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1. INTRODUCTION

Mixed problems for hyperbolic equations have been investigated by many authors.
Various linear and some non-linear problems for hyperbolic equations or systems
of equations of an arbitrary order were discussed for two independent variables
(e.g- [1], [2], [3] [13]). In this case more detailed results can be reached by means
of the method of characteristics. If we consider the case of more independent variables,
then a similar situation when we can consider equations of arbitrary order (including
systems of the first order), occurs only in the case of the Cauchy problem (e.g. [10] —
in this work we can find some results for semilinear equations). In the case of the
linear mixed problem some results for systems of the first order ([8]) or for equations
of higher order ([11], [14], [15], [16]) were published, but a more detailed study
was done in the case of one equation of second order with the Dirichlet or Neumann
boundary conditions (e.g. [4], [5], [6], [7]. [9]. [11])-

The mixed problem of the Dirichlet type for one equation of the second order is
considered also in the present work.

Let Q be a bounded domainin R*, 0 < T < + o0, and let Lbe a linear differential
operator on Q = Q x (0, T) of the following form:
32
(1.1) L= P + ay(x, t; D)—é— + a,(x, t; D)

where x € Q, 1 (0, T),

(1.2) ay(x,t; D) = Y hy(x, 1) 56_ + ¢y(x, 1),
=1 X;

(1) a0 == % (e d; )+2b(x,r>—+cz(x ).

ij=10
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We shall suppose that the coefficients h; (i = 1, .. n) are real valued functions, and
a,(x, t; D) is an elliptic operator satisfying

(1.4) cay(x ) =a;(x,1), Lj=1..,n, (xf)ed
(1.5) 36 >0VzeC"V(x,f)e Q : z 1a,.j(x, 1) z;Z; 2 6z|*.
i,j=

For this operator we shall consider the following problem: to find a function u
satisfying (in a generalized sense which will be described later) the equation

(1.6) Lu=f<x,t,u,‘l“ o 6u>’

ot ox,  ox,

the initial conditions
ou
(1.7) u(x, 0) = ug(x), -(?(x, 0) = uy(x), xeQ
t

and the boundary condition
(1.8) u(x, ) = g(x, 1), (x, t)eoQ x (0, T)

(69 denotes the boundary of the domain Q), where f, ug, Uy, g are given functions.

In Theorem 5.1 we shall establish the existence of a unique local solution of this
problem, and then in Theorem 5.4, under the assumption of an apriori estimate,
the existence of a unique global solution on the whole domain Q. The regularity of
these solutions is also included in our results and in §6 some sufficient conditions
for the existence of apriori estimates are given.

This paper was inspired by S. Mizohata’s work [10] and generalizes his results in
the semilinear case from the Cauchy to the mixed problem. The results obtained can
be also considered as a generalization from the linear to the semilinear case of some
results of S. MizoHATA [11] and M. IKAWA [4] concerning the mixed problem. In
the examples 1, 2 from §6 we shall show that the results of J. SAtuEr [17], [18]
are included as a particular case.

2. NOTATIONS

Euclidean n-dimensional space is denoted by R", C denotes the open Gauss
complex plane.

Lebesgue spaces L,(V) on a domain ¥ = R" are defined in the usual way; for
1 = p < oo and an integer k = 0 we denote by W (V) the Sobolev space of all
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functions defined on ¥ which have generalized derivatives up to the order k belonging
to L,(V). W¥ is a Banach space with the norm

[, = <‘”\ZékL|D: u(x)’ dx)l/p

For p = 2t is a Hilbert space with the scalar product

(w,v)e = Y f D' u(x) D’ v(x) dx
lilsk Jy
and we shall denote the norm of u € Wi(V) briefly by |ul,.
Spaces C®(V), C®"X(V), C(V) are introduced as usual, the space *WO(V) is
defined as the closure of the set C(V) in WO(V).

We shall use the definition of smoothness of a domain ¥ = R" (notation Ve C**)
from [12]. (Roughly speaking it means that there exists a finite system of functions
of the class C** describing the boundary oV of the domain V.

We shall often use the following well known

Gronwall lemma. Let f, g be two non-negative functions defined on the interval
0, a), a > 0, fe L(0, a), g non-decreasing, and let

)= c j 'J(5)ds + gf) Veeo,ay. .

Then
(1) < €“g(r) Vte <0, a).
For absolutely continuous functions this lemma can be written in the following

form:

Lemma. Let f be an absolutely continuous function on <0, a), a > 0 and let
g € L,(0, a) be a non-negative function. Let

f()) = Cf(t) + g(t) ae in <0,a).
Then

/()

IA

¢ (f(0) + jtg(s) ds Vte<0,a).
0

For 0 =V x (0, T) (¥ = R" a bounded domain) let C*™)(Q) be the space of all
functions f € C(Q) such that f has all derivatives of the type (67/01°) D;f,0 < p < m,
|i| = k, belonging to C(Q).

Let B be a Banach space with the norm |+||5, 0 < T < o0, k = 0 an integer. The
space C(")(O, T; B) is defined as the space of all functions defined on the interval
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0, T with their values in the space B which are k-times continuously differentiable
in the norm |+||; - C®(0, T; B) is the Banach space with the norm

max sup [[u()|p.
i=0,...,k 1e(0,T)

.

