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Czechoslovak Mathematical Journal, 23 (98) 1973, Praha 

A CLASS OF CONNECTED SPACES WITH MANY RAMIFICATIONS 

J. L. HuRSCH, A. VERBEEK, Amsterdam 

(Received September 3, 1971) 

It is easy to verify (cf. 3.1d) that each non-degenerate connected topological space 
has at least one non-closed connected subset. However, it will be shown in section 4 
that some connected (even Hausdorff) spaces have a point XQ such that every con­
nected subset containing XQ is closed. The class of these spaces, named RAM is the 
subject of this note. It originated as a class of counterexamples in studying conditions 
equivalent to (weak) hnear orderability of connected topological spaces (see section 
5). The main results can be found in section 3, where also a characterization of RAM 
is given in terms of a set equipped with a partial order and a topology satisfying some 
interrelations (see 3.3). 

1. DEFINITIONS AND AUXILIARY PROPOSITIONS 

By Л ® Б we denote the disjoint topological sum of two disjoint spaces A and B. 
{X, Xo) e RAM if Z is a non-degenerate, connected T^-space and XQ e X is such 

that every connected subset of X containing XQ is closed. 
Let us first prove that the point Xo of X is unique, i.e. if (Z, XQ) e RAM and (X, x^) e 

e RAM then XQ = x^. Suppose (X, XQ) e RAM and x e X \ {XQ}. Let С be the com­
ponent of X \ {x} that contains XQ. By definition of RAM, С is closed in X. Thus X \ С 
is not closed, but is connected (cf. L2) and contains x. Hence (X, x) ф RAM. If no 
confusion is likely, then we will write X e RAM instead of (X, XQ) E RAM. In 
studying RAM the following relation R plays a crucial role: 

If (X, Xo) e RAM and x, у e X then we write xRy if either x = Xo Ф j or x 
separates X between XQ and у (i.e. X \ {x} = A @ В and XQG A, у e В for some 
A, В en X). 

The topological tools of this study are the following three propositions. The first 
two are well-known, the third can essentially also be found in [3], p. 75. 

Proposition 1Л. If Z and Y cz Z are connected and Z\Y = A @ В then Yu A is 
connected. 
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Proposition 1.2. / / Z and Yc: Z are connected and С is a component of Z\Y, 
then Z\C is connected. 

Proposition 1.3. / / X is a connected Ti-space, with a dense subspace of cardi­
nality m, then the number of points xeX for which X\{x] has at least three 
components does not exceed m. 

Before we prove 1.3 we mention the following immediate consequence of 1.1. 

Lemma. / / X is connected, a, b e X and X\{a] = A^ @ A2 ® A^, X\[b] = 
= Bj ® Б2 © ^3 and ae Bi, b e A^ then Б2 u Б3 с A^. 

Proof of 1.3. Let D cz X he dense and card D = m, and A = {aeX \X\{a} 
has ^ 3 components}. For each a e A wc choose three nonempty (necessarily open 
and disjoint) subsets A^ a X, i = 1, 2, 3, such that Z \ { a } = AI® A^® A^. 
Moreover we choose, again arbitrarily, a^e A\ r\ D, i = 1,2, Ъ. Now we define 
Ф : Л -> D X Z) X D by 

ф{а) = (ai, a2, a^) . 

From the lemma we see that ф is 1 — 1 (independently of the choice of Л? and a^. 
Hence card A S (card D)^ = m. 

2. COMPUTATIONS CONCERNING THE RELATION R 

The following proposition does apply to any connected Tj-space X with some 
fixed point XQ and a relation R as defined in section 1 : xRy iff either x = XQ ^ y 
or X separates X between XQ and y. Its short proof can be found in several textbooks 
with various modifications. 

2.1. The relation R is a partial order {i.e. is antisymmetric and transitive). For 
each xeX the set {y eX\ yRx] is linearly ordered. 

From now on we will think of i^ as a partial order, saying "x is smaller than j " 
for xRy, etc. 

In the following definitions X is a fixed set and jR a partial order of X. In under­
standing the definitions better, it may be helpful to glance at 2.5. 

