
(pF/U(X ;) F. Therefore, if soFe (X ;) F = (Xv,) FpF, then necessarily se

€ (X ;) F which contradicts our assumption. Thus s¢F € YF — U (X v;) F and hence
y = soFwy = swg@G, which completes the proof.

V.4. Theorem. Let F not preserve unions or finite unions and let A(F, G) have
sums or finite sums, respectively, then there exists a set N with G = Qy.

Proof. As a consequence of V.3. there exists a set M such that G is a factorfunctor
of Q,, If F is not separating we may then apply V.1. and hence we obtain the result
by II1.2. ,
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Turning now to F separating we claim that for every X and for every x € XG it
holds N Ue #, x. Otherwise, in virtue of the fact that F«.x is a filter, we obtain
Uefx,x
that for every Pe £ x there exists pe P with P — {p} € £, ;. Further consider a dis-
joint collection of sets {X,, w € A} such that (U X,)F — U X,F # Oand forevery o€ 4,
acA acA

X n X, = 0 and choose arbitrarily operations @, : X,F — X,G. Denote by {(S, ws),
{py> 2 € A}) the sum of {(X,, w,), o« € A}. Without any loss of generality assume that
also G preserves non-trivial inclusions. Put Y = X U ( U X,) and define wy : YF - YG

as follows: wy/X,F = o andwy/(UX)F UXF— kyand wy|YF — (U X,) F =

acA

= k,, where ye (U X,) G is arbltrary Clearly <(Y wy), {ja» a € A}, where j, : X, >

acd
— Y are inclusions, forms a direct bound of {(X,, ®,), € A}, and thus there exists
unique f : (S, ws) = (Y, wy) with p,f = j, for every a € 4. Evidently U X, < Sf and
acA
50 (U X,) F < (SF) fF. Therefore there exists se SF with sfFe(UX,)F —

acA

- UX,F and thus, since x = s fFoy = swsfG €(Sf) G, it follows that Sfe £, y.

acA
As X < Y we obtain applying Lemma II.16. that ¢, = {U cY,UnXe fx,x}-
Now consider g : Y — Y with ag = b and bg = a and ¢g = ¢ for every c e Y with
¢ # a, b. Verify that g is a morphism (Y, wy) — (Y, wy). If t € X,F for some o€ A4
we have toygG = twy = t gFwy, since g/X, = 1y, and consequently gG/X,G =
= 1y, and also gF/X,F = lx r, and since (X,F)wy < X,G. If te(UX,) F —

acA

— U X,F, then in view of g/UX = 1ux , it suffices to check that x gG = x, for

acA
twy gG = x gG and t gFwy = x. Actually, since g/(Sf — {a, b}) = 15,_(up and
xe(Sf — {a, b}) G, it follows that xgG = x. If teYF — (U X,) F, then also
acA
tgF e YF — (U X,) F for g is a monomorphism, hence gF is a monomorphism and

acA

(UX,)FgF =UX,F. Thus twygG = y gG and tgFwy = y. Since ygG =y

acd acAd

(ye(UX)G and g/U X, = 1yyx,), it follows that twy gG = t gFwy. Thus we

acA aed
have a morphlsm g : (Y, oy) > (Y, wy) with fg + f, for a, b € Sf, and as, moreover,

LS9 = U.f, We get a contradiction with the uniqueness of f. Therefore we may
conclude that for every X and xe XGitholds N Ue ¢, 4.

Uefx,x
Now, let € : Q) — G be an epitransformation, the existence of which is guaranteed

by V.3. Denoting m = (1,) ¢” we have me NG where N = () U. Then, in virtue
. Uefpm,m
of the lemma of Yoneda we have a transformation t : Qy — G such that (1) ¥ = m.

It is easy to verify that since ¢ is an epitransformation, so is 7. Let us show that 7 is
also a monotransformation. Assume the contrary. Clearly, it remains to examine Qy
with~|N | > 2, since it is easily seen that the only factorfunctor of Q, is C,, and the
only factorfunctors of Q; ~ I are C; and I. Thus we obtain ¢ = ¥ such that ¢, y :
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:N > N and moG = @t = Y1V = myG, since for any ¢@; + ¥y, @1, ¥ :N > X
with @,7* = 7%, in virtue of the fact that 2 is a cogenerator in Set, we have £ : X —
~ N such that ¢,¢ = ¢ and clearly (¢,&) ™" = (,£) «". Denoting Z = N U U X,

acd
(for the sake of simplicity we suppose that N n U X, = 0), define operations @y, w, :
acA