For the later use we shall introduce following formal notation:
let ¥V = R” be a domain, k = 0 an integer. We shall say that a function u belongs
to the space C(0, T: HXV)), if

k
ue COO, T, Wk~ 2(v)).
i=0

For u e C(0, T; HV)), t € {0, T) we define

u@llle = lu@l + [w@lle-s + - + [u@D]o -
For k = 1 we denote
C(0, T; °H¥(V)) = {u € C(0, T; HX(V)); u(t) € "W (V), 10, T)} .
It is easily seen that this definition of C(0, T; °H*(V)) is equivalent with the conditions
ueCO, T; H(V)); u®(t)e° W (V), te<0, Ty, i=0,1,...k—1.

The spaces C(0, T; H{V)) and C(0, T; °HX(V)) are evidently Banach spaces with
the norm sup |||u(t)|||k
te¢0,T>

Finally, let us formally denote

C(0, T; HYV)) = {u e C(0, T; HY(V)); u’ e C(0, T; H(V))} .

3. LINEAR PROBLEM

We shall solve the semilinear problem (briefly formulated in §1) by means of suc-
cesive approximations. The solvabity of the mixed problem in the linear case plays
here a basic role.

In this case we must find a solution of the linear equation
(3.1) Lu(x, t) = f(x, 1)

on Q =Q x (0, T), Qc R" is a bounded domain, 0 < T < oo (Lis the linear dif-
ferential operator introduced in §1 by relations (1.1)—(1.5)) satisfying the initial
conditions )

(3-2) u(x,0) = uy(x), u'(x,0)=uy(x) for xeQ
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and the Dirichlet boundary condition
(3.3) u(x, 1) = g(x,1) for (x,t)eaQx(0,T).

The classical solution of this problem is a function u e C?)(Q) satisfying the
equations (3.1)—(3.3) in the usual sense.

We shall find a generalized solution, more precisely a function u € C(0, T; H*(Q))
such that (3.1) holds a.e. in @, and (3.2) holds a.e. in Q. The equation (3.3) is now
taken in the sense of traces (which is correct — by the assumption, u(t) e W5(Q))
and because a smooth function defined on 922 can be extended on the whole domain Q
(see e.g. [12]), we shall assume the function g to be defined apriori on the whole
domain Q and to be of the same class as the function u. The boundary condition (3.3)
can be then written in the form

(3.4) u — ge C(0, T, "H*(Q)) .

Agreement. For the sake of brevity of notation we shall omit letter Q in the Sobolev
spaces and write only Wi® instead of W ¥(Q), C(0, T; H*) instead of C(0, T; H(Q));
full notation will be used only for other spaces as e.g. L,(Q), C*(Q).

If ue C(0, T; HY), k = 2, is a generalized solution of our problem, we have fe
€ C(0, T; H*"2), ug € W», u; e Wi*~ from the equations (3.1),(3.2), and by agree-
ment g € C(O, T; H"). From the definition of the generalized solution it further follows
that the following necessary conditions for the existence of a generalized solution
u € C(0, T; H*) must hold:

3.5 u®0) — g0y e° W, i=0,1,...k—1.
(3:9) 5

Differentiating with respect to ¢ the equation (3.1) we obtain

i-2

(69 w0 =N -3 ( 2> (a$i=2"(x, 0; D) ul*1Y(0) +
J
+ a$727(x,0; D) u0)), i=23,...,k—1

where we use the notation

(3.7) a¥(x, t; D) = Z h(’)(x t) + c(lj;(x, 1,

@i D) = = 3 - <a(’)(x, 0 )+leb‘pj)(x, )L+ ).
- - P

Now we see that u?(0), i = 2, 3,..., k — 1 can be successively expressed from the
relations (3.6) by means of the given functions u,, u;, f and their derivatives, hence the
condition (3.5) contains only known functions. The necessary conditions (3.5) for the
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existence of a generalized solution of the class C(0, T; H*):(k = 2) will be called the
compatibility conditions of order k.

Similar mixed linear problems have been solved in various papers, e.g. [4]—[7],
[11]. By the same method as in [4] (by means of the theory of analytic semigroups)
we can prove the following existence theorem for the linear problem:

Theorem 3.1. Let k = 2 be an integer and let the following assumptions hold:

Qe C(k+ 1),1 , aij € C(l,l) (Q) A C(k—l)(Q) s hi e C(maxl,k—Z)(Q) s

b, c,e COQ)n C*(Q), i,j=1,...n, p=12.

fec(0, T; H=?) n c* V0, T; Ly),
Uy € Wz(k) , u € Wék_l) , «g c C(l)(o s T; Hk) ,

be such functions that the compatibility conditions (3.5) of order k hold.

Then there exists a generalized solution u e C(0, T; HY) of the problem (3.1),
(3.2), (3.4) satisfying the energy inequality

69 Il s o) (ol + Lo + IO +

#Ol-a + [ Mo @lleas + [ o)y as).

Moreover, the solution of this problem is unique.

4. COMPOSITE FUNCTIONS AND EXTENSIONS OF INITIAL VALUES

Since we want to solve the semilinear equation (1.6), we shall state here first of all
some propositions about composite functions of the required type. These propositions
are of a form similar to that in [10], Chap. V, but the proofs are a bit different and
we shall give them at least in a brief form.