Definitions. We denote the inverse of jR by Л : xRy i^yRx. By R we mean the rela­
tion "Я or = " '.xRy iff xRy ov X = y. The relation non i^ is the negation of 
R : X non Ry iff xRy does not hold. A subset Л of X is called right-saturated if 
Уа e A'ixeX aRx => x e Л. If Л is any subset of X then there is a smallest right-
saturated subset of X containing A. It is named the right-saturation of A and denoted 
by Л*. Because R is transitive we have: 

A^ = {xeX\3aEA aRx} . 
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к xeX and Ä a X then we say that x immediately precedes A if 

(i) Wae A xRa (hence x ф A) and 
(ii) If у eX and Va e Л yRa, then yRx. 

If X 6 Z and A cz X then we say that x is the greatest lower bound of Л if 

(i) "iae A xRa and 
(ii) If j ; 6 X and Va e Л ji?a, then yRx. 

If A = {xi, X2} then we also write x^ л X2 for the greatest lower bound of A. 
From now on, throughout this section, (X, Xo) denotes a fixed member of RAM^ 

and R is the relation on X defined before. 

2.2. Let XEX\{XQ} and denote the components of X\{x} by C„, cce J, while-
XQ € C^. Then Qo is closed. For each a e J\{oio]^ Q is open and C~ = C^u {x}. 
Moreover J is infinite. 

The simple p r o o f is left to the reader. 

2.3. For any xeX\ {XQ} the set {y \ x non Ry} is the component of X\ {x} 
which contains Xo, and hence this set is closed. So its complement {y \ xRy} is 
connected and open. This also implies that X has no maximal elements. 

Proof. By definition of R{y\x non Ry} is the quasicomponent of XQ in X\ {x}. 
If this set was not connected, then it contained some component Q of Z \ {x} with 
Xo Ф Q . By 2.2 Q is open in X and closed in X \ {x}. Contradiction. 

2.4. Let A cz X be a linearly ordered subset, with XQ ф A. Then its right-satura­
tion A* is open and has an immediate predecessor z. Moreover Л*~ = Л* u {z}. 

Before we prove 2.4 we first mention the following. 

2.5. Corollary, (a) Each xeX has an immediate predecessor z. Moreover 
{y\xRy]~ = {y\xRy}u{x,z}. 

(b) Each linearly ordered subset A of X with a maximal element (or an upper 
bound) is well-ordered by R. 

(c) If A с X is linearly ordered and a„eA, a„Ra„+i for n = 1, 2, 3 , . . . , then 
{a„\n = 1, 2, 3,...} is cofinal with A (i.e. "^аеАЗп aRa„). 

(d) Any nonempty A a X, for which Хоф A has a unique immediate predeces­
sor ai and a unique greatest lower bound «2- / / CI2 ф A, then a^ = a2. Else a^ is the 
immediate predecessor of a2 = min A. 

Proo f of 2.5, using 2.4. .̂  

(a) Clearly {y \ xRy} and {y \ xRy} are right-saturated. So we only have to^ 
notice that x G {y | xRy}", which follows from 2.2 and 2.3. 
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(b) Because X has no maximal elements (2.3) the condition that A has a maximal 
•element implies that A has an upper bound, say x. Thus it suffices to show that 
[y I yRx] is well-ordered by R, for each хвХ, 

Clearly {y \ yRx] is linearly ordered (see 2.1). Let Л be a non-empty subset of 
[y I yRx]. We will show that A has an jR-smallest = i^-largest element. Assume 
хф A. Consider the set Б = { j | Va 6 Л aRyRx] and its right-saturation Б* (in X). 
By 2.4 Б* has an immediate predecessor, say z. It is easy to see that ze A and z is 
the Я-largest element of A. 

(c) Suppose 01, «2 , . . . is not cofinal with A, i.e. laeA^naJRa. Then ( a ' e 
G A I a'Ra] would not be well-ordered by 5 , contradicting (b). 

(d) Choose some ae A. Now {z | zRa] is well-ordered by R. Moreover x^Ra for 
each ae A. Let «2 be the ^-minimal element such that a2Ra for all ae A.lï a2$ A, 
then take a^ = «2, else let a^ be the immediate Й-successor of a^ in {z | zjRa}. 
Uniqueness follows simply from the fact that {z | zRa] is linearly ordered. 