: ZF — ZG as follows: o;/X,F = w,/X,F = w, for every a €A, o;/ZF —
— (UX,)F = 0,/ZF — (U X,) F = k,forsome ye (U X,) G,and o,/(U X,) F —
acA acA acA

acA

— UX,F = k, (as me NG, it follows that m € ZG), and w,/( U X,) F — U X, F =
acA acA acAd
= Kpyr- Let @ ¥ :Z — Z be such that §[N = ¢, 3/UX, =1y, and J/N =y,
acA acA

¥/UX, = 1U x, Bvidently @, § are morphisms (Z, ;) — (Z, »,) and @ * §.
acA acd
Denoting by j, : X, = Z the inclusions we obtain that obviously (Z, w,), {j,, @ € 4}>

and {(Z, ,), {J. % € A} form direct bounds of {(X,, w,), x€ A} and j,p = j, =
= j W for every a € A. As {(S, ws), {p,, € A} is a sum we have the unique mor-
phism 7 : (S, ws) = (Z, w;) with p,h$p = p,h = j,, it follows that h@ = hi. As

there exists ve(UX,) F — UX,F we have m = v hFw, = vog hF € (Sh) F, in
acA aeAd

other words Sh e ¢,, . From the above, however, we have N = () U and hence
Uefm,z

N < Sh. This together with §/N + YN and hy = hy yields a contradiction. There-
fore G ~ Qy holds.

V.5. Theorem (GCH). Let F not preserve unions or finite unions, and G = Q,,
then A(F, G) has sums or finite sums, respectively, if and only if F is not excessive,

Proof. To prove the sufficiency consider an arbitrary system of algebras {(X;, »,),
iel}.

(a) First, if F is not separating we obtain in the same way as in V.2. the epimorphism
f:VX;— S. Whenever J (Xifxif) F = SF we may construct an operation wg :

iel iel
: SF - SG in the same way as in V.2. establishing the sum {(S, wg), {ix.f, i€I}) of
{(X;, ®;), i€lI}. Otherwise put W, =S x {0} and denoting v; = iy fi), where
¥ : S — W, is such that xy = (x, 0) for every x € S, define a partial operation w
on W,F as follows: if x € X; for some i € I put xv;Fo = x®;v;Q,. The same discus-
sion as in V.2. ensures, via the fact that Q,, is connected and preserves counions,

that w is correctly defined.
(b) Let F be separating. In case that U X;iy F = (V X ij F we obtain the sum
el el
preserved by the forgetful functor (see IV.2.). Otherwise, putting S =V X; and

- iel A
v; = ixy, where ¥ : S - S x {0} = W, is the same as above, define a partial opera-

tion o as follows: for x € X;F and i eI put x(v;F) 0 = x,v;Qy.
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In both cases (a) and (b) let us construct the transfinite sequence {W,, &€ On}
(see IIL3.) with parameters S, M and {v;, i €I}. Lemma IIL7. guarantees that there

exists o € On with W, = W, ,, in other words, W,F = U W,F. Denoting W = W,
Pea
let us complete the definition of the operation @ : WF — WQ,,. Let x € W,F and

B = min {f’, xe Wy.F}.If p = 0and x € U (X,v;) F then xw is already defined in (a)
iel

or (b). Otherwise define xw = f,, where f, : M — Wis such that mf, = (x, m, § + 1)
for m e M. Verify that {(W, »), {v;, i € I}) is the sum of {(X;, w;), i e I}. Clearly it is
a direct bound. Considering another direct bound {(4, w,), {u;, i € I}) define a map-
ping ¢ : W — A by the transfinite induction: on W, define xv;¢p = xu; for x € X,
i e I. Even if F is not separating, it is correct (see the discussion in V.2.). Now assume
that ¢ is defined on W, then for y € Wpiq — W, ie. y = (x, m, f + 1) for some
x € WyF — U W,F and m e M, define yp = (m) xpFw,. It is casy to verify that ¢

is morphisr;B(W, o) > (4, »,) and that ¢ is the unique morphism with v;p = y; for
every iel, since it must satisfy xpFw, = (x®) 9Qy = f.¢ for every x e WF —
—U(Xw)F.

iel

To prove the necessity suppose that F is excessive, i.e. there exists Ae Cn, 1 =
> max {N,, |LF|} such that |X| > 1 implies [XF| > |X|.