We admit also complex-valued solutions of the equation (1.6), therefore we must
take account of functions of the type f(x, t, v) defined for xe @ = R", €0, T),
ve C™ Such a function f of n + 1 + m variables can be interpreted in the usual
way as a function f of n + 1 + 2m real variables (f(x, t, v) = f(x, t, Re v, Im v)).
We shall say that a function f of the mentioned type is of the class C*4(Q x €™)
if fe C®(Q x R*™)and D*(x, t, .) is the A-Holder locally continuous function of 2m
real variables vy, ..., U,,, for each (x, )eQ, lal = k.
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For partial derivatives of f with respect to the complex variable we shall use the
evident notation 9f/0 Rev, df/0 Im v, df[ov = (0f/0 Re v; 9f[6 Im v). Then if fe
e C(C), u e CV(RY), the function F(x) = f(u(x)) is of the class CY(R") and

!’ df ’ ! ’ ’ ‘
F'(x) = a(u(x)) '(x) (u'(x) = (Rew'(x); Imul(x)). .
Let us formulate one lemma which will be used later:

Lemma 4.1. Let Q < R” be a bounded domain of the class C®' and u;e
e CW(0, T; Wi2I*N=k)) i = 1,...,q, where N2 1, k20, 0<k; < [nf2] +
+ N — 1 are integers. Suppose that the n-indices v; (i =1, ..., q) are such that

Iv[ <[n2]+N -k —1 andZIv[ < [n/2] + N — Yk;. Then
Duy . Du, ..... D" e C®(0, T; L,)

and there exists a constant C > 0 independent of u;, t such that

D™ uy(t) . D= us(t) ... D™ u(1)]o < Cili_ll i)z m—s -

This lemma can be proved by means of imbedding theorems in the Sobolev spaces.
For function fe C*®(Q x C™) and b = 0 let us denote ‘

(4'1) M(b) = max sup sup ]D"f(x,-t, Dy een v’")l .
lal sk (x,0)eQ |vi|<b

Theorem 4.2. Let fe C*(Q x C™), where Q = Q x (0, T), @ = R" is a bounded
domain of the class C©', k > [n[2] + 1, and let functions u;e C(0, T; H) i =
=1, ..., m, satisfy the esnmate i
(S !
[ufx, )] £ b, (x,)eQ, i=12...,m :

for a constant b = 0. If we set
F(x, 1) = f(x, £, us(x, 1), ., un(x, 1))
then: ’
(i) Fe C(0, T; HY);

(i) the generalized derivatives of the function F may be evaluated formally as
derivatives of a composite function;

(iii) there exists a constant C > 0 independent of f, X, t,uy, ..., U, such that for
each t € 0, T) the estimate :

«2) F@I = ¢ M) (1 + £ ladol

holds.

aa
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Proof. Let us denote u(x, 1) = (uy(x, ), ..., u,(x, t)).

1. Let t € €0, T) and let us prove F(., ) € W¥: We have u(., f)e L,, du,/0x, € L,,
therefore u., t) are absolutely continuous on almost each parallel with the axis x,
and (if [9[ox,] denotes the derivative in the classical sense) du;[0x, = [0u;[0x,] a.e.
in Q (see e.g. [12]).

According to our assumptions, for each (x, f)e § we have |F(x, t)] < M(b) and
therefore F(., t) € L,.

From the above mentioned facts and the assumptions of the theorem we immedi-
ately get: F(., t) is absolutely continuous on almost each parallel with the axis x, and
and [0F[0x,] (., t) € L,, therefore 0F[0x, = [0F[dx,] and consequently F(., 1) e W5
(and the item (i) from our theorem holds).

This process can be repeated up to order k, except that we must use Lemma 4.1 to
prove that [DIF] (., t) € Ly, |o > 1.

Finally, we obtain F(., t) e W* and from the expression for the derivatives of F
we obtain (again using Lemma 4.1) the estimate

IF@l = €. M(b)(l+leu(t)||

2. F has the generalized derivative with respect to ¢: The proof is analogous as in
the item 1, because if u e C)(0, T; L,), then u has the generalized derivative 6u/¢3t €

e Ly(Q).

3. %E(.,t)EWz("'” for te(0,T):
t
We have
[‘ZF]( t)—-—f(xtu(x,t))+z f(x,tu(x,t)) (x,f) forae. xeQ.

Applying to this expression the same method as in the item 1 we obtain the required
proposition.

4. In this way we obtain successively: there exists (0°F[t)) (., ) e W5* P, i =
= 0,1, ..., k and for each t e <0, T) the inequality (4.2) holds.

5. Contmulty and differentiability of F in the required norms can be proved by

writting the derivatives of F as derivatives of a composite function with the help of
Lemma 4.1.

Theorem 4.3. Let Q, Q, k satisfy the assumptions of Theorem 4.2, let f e C®"4(Q x
x €C™), A€(0, 1) and let functlons u; e C(Q, T HY, i=1,...,m, j=1,2 satisfy
the inequality ‘
ma Ol < &
slsJ
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for some constant b = 0. If we set

Fix,0) = f(x, t,uy j(x, 1), .oy umf(x,0), j=1,2,
then F;e C(0, T; H*) and there exists a constant K(b) = 0 independent of u;, t
stch that for each t € 0, T) we have

(43) [Fi() = Follle < K(®)- max 3 [[a() = sl

Proof. Since k = [n/2] + 1, the Sobolev imbedding theorem implies that there
exists a constant S > 0 such that

max [u;(x, 1) £ S. max |||u(0)||[s < Sb, (x,9)eQ
4.J Li

and hence Theorem 4.2 yields F; e c(, T; H"). According to this theorem we also
obtain an explicit expression for the derivatives of F; and the estimate (4.3) can be
derived by direct computation with the help of Lemma 4.1.