P roo f of 2.4. Because Л* = u{{x | aRx] | a G A], 2.3 shows that Л* is open. 
Being a proper subset of the connected space X it cannot be closed. Let z be any 
boundary point of Л*. We will show that z immediately precedes A. Observe that 
thus, by definition, z is unique. 

First we will show that zRa for г)! ae A and hence for all a e Л*. Because z ф A^ 
we know already that a non Rz for all ae A. Now suppose z and some a' e A are 
jR-incomparable. Because A and for each a the set [x | xÄa} are linearly ordered (2.1) 
we find that z is not comparable with any a e A*, and in particular {x | zRx] n A* = 
= 0. However {x | zRx] is an open neighborhood of z (2.3) and z G Л * ~ . Contra­
diction. 

Secondly, assume that for some у eX zRy, while yRa holds for all a e A. For 
ae A let C^ be the component of a in X \ { j } . Now yRa implies XQ ф C .̂ Since, 
by 2.3, [x I aRx] с С«, and X has no maximal elements, the family {C^ | a G Л} has 
no disjoint members. Hence this family has a connected union, which contains all 
of A*. Thus A is fully contained in one component, say C, of X \ {y], and XQ ф С. 
By 2.2 С"" = С и {у], but z ^ C because j n o n Ä z (as zRy). This contradicts 
Z G ^ l " С С " . 

This completes the proof. 

2.6. For any X G X \ [XQ] the following families of sets are equal: 

(a) the components of {y | xRy], 
(b) the components of X\{x] that do not contain XQ, 
(c) the right-saturations of maximal linearly ordered subsets of {y | xi^j}, 
(d) the maximal subsets A of {y\ xRy] that satisfy both 

(i) A is right-saturated 
(ii) for any a, a' e A also a л a' e A, 
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Proof. For (a) = (b) see 2.3. The simple proof of (c) = (d) only uses trivial 
properties of partial orderings like JR. 

Next we will show that two different sets of type (c) = (d) are disjoint. Since all 
sets of type (c) are open (by 2.4) and cover {y \ xRy}, this will show that the sets of 
type (a) = (b) refine the sets of type (c) = (d). Suppose z e A^ r\ Л J, where A^, A2 
are maximal linearly ordered subsets of {3; | хКз^}. So За^еЛ^ afiz (i = 1,2). 
By (d) ai A a2^ AX ГЛ Л*, and because {y \ yRa^ is linearly ordered, and A^ is 
maximal, even a^ л «2 e Л^ n A2. Now it is obvious that ^ * = Л | = {y | 3a . 
. xRaR{a^ л a 2) and aRy]. 

Finally we have to show that a set A of type (c) = (d) is connected. Suppose not, 
A = Y@ Z, Choose y' eY, zeZ and suppose y' л zeY. Put у =^ у A z. Thus 
z 6 {z' I yRz'} ci A, but {z' I yRz'] is connected (2.3). This contradicts that {z' | yRz'} 
meets both У (in y) and Z (in z). 

3. PROPERTIES OF RAM 

Summarizing the results of the previous sections we can easily deduce the following 
theorems: 

3.1. Theorem. For {X, XQ) e RAM we have the following properties: 

(a) The XQ is unique, and is the only point that may be a non-cutpoint. For each 
xeX\{XQ\ the subspace X\{x} has infinitely many components. 

(b) X is not compact. 
(Ъ') IfX is Hausdorff, then no point of X has arbitrarily small neighborhoods with 

(countably) compact boundary. 
(c) If D cz X is dense then card D = card X. 
(c') X cannot be both separable and regular. 
(d) For any xeX there exists an open neighborhood О inXsuch that(O, x)eRAM. 
(e) No point of X has arbitrarily small open connected neighborhoods. 
(f) There exists a Hausdorff space X in RAM, such that X is countable. 
(g) Each connected subset of X has at most one non-cutpoint. 

Proof. 