If F does not preserve unions, then clearly there exists a disjoint system of sets
{X,,iel} such that (U X,) F + U X;F and for every iel, |X;| =y and |I| 2
g max {lyF{’ l} iel iel

If F does not preserve finite unions, it is easy to see that there exist sets X, and X,
with X, n X, = 0 and |X,| = |X,| = Aand (X, U X,) F + X,F u X,F.

For every i el (in the finite case we mean I = 2) choose arbitrarily x; € X; and
consider an operation w; : X;F — X;Q,,such that forevery x e X;F, xw; = k., : M —
— X (according to our convention M = 0). We shall prove that {(X;, w;), i € I} has
not a sum.

If F is separating put S = J X; and v; = ix..
iel
If F is not separating, put S = U X,-/~, where x ~ y iff there exist i, j € I with
iel
x = x;and y = x;, and v; = iy,p, where p is the projection of |J X; on U X;[~.
iel iel

Denote by § the mapping S — W, such that xy = (x, 0) for every x € S. Now, it
is easy to verify that the parameters M, S, {v, i e I} satisfy either condition (a) or (b)
(in the finite case) of Lemma IIL8. and thus the sequence {W,, « € On} (see IIL.3.)
with parameters M, S, {vy, i€} does not stop. We claim that for every o e On
there exists an operation w, : W,F — W,Q,, such that {(W,, o,), {v¥, i €I} forms
a direct bound. Indeed, for x € X;F with i € I put x(v)) Fo, = xa(vif) On and for
x € WoF — U (X)) F or x € W,F for some f with 0 + € a define xw, = f, : M —

iel

— W, such that for every m € M, mf, = (x, m, p + 1) where § = min {f', x € W.F}.
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Elsewhere w, can be defined arbitrarily. w, is defined correctly even if F is not separat-
ing, since x(vy) F = xo,(vh) Qur = ko (vith) Qur = k¥ Qur = kv W Qyy for every
i, j € I. Assume that {(X;, ®;), i I} has the sum {(S, ws), {g;, i € I} . Then for every
o € On there exists unique ¢, : S —» W, with p;p, = vy for every i € I. To show that
for every o € On it is lS(p,,l = «, prove first the following:

Let f:(S, ws) > (W, ®,) be a morphism, x€ On and A < Sf, then for every
a € AF and for every me M it is (m) aw, € Sf.

This is true, since in virtue of the lemma of Yoneda we have a transformation
7:0,— F with (1,)t* = a. Denoting by i, : A — W, the inclusion, we have
(iy) ™= = a. As A = Sf, it follows that there exists g€ SQ, with (9) fQ4 = iy,
and since a = (g) fQ,1"* = gt%fF and gt5€ SF, it follows that (g7°) wsfQy =
= g’fFw, = aw, and thus for every me M it is (m) aw, = ((m) gt°ws) f, in other
words (m) aw, € Sf.

Further, prove by the transfinite induction that for every o e On and for every
Beaitis Wy = So,. Evidently for every o€ On we have W, = S¢,. Let fe o and

for every & € f8 let W; < S¢,, then if f is a limit ordinal it follows that W; = U W; =
dep

< Sg, and if f =0+ 1, then W,y = Wy u (W;F — UWF)xMx{5+1})

From the above, for every xe W;F — U W,F and meM we have m(xw,) =
yed

= (x, m, § + 1) € Sp, and hence W;,; S So,.
Therefore for every a € On we have |S| 2 [S¢,| = «, which yields a contradiction
and completes the proof.

Remark. If we do not suppose the generalized continuum hypothesis we can
reformulate Theorem V.5. by substituting the property of F to be excessive by the
following condition Ry: We shall say that a functor F and a set M satisfy condition Ry,
iff for every set X and every collectionwise epimorphic system of mappings {v; : X; —
— X, iel} the sequence II1.3. with parameters M, X, {v;, i € I} will stop. We can
prove by the same reasoning as in V.5. the following theorem:

Let F not preserve unions or finite unions and G = Qy, then A(F, G) has sums
or finite sums, respectively, if and only if F and M satisfy Ry.

Following IIL.6, every small functor and every set M satisfy Ry, but there are also
big functors satisfying Ry, for every M, e.g. those from (4) cited above. Thus the
characteristics of the property Ry, without the assumption of generalized continuum
hypothesis remains open.
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