From Theorems 4.2, 4.3 it immediately follows

Theorem 4.4. Let Q, Q, k satisfy the assumptions of Theorem 4.2, let fe C®¥(Q x
x C"*2) and let functions u; e C(0, T; H**'), i = 1, 2 satisfy the inequality

max lu®llesr =

for a-constant b = 0. If we set

F,~(x,t)=f(x,t,ui(x,t), wix, i), ien, M), i=1,2,
0x, ox,
then

(i) F;eC(0, T; HY), i =1,2;
(ii) the generalized derivatives of the functions F; may be evaluated formally as
derivatives of a composite function;

(iii) there exists a constant C > 0 independent of f, X, t,u; such that for each
1€ 0, T) the estimates

(4.4) IF |l = €. M(SB) (1 + [|lui[fe+1)» i=1,2
hold; '

(iv) moreover, if fe C®4Q x C"*?) for 1€(0,1), then there exists a constant
K(b) > 0 independent of t, u; such that for each t € {0, T) we have

(4.5) [IIE(r) = F1)][] < K(b) -ﬁi’.‘l(m"l(') = uy(0)||[f+1) -
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We shall solve the semilinear problem by means of successive approximations.
Taking into account the compatibility conditions, we shall have to make a suitable
choice of the initial approximation. To this purpose we shall use the following

Theorem 4.5. Let @ = R” be a bounded domain of the class C, let k = 1 be
an integer, T> 0 and let u;e W9, i=0,1,...,k — 1.
Then there exists a function U € C(0, T; H*) such that

UD0) = u; for i=01,... k1

and i
OO < €1 % -

where C; < 0 is a constant independent of u;.
This theorem can be proved analoggﬁﬁély as in [19], Chap. III and therefor\é we

omit the proof.

e

5. SEMILINEAR PROBLEM

In the present paragraph we shall solve the semilinear problem indicated in §1.

Let Lbe a linear hyperbolic differential operator given by relations (1.1)—(1.5) on

a domain Q = Q x (0, T), where Q is a bounded domain in R, 0 < T < c0. Given

functions uy(x), u,(x), g(x, ), h(x, 1) and a sufficiently smooth function f(x, t, v, ...

. U3 4p) (defined on @ x C**") we want to find a function u e C(O T;H", k22
such that

u(0) = uo, u'(0)=u,
(5.1) u — ge C(0, T; °HY)
Lu(x, 1) = 1(x, tu(x, £ w/(x, 8), 2% (e, 1), o0y 2% (x, 1) + h(x, ).
3x1 axn

Naturally, the compatibility conditions must hold also for the semilinear problem
(5.1), i.e., the relations

(5.2) u®(0) — g(0)e° WV, i=0,1,...k—1
must be satisfied. If we denote

F(x,t)=f (x, tu(x, 1), u(x1), Eal(x, 1), ),
Y X, M
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we obtain from the equation (5.1):

(5.3) wO(0) = FO=2(0) + h-2(0) = ¥ (" - 2). | -

o\ j
(@727 9(x, 0; D) uYr1(0) + a(zi_z_j)(x, 0; D) u(0))

fori=2,3,...,k — 1. But (if f is sufficiently smooth) according to Theorem 4.4 we
have the expression

(54)  FU=2(x, 0) = 4= (x 0, ug(x) , uy(x) . 610 (x),...,%(x)) +

1 n

+ ;Can,,,f(x, 0, ug(x), ...) . S,(x)

for the derivatives of F. Here S,(x) are products containing derivatives of the functions
u,u', au/axi with respect to ¢ of order at most i — 2, i.e. derivatives of the functions
u(0), u'(0), ..., u*~1(0) with respect to x;. Therefore (as well as in the linear case)
we can successively express u’(0) by means of u,, uy, f, h and, consequently, the
compatibility conditions (5.2) contain only known functions.

We shall suppose that for the coefficients of the operator Land for the domain Q
the assumptions of Theorem 3.1 hold for an integer k = [n/2] + 2. Further, let

uye W u, eW“‘ D, feC*D4Q x C2), 2e(0,1),
heC(0, T; H*2) n C* (0, T; L,), ge CY(0, T; HY)

be such functions that the compatibility conditions (5.2) hold ;
As we said, the solution of the problem (5.1) will be found by means of successive
approximations. First of all, according to Theorem 4.5 there exists a function

vo € C(0, T; H) such that
(5:5) vP(0) = u®(0), i=0,1,..,k—1

(where uY(0) are the known functions from (5.3)).
Put

i

Fo(x, 1) = f (x, ool 1), vh(x, 1), g’a (x, 1), ) .
Xy

From Theorem 4.4 it follows that F, € C(0, T; H*~'), and if we express the derivatives

of F, analogously as in (5.4) we see (taking into account (5.5)) that for ug, uy, g,
Fo + hthe “linear” compatibility conditions of order k hold. Consequently, Theorem
3.1 implies the existence of a function v, € C(0, T; H*) such that .

1 —9geC(0, T;°HY), v,(0) =uo, vi(0) =u,, Lu,(t) = Fot) + h(t).
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Put F(x, f) = f(x, t, vy(x, t), vi(x, t), ...). It is easily seen that for uo, u1, g, Fy + h
the “linear” compatibility conditions hold again and we can repeat the above rea-
soning.

Step by step we construct a sequence {v,}o>, = C(0, T; H*) such that

(5.6) . v,(0) = uo, v 0) =u,, v,— geC(0,T;°H),
Lo t) = Fu_y(t) + h(t), q=1,2,3,...

Here we use the notation .
(5.7) F(x, 1) = f(x, £ o, 1), vl(x, i), gﬁ (x, 1) ) .
. 0xy

Now we shall prove that there exists a constant B > 0 and 4 € (0, T) such that
(5.8) lledlllk < B. te<0,4y, q=0,1,...