(a) See section 1, and 2.2. 
(b) It is well-known that any compact connected T^-space has at least two non-

cutpoints. 
(b') Combine Thm. 6, p. 10 of [2] with (d). •' 
(c) This follows from 2.2 (or 3.1(a)) and 1.3. 
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(с') А regular, countable space is Lindelöf, thus normal. Hence it admits non-
constant real-valued functions and thus it can not be connected. 

(d) Let О = {у EX \xRy}. Then 0 is connected (see 2.3). Suppose С с О is 
connected and xeC, and yeC~ \C for some yeO. Let A be the component of 
X \ {x} containing y. Now (X \ A) и С contains XQ and is connected, because 
of 1.2 and xe{X\A)nC. Thus ( Х \ Л ) u С is closed, contradictory to ye 
eAnC~\C. Thus (O, x) e RAM. 

(e) Because of (d) it suffices to show that XQ has no proper connected open 
neighborhood. This is clear from the definition of RAM. 

(f) See section 4. 
(g) Let С c: X be connected, suppose x e С and С \ [x] is connected. Then С is not 

contained in {y \ x non Ry], because x is an isolated point of this set (2.3). 
Because С \ {x} is connected, С cannot meet both {y | x non Ry} and {y | xRy} 
(cf. 2.3). So С c {y I xRy}. Thus x is the R-smallest element of C, and this 
makes x unique. 

The properties of R and its relation to the topology of X is the subject of the 
following theorem. 

3.2. Theorem. For (X, Xo)eRAM and the relation R defined in section 1 the 
following holds: 

(a) R is a partial ordering on X and XQ is the R-smallest point of X. 
(b) If X, y e X are not R-comparable, then there is no common upper bound, i.e, 

non 3z e X such that xRz and yRz. 
(b') For all x e X {z E X \ zRx} is linearly ordered. 
(c) Vx G X 3x'G Z xJRx'. 
(d) If A c: X is linearly ordered, then either 

(i) A is well-ordered by R or 
(ii) there exist a„E A such that a„Rfl„+ j , n = 1,2,.. . and each set [a^, «2, . . •} 
with this property is R-cofinal in A. 

(e) For each X G X \ { X O } there exist infinitely many disjoint maximal linearly 
ordered subsets of {y \ xRy}. 

(f) For each x e X the set {y \ xRy} is open. 
(g) If A c: X is the right-saturation of a linearly ordered subset and XEX is an 

immediate predecessor, then A~ = A и [x]. 
(h) For each x E X the set {y | x non Ry} is connected. 
(i) For each XEX the components of X\{x} are at first the closed set {ye 

EX \ У non Ry} and furthermore all [infinitely many, open) right-saturations 
of maximal linearly ordered subsets of {y E X \ xRy}. 
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Before we prove 3.2 we first mention the following "converse": 

3.3. Theorem. Let X be any non-degenerate Ti-space, XQEX and suppose R is 
a relation on X, such that conditions (a), (b), (/) and (g) of 3.2 hold. Then (X, XQ) e 
€ RAM iffX is connected. 

Let, moreover, R satisfy (h) and let R' be the relation on X defined in section 1 
(and named R there). Then R = R'. Hence R also satisfies (c), (d), (e) and (i). 

Proof of 3.3. Suppose that XgeC cX and С is connected. We will show that for 
each xeX\C the set {y \ xRy} (which is open by 3.2(f)) does not meet C, thus 
proving that С = C~ and (X, XQ) e RAM. Suppose z e {j | xRy} n С Let A be 
a maximal linearly ordered subset of {y | xRy} containing z, and Л* its right-satura­
tion. Thus 

Л* = {J e X I 3z' e Z xRz'Rz and z'Ry} . 

Clearly X immediately i^-precedes Л*. Hence by (g) Л* is closed inZ\{x}.By(f)^* 
is also open. So С = {C\ Л*) 0 (C n Л*) and Xo e С \ Л^ while z e С n yl*, 
a contradiction. 

We have just shown that if xRy then x separates XQ from y. I.e. xRy => xR'y. If R 
satisfies 4.2(h), then we immediately obtain x non Ry => x nonif'j;, so R = R'. 