Let us denote ‘
(5.9) B = sup |[[oo(®)[|« »

<0,T> .

(5-10) ¥ = luolle + Juslle-1 + lllg@|lle + 2[[[FLO)]|lk-> +

T T
+ j g’k ds + 2 sup [ -z + j [~ 9(5)]o ds .
0 {0,T) 0

Since |||F,(0)|||x-» does not depend on g = 0, 1, ... our definition of y is correet.
Now for F, e C(0, T; H*~') we can write

Il = 1E@ls + [ 1o 0
therefore the energy inequality (3.8) implies ‘
(s11) el = € 7+ [ FcOll-r ) -
Put )
(5.12) i - B=CT)B+y+1).

Evidently ”Ivo(t)mk < B for t€<0, T) and then we have from Theorem 4.4 for
5€0, T)

FoMlls 5 €. M(SB) (1 + [l < €. M(5B) . (1 + BY).
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Hence we obtain from (5.11) for ¢ € <0, 4) where 4 € (0, T,

umwmécayo+£Ma@mqm)é

C(T).(y + A(C. M(SB) (1 + BY))).
If we put

(5.13) 4 =min (T ! )

"C.(1 + M(SB)). (1 + B

we have |||v()|||« £ C(T).(y + 1) < B. Now we can prove by induction that for
our B, 4 (5.8) holds.

Further we shall show that {v,} is a Cauchy sequence in C(0, 4; H"):
From (5.6) we have

(rrs = 0 0) = 0 (opes = 0 () = 0, ty0s — 0, C(0, 4,
L(Uq+1 - vq)(t) = Fq(t) - Fq-l(t)’ q9=12,..

Consequently, it follows from the energy inequality (3.8)

g = 20l = €0 [ 1P46) = Fyes@ll-r 0 a =12,
Since (5.8) holds, we have from Theorem 4.4
IE45) = Furs@lhes 5 KB mas o9 ~ o1
forq =1,2,..., se {0, 4) (K(B) does not depend on g, s). Consequently

lllea+1(t) = v (Olllk < C(T) K(B)j. mi"lm”a(s) = vg-1(s)]|[i ds
0 k=4,
forq=1,2,...,te0, 4).

Now, since the constant C from Theorem 4.4 can be taken =1, we have 4 < 1 and
if we denote

4 = max (1, (T)K(B)), @ = max (g;g)lllvl(S) = vo(s)|[lé 1)

we obtain:
llloa(9) = 0u(D)][[x < aat,
1) = o0l = o [ (@ + ats) s = aa? (4 )05 5
<a. 2(,)42:“1(1 F 1)t < @24 4 1),
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Let us introduce 4, ¢ = 0, 1, 2, ... by relations
do=15 A=A, =2,y =2

(evidently A =4, < 1, £ ... = 1).
Now we prove by induction

(5'14) “I”qﬂ(t) -0 (t)”lk <a. 2q—1Aqt((q—1)3)lq'z+1 qﬁl((pl);"’_' + l)“) !

for ¢ = 2,3,4,... For g = 2 (5.14) holds, and if we suppose that (5.14) holds for
some q > 2, we have

4
[llog+2(t) = vg (D]l = 4 _Zl 1”|"q+1(s) — o s)|[[kds <
o r=2,
<a. iw“:“““”"l“*"1“[(((4'— 1) 2)h=2 + 1)} + 1771

LT + 01 <

PANNEN

IIA

Aa-1 a-1
a. 2048 (ga)rem 4+ )T (T (pA)- + 1)
p=1
because '
(@=1D) N2+ 12((g— 1))+ 222 = (qa)*e2.
Further ‘
(q/l)‘v T+12 ((ql)" ' 1)1

and lmmedlately we see that (5.14) holds for g + 1.
From (5.14) it follows (t <4 < 1):

Meas () = w@lll = a. 207 IA"H((M)“’ T )=

for ¢ = 2,3,..., and from this relation it is seen that {v,} is a Cauchy sequenbe in
C(0, 4; HY), because Z a, is a convergent series (we have 11m A =1). ’

Therefore there ex1sts u € C(0, 4; H*) such that u = 11m v, in C(0, 4; H") From
(5.6) it follows

u — geC(0, 4; °H"), u(0) = uy, w'(0) =u,

and

(5.15) @)l £ B for te<0, 4).

X

Further Lv, - Lu in C(0, 4; W§*~?) when g — o0, because Lis a continuous operator
from C(0, 4; H¥) to C(0, 4; W5*~?).
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From (5.8), (5.15) and Theorem 4.4 applied to the function

R =f <x, bu(x, i) w(x, 1) a%“l(x, Do a%“ (x, z))
we have
IF() = Foer(D)]i-2 = K(B)”“:’ixl [llu(8) = vg—o(D|[[¥-+

and consequently F(f) = lim F(f) in W{*"® and u is the required solution of our
problem (5.1) on the interval <0, 4). Hence we completed the proof of the following

Theorem 5.1 — local existence. Let the coefficients of the operator L (defined
by (1.1)—(1.5)) and the domain Q < R" satisfy the assumptions of Theorem 3.1 for
an integer k = [n[2] + 2. Let

uge W, u e WY, hec(0, T, H2) n C*1(0, T; L,),
geCO0, T HY), feCt DA x C*?), 0<i=<l
be such functions that the compatibility conditions (5.2) hold.

Then there exists A € (0, T) such that the mixed semilinear problem (5.1) has on
0, 4) a unique solution u e C(0, 4; H*).

Uniqueness follows from the following more general
Theorem 5.2 — uniqueness. Let the assumptions of Theorem 5.1 hold. Then the

mixed semilinear problem (5.1) has at most one solution on an arbitrary interval
0, ) =<0, T).
Proof. If u,ve C(0, t; H) are two solutions of (5.1), we put w =u — v, b =

= sup (||[u(s)|[|x + ||[o(s)]||x)- Then from the energy inequality and from Theorem 4.4
<0,t)

we have .
Il = Cr) K) [ max [z o

0 B=4,
From this inequality we obtain analogously as in the proof of convergence of
successive approximations [||w(s)|||c = 0, i.e. u = .

Now we shall consider the question of the existence of a global solution on the
whole interval {0, T). First we shall introduce an apriori estimate:

Definition 5.3. Let L, Q, uy, uy, h, g, f, k satisfy the dssumptions of Theorem 5.1.
We shall say that the apriori estimate for the semilinear mixed problem (5.1) holds, if

3C, 2 0Vte (0, Ty :ue C(0, t; H*) is a solution of (5.1) =
= |[[u(s)|[le = Ca Vse <0, 1) .
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Further we shall suppose that the apriori estimate holds.
A global solution will be found by continuing the known local solution on (0, 4)

by means of Theorem 5.1.
Using this theorem one can find a local solution on the interval <0, 4, where 4

is given by the relation (5.13). For the constant y from (5.10) we have the estimate
v < sup [[u(®)]llk + [[lg(O)l[l« + 2C . M(S . sup [[[u(®)[[}s) -
<0,4) <0, 43

(1 + sup [[[u(@)]|[) +
0.8
<

¥ j :ang'(s)mk + R o) ds + 2. sup [ -

S Cyu+ C.M(SC,). (14 CY) + |[lgO)|[|x + --- + = 70

because the apriori estimate holds. The constant y, does not depend on u, t

For the initial approximation v, we have from Theorem 4.5
k=1
B =<50“]1?>m”0(‘)|”k = (1) Zollu(i)(o)“k-i SCT)Cp=po-

Therefore we have an estimate for the constant B defined by (5.12):

B < C(T)(Bo + 70 + 1) = B,

where B, does not depend on u, t.

Then (5.13) implies
1 Ao .

C(1 + M(SBy)) (1 + BY)
Now if we have a solution u on some interval <0, 1) = <0, T, then according to
Theorem 5.1 there exists 4(f) > 0 and ve C(¢, t + A(f); H*) such that

4

v

o(t) = u(t), v({)=u(), v—geC(tt+ A); °HY),

Lo(s) = f(x, s, v(x,s), v'(x,5),...) + h(x,s) for se<t,t+ At))

(in fact, we can use Theorem 5.1 because the compatibility conditions at the point ¢
are automatically satisfied as a necessary conditions for the existence of the solution

of the problem (5.1) on the interval <0, ).
But for 4() we have the expression

. . 1
40 = min (T R T B

where B(f) is given in the same way as B from (5.12).
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As the function
w(s) = u(s) for se<0,1)
No(s) for seltt+ A(f)

is apparently a solution of (5.1) on (0, t + 4(1)), it follows again from the apriori
estimate that A(f) 2 4.

Thus we have established the existence of a solution (¢) of (5.1) on (4, 24,) and
the function
u(t) for 1e<0, 4,

U(t) = \U(t) for te <Ao, 2A0>

is the solution of (5.1) on <0, 24,>. We can continue the described process, and
because 4(t) = 4, for each ¢, after a finite number of steps we obtain a solution on the
whole interval {0, T). So we have

Theorem 5.4 — global existence. Let the assumptions of Theorem 5.1 be satisfied
and let, moreover, the apriori estimate holds. Then there exists a unique solution
u e C(0, T; H*) of the semilinear mixed problem (5.1) on the whole interval <0, T).

Remark 5.5. In the special case when our non-linear term f has the simpler form
f = f(x, t, u), Theorems 5.1—5:4 hold also for k = [n[2] + 1.

6. APRIORI ESTIMATE

In the present paragraph we shall prove some sufficient conditions on the non-
linear term f which establish that the apriori estimate holds (and consequently there
exists a global solution).

The apriori estimate was introduced in Definition 5.3. In this definition we ought
to have spoken more precisely about ‘the apriori estimate of order k” — according
to the norm for which the estimate is required. Therefore we shall prove first that it
is enough to obtain “the apriori estimate of order [n/2] + 27:

Theorem 6.1. The apriori estimate for the problem (5.1) holds if and only if
(6.1) 3C, > 0 Vte (0, Ty :ue C(0, t; H*) is a solution of (5.1) =
= s Mllrar+2 = Ca Vs € <0, 2>

Remark 6.2. We can see, analogously as in Remark 5.5 that for the simpler equation
Lu(t) = f(x, t, u(x, 1)) it is enough to verify the apriori estimate for k = [n/2] + 1.

Proof of Theorem 6.1:
As ||[u(®)]|l- £ ||[u(?)]|]x for k" £ k, the first implication of Theorem is evident.
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Let (6.1) hold and let k > [n/2] + 2 be an integer. We have from (3.8) for the solu-
tion u of (5.1) on <0, )

62 lls en) (v + 1FOl-2 + [ Jrerloar)

where 7 is the constant from (5.10), F(x, t) = f(x, t, u(x, ?), ...). But from Theorem
4.4 it follows

63 lFOlles = €M s0p ko) 1+ D).