Proof of 3.2. For (a), (b) and (b') see 2.1. Note that (b) and (b') are equivalent. 
For (c) and (d) see 2.5. Property (e) follows from 2.6 and 2.2 if we note that the right-
saturations of disjoint maximal linearly ordered subsets of {y | xRy} are disjoint. 
In 2.3 we prove (f) and (h), and (g) follows from 2.4. Finally (i) is proved in 2.6. 

4. EXAMPLES 

4.1. First we will construct a countable Hausdorff space in RAM. The simplest 
ordered set {X, <) that satisfies the conditions (a) —(d) of theorem 3.2 can be de­
scribed as follows: 

X = u { N " | n e N } u { 0 } 

where N = {1, 2, 3,...}. The ordering is defined by 

(ni, ...,щ) < {n[, ...,п1') if k'> к and n̂  = nj for i = l, . . . , fc, 

and moreover 0 < (n^,..., n̂ ) for every sequence (wj,..., n^). 
If we take for X the weakest topology such that 3.2(f) and 3.2(g) are satisfied, then 

it is easy to check that {X, 0) e RAM. However X will not^be T2, so we have to nikke 
the topology finer (= larger). 
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For X e X we define: 

Г2 if X = 0 
length X = . 

|/c + 2 if X e N^ 

, , , Г0 if x e N u l O } 
1(^1, . . . , nfc_i) i f X = ( n i , . . . , Mfc) 

fO if X = 0 
max X = ^ 

(max(?Ti , . . . , П;̂ ) if X = («1, ..., n^) 

As a subbase for the topology we take all sets 

(i) {z I X ^ z} for each xeX 
(ii) {z I X $ z and z Ф Ф{^)} for each x e X 

(iii) {z I the only primes dividing length z are p^ , ..., p„} 
for any finite set of primes { p i , . . . , p„} . 

We will show that X is a Hausdorff-space, and (X, 0) e R A M in several steps 
(4.2-4.5). 

4.2. X is a Hausdorff-space. 

Proof. Let u,veX. We distinguish between 

(a) w < г; and even и < ф(v). 
(b) Neither и < v nor v < u. 
(c) M = ф(и). 

(a) In this case { j | t; $ j and у Ф ^(f)} and {z | i; ^ z} are disjoint neighborhoods 
of и and V, 

(b) Now {z I w ^ z} and {z | i; ^ z} are disjoint neighborhoods of и and v. 

(c) Let {pi, ..., p„} be the set of all primes dividing length u, and {q^^, ..., ^^} 
the same for v. Because length v = (length м) + 1 we find {p^, ..., jpj n 
n {^1,..., ^^} = 0 and so we can find disjoint neighborhoods for и and v in the 
subbase of type (iii). 

4.3. Any connected С a X that contains 0 is closed. 

Proof. IÏ ueX\C then it is easy to see that С r\{y\u -^ y] = 0 {cï the proof 
of 3.3 or apply 3.3, using 4.4 and 4.5). 

4.4. For each ueX the points и and ф(и) have no disjoint closed neighborhoods. 
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Proof. Let и = (ö l , . . . , a^). For each xeX, and each finite family {xi , . . . , y^„] 
such that Xf $ X and x Ф ф{x^) (i = 1, . . . , n) we define the following neigh­
borhood of x: 

^xi,...,xni^) = {^ \^ ^ z] n {z\ each prime dividing length z also divides length x} n 
n 

nO{z\xiS z^^àz =¥ ф{х,)] . 

It should be clear that if n, Xj , . . . , x„ vary we obtain a neighborhood basis for x. 
(We may even vary only over those X/ for which x < ф{х^). 

Now suppose î^xi,...,xn(^(^)) ^^^ ^д:п+1,...,д:ж(") ^^^ ^^^ arbitrary basic neighbor­
hoods of ф(и) and M. 

Put 
N = max {max x̂  | z = 1, . . . , m} + 1 

L = (length w). (length ф{и)) - 2 

V = ( a i , . . . , a ^ , i V , i V , . . . , i V ) e N ^ 

We will show that 
^ e ( l / . . . > ( « ) ) - n ( C 7 , „ , , . » ) - . 