If we express F*™1)(r) as the derivative of a composite function (according to
Theorem 4.4), with help of Lemma 4.1 we get the estimate

(6.4) [FE2@)]o = €. M(S - sup [[[u(@)]|l-1) -
(1 + (sup [[[u)[=3) (1 + ([}

Substituting (6.4) and (6.3) into (6.2) and using the Gronwall Lemma we see that
[[|u(s)|||x can be estimated by means of |||u(s)|||x-,- Now we prove our assertion by
repeating this procedure.

Following two propositions are easy to see:

Theorem 6.3. Let n = 1 and let us suppose that there exists a constant C = 0 such
that

6.5) EJ; (6 6,2) = C+ Y2,
i=1
(6.6) "fﬁ (x1,2) <C, i=123
0z

for each (x,t,z)e Q x C>.

Then the apriori estimate for the problem (5.1) holds.

Proof. According to Theorem 6.1 it is enough to estimate |||u(t)|||,. From (3.8)
we have for the solution u:

67) ol = <r) (3 + [ 1o )
(7 is the constant from (5.10)). But

P/ NV AR L
ot 0z 0z, 0zy Ox
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therefore using (6.5), (6.6) we immediately see
[F )5 = et + [[[u@)ll2)

and our assertion follows from the Gronwall Lemma.

Theorem 6.4. Let Q, L, u,, uy, f, h satisfy the assumptions of Theorem 5.1 and
let f be bounded on Q x C"*? together with all derivatives up to order [n[2] + 1.
Then the apriori estimate for the problem (5.1) holds.

We shall omit the proof because it can be carried out by almost the same method
as the proofs of Theorems 6.1, 6.3.

Theorem 6.5. Let g = 0 and let Q, L, uq, uy, h, f(x, t, z) satisfy the assumptions
of Theorem 5.1. Let for ueC(0,t °H?) (te(0,T)) be

(6.8) Lu(s) = f(x, s, u(x, s)) + h(s), u(0) - Uy, u'(0)=u,.

Let there exist a real-valued function ®(x, t, z) defined on Q x C such that for
each (x,1,z)e Q x C,

0P 0P
6.9 x,t,z) = Ref(x,t,z), ——(x,t,z) =Imf(x, ¢ z2),
69) eI = Refland), (ot =Inf(o, )
(6.10) P(x,1,2) < Cp, Co>0
and either
(6.11a) O (1 2) £ CyCo — B(x,1,2)), Chp> 0
. at s by = P @ s by > [
or
(6.11b) l‘;ﬁ (x,1,2)| £ Co(1 + |2]?).
t

Then there exists a constant C; > 0 such that

(6.12) [u@s)|]]: £ €1 se<0,t)
and consequently the apriori in the case n = 1 holds.

Proof. If we put

B6) = Wi + % (a9 52 9 7 ),

i, j=1

then from the elipticity of a;; and from the equivalence of norms in °W2(1) (Friedrich’s
inequality) we have

(613) E(s) z Cllju(ll[3 -

i
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Further

(6.14) L) = 2Re (WO u(s)y +

. 0 0 ou’ ’
+Z[<a§j~u~,l> +<a u 5’1) + (a2, 2N
iJ ox; 0x;/o ax 0x;/o ox;  0x;),
The second term on the right hand side is

< Cllu@)lll = €. EGs).

The last two terms are
( u’ 6u) ( ou 6u’> (_ ' ou
= 4> 7)) =(G—> —]) +...=
Bx 6xj o Ox; 0x;/o 0x; 6xj>0

=2Re(a; ou N
6x- 0x;/o

J

As u'(s) € °WiP, the integration by parts yields

ou ou 0 ou ,
%o o)~ o) ).
x_,- Xi/o X; axl 0

cr) + 2R (i~ 5 2 (0 2), ) -

ox 5

(30 )0

— (cqu’s u')o — (cou, u')o + (hyu')o + (f(s, u(s)) u'),
C(E(s) + ||h(s)]|3) + 2 Re (f(s, u(s)), u "(5))o

because h; are real-valued functions and u’ € °Wi". Taking into account (6.9) we
have "

Therefore

dE
as (s)

IIA

lIA

Re (f, u')o =f(Ref Rew' + ImfImu’)dx =

d 0P
= - @ DY ’ d - - s 9, s .
” (x, s, u(x, s)) dx f Py (% s, u(x, 5)) dx

Finally we obtain

;—S[E(s) + f 2Ca = 0, 5. u(x, ) 4] = € <c +E(s) -2 f ‘22 ds> .

o 0§
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If (6.11a) holds, the right hand side is

§c<c+E(s)+zc;,f (C¢—¢)dx)§C<1+E(S)+f

2(Cp — @) dx> .
2
If (6.11b) holds, the right hand side is

< C(C + E(s) + Co(2 mes @ + 2|u(s)]3)) £ C(1 + E(s) + [|[u(s)]]|?) <

C(lL+E(s)) £C (1 + E(s) +J 2(Cy — @) dx)

Q

I\

because from (6.10) it follows Cg — @ = 0.
Using the Gronwall Lemma we obtain in both cases

E(s) +2f (Co — ®)dx < Cy, s5€40,8)

Q

and because C, — @ = 0, we have E(s) < C; for se (0, t). But then (6.13) implies
(6.12).

Remark 6.6. Theorem 6.5 can be modified also for some non-homogeneous
boundary conditions g =% 0. Then we must use a function E,(s) = E(s) + |u(s)]3,
because now (6.13) need not hold. Further we must somehow eliminate integrals
over the boundary 0Q, generally appearing in the integration by parts. These integrals
vanish, if e.g. g = g(x) does not depend on time #, because then u'(s) € °W;" for
each s € (0, t).

Theorem 6.7. Let Q, L, uy, uy, h, g, f(X, t, z) satisfy the assumptions of Theorem
5.1 and let u € C(0, t; H?) be such a solution of the problem (5.1) that (6.12) holds.
Suppose that the function f(x, t, z) satisfy further

(615) . ig(.\’, t, Z) =< Cf(l 4+ lz|“+1)

(6.16) lﬂff (x,1, 2)
0z

< C(1 + Iz]")

for each (x,t,z)e @ x C, where

2
n—2

a= for n>2, 0fa<ow for n<2,

C, = 0 is a constant.
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Then there exists a constant C, > 0 such that

(6.17) [luG)ll2 = €2, se<0, 1) |
and consequently the apriori estimate in the cases n = 2, n = 3 holds.

Proof. From the energy inequality we have again

69 kol s (o [ ek
Now |F'(x, r)|* < 2(|(ef]or) (x, r, u(x, r))|* + |ofoz|* [u'|?), therefore

©619) e s2([ [Ie [ 17

olor
Ji £ Cy(mes @ + lu(r)|2450)

) ,
| dx) =2Jy + Jy) .

From (6.15) it follows

but because u € Wi, the choice of a implies the imbedding Wi < L,,-), conse-
quently

(6.20) Jy < Clmes @ + [[u(r)|2¢*D) <
< C(mes @ + |||u(r)||[3€*V) < C(mes @ + CI“*Y)

because (6.12‘)vholds. Further, from (6.16) it follows

I sc, (jﬂ‘u’(x, A dx + j e P e dx)

By means of Holder inequality we obtain

g2 5 ¢ (10Ol + (] otsnpas) ™ ([ e o))

But an = 2n|(n — 2) and because u(r), u'(r) € Wi, the imbedding W = L;,/-2)
implies

(6.21) Jo £ ()]s + Ju@m]F™? Ju ()] <
< C(1 + YD) [[lu(r)]f3 -
Now from (6.18)—(6.21) it follows

@Il < C<1 ; Emu(r)mz dr>

and we obtain our assertion again by means of the Gronwall Lemma.
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Example 1. We shall consider the following mixed semilinear problem of the special
form:

(6.22) Lu(t) + o(x, t) u(t) Ju(t)]* = h(x,1), a>0,
u(0) = u,, u'(0)=u,, u—geC(0, T;°H?

on a domain Q = Q x (0, T), where @ = R" is a bounded domain of the class C*"!,
n=1230<T< .

Here Lis an operator defined by (1.1)—(1.5), its coefficients are assumed to fulfil
a;€eCYY(Q), h;eC'(Q), b;c,eC®NQ), i,j=1,..., n,g=12.
Let further '
uoe W, u,ews?, heC®0,T;L,), geC0,T; Hz).‘:

If ¢ = 0, then the problem (6.22) is linear and from Theorem 3.1 the existence of
a unique solution u € C(0, T; H?) follows, if only the compatibility conditions of
order 2

(6.23) ug € g(0) + WP n°wiV, u,eg'(0) + Wi

hold.

For ¢ = 1, g = 0 and the particular case of the operator L= [] = 9*/ot* — 4,
the problem (6.22) was solved in [17] by J. SATHER. There the existence and unique-
ness of a weak global solution was shown (even for higher dimensions).

Let us show that the existence of a global solution of more general problem (6.22)
follows from Theorem 5.3.

Since we consider only the case n < 3, the compatibility conditions of order
[n/2] + 1 < 2 are the same as in the linear case, i.e. (6.23). We must only show the
required smoothness of the non-linear term and the apriori estimate. Therefore we
shall consider the function

f(x,t,2) = —o(x, 1) zlz[“
defined on § x C which can be taken as a function
f(x, 1,05, 02) = —@(x, 1) (v + iv,) (67 + v3)*?

defined on Q x R2 For the existence of a local solution, Theorem 5.1 requires
fe CY4Q x C) for some 4 € (0, 1). If we suppose

(6.24) 9 e CV(D)
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then fe C(Q x C) because

2
(6.25) i = ﬁ = —<p(x, t) (vf + U%)a/l (l + 2avl i av,v, )

dRez v, v + 03 v] 403

) 2
P i U IR S B Ry

0Imz v, v + v5 v} + v}

(and obviously = 0 for (vy, v,) = (0, 0)) are continuous functions in Q x R* for
each a > 0. If a = 2, we can differentiate f at least once more with respect to vy, v,
and therefore then fe CV-(Q x C) (if a is big enough, we can obtain the local
existence also for higher dimensions). But even for a < 2 the functions from (6.25)
are locally a/2 — Hélder continuous (see Appendix) and so we have fe C/%(Q x
x C). Consequently, for each a > 0 the assumptions of Theorem 5.1 are satisfied
and the problem (6.22) has a unique local solution.

If we define a function F for (x, t, z) € @ x C by the relation

at+1
(6.26) Fx 1,2) = — 200
2(a + 1)
we see that
JoF oF
= Ref, = Im
ORez 4 0Im z 4
and
a_F- _ a(p( ) I la+l
ot 2(a + 1)

Thus, if the conditions (6.10) and either (6.11a) or (6.11b) held for F, then we should
obtain from Theorem 6.5 the apriori estimate in the case n = 1, g = 0 (or g = g(x)
according to Remark 6.6).

Let

627 o(x, )20