Let ï̂ m + i,...(^) ^^ ^^ arbitrary neighborhood of v. Put 

N' = max (max x^ | z = 1, . . . , n , . . . , m, m + 1,...} + 1 . 

Let p, g be two primenumbers, such that p divides length ф(и) and q divides length w. 
Choose a prime r such that p'' > Land q^ > L. Then 

(a„ . . . , a , , iV , . . . , iV , N\ ..., iV') e {и,,_,1ф{и)) n l/,^,,,...(t^) 

L numbers 

and 

p"" numbers 

{a,,,.., a,,N,.,., N, N\ ..., N') e ( l / . , , , , . . . , . » ) n l / . ^ , , . » 

L numbers 

'̂̂  numbers 

4.5. X is connected. 

Proof. Suppose X = A @ B,Oe A and у e В has minimal length. Then ф(у) e Ay 
contradictory to 4.4. 

This completes the construction of the Hausdorflf example. The following constrjxc-
tions are of a different kind, as they start of with any X e RAM, modifying this in 
order to obtain certain properties. 
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4.6. For each (X, XQ) e RAM there exists a X' с X, such that {X\ XQ) e RAM 
and X' \ [XQ] is connected. 

Proof. Let X' be the union of {XQ} and any component С of X \ {XQ}. Obviously 
we only have to show that X' is connected, i.e. Xo e C" in X. Now X \ С is connected 
(by 1.2), contains XQ and hence is closed. As X is connected С cannot be also closed 
in X, so C~ = С и {XQ}. 

4,1» There exists a (Z, XQ) eRAM such that XQ has arbitrarily small connected 
(but not open) neighborhoods. 

Proof. Choose (У, Уо) e RAM and у e Y\ {уо} arbitrarily. Let y' be the immediate 
predecessor of y, and put Z = {z E 7 | fRz}. By 2.3 (Z, y') e RAM. Now let X' = 
= Z X {1, 2, 3,...} be the countable topological sum of disjoint copies of Z. We 
define an equivalence relation ^ on X' by identifying (y\ n) ^ (y,n + 1). We 
define X as the thus obtained quotient space union one point, XQ, "at infinity": 

X = ( Z ' / ^ ) u {xo} , 

where the /i*^ basic neighborhood of XQ is defined as XQ union all equivalence classes 
oîX'l^ that do not correspond to points (x, k) e X' with к less than n. 

It is easy to see that (X, XQ) satisfies the requirements. 
Generalizing the above proof, and applying it to the case where (Z, y') is the space 

described in 4.1 it is easy to prove the following. 

4.8. For every infinite ordinal a their exists an X e RAM which has a linearly 
ordered subset of R-ordertype a, but none of larger ordertype. 

5. RELATION TO ORDERABLE SPACES, 
GENERALIZATION AND MAIN CONJECTURE 

Definitions. We say that a space X is weakly linear у orderable if there exists 
a linear order < on X, of which the order topology is weaker than the given topology 
of X. In the special case that both topologies coincide we say that X is (strictly) 
linearly orderable. 

A connected space is said to have property H (cf. [2]) or property V^ (cf. [1]) 
respectively if every connected subset has at most two, respectively at most one 
non-cutpoint. Here peX is cutpoint of Z if X \ { p } is not connected. 

It is easy to prove that a connected weakly linearly orderable space is strictly 
linearly orderable iff it is locally connected. In [2] the following theorem can be 
found: 

Ä connected T2-space X is weakly linearly orderable iff it satisfies H and for 
each peX X\{p} has at most two components. 
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It was asked, [2] p. 270, whether property H alone is equivalent to weak linear 
orderability. Now it is easily seen from properties 3.1g and 3.1a that each X e RAM 
satisfies H (and even V^), whilst no X G RAM is weakly linearly orderable. 

In [1] the above results have been extended and generalized to the class of V^-
spaces. This class is closely related to RAM, as can be seen from the following 
characterization ([1], prop. 8, p. 8): 

A non-degenerate space Y is a Vi-space iff for some (X, XQ) G RAM either X = Y 
or Y = X\[XQ] and this set is connected. 

Our main conjecture is that no Z e RAM can be completely regular. We conjecture 
even that each continuous real-valued function on Z e RAM is constant. 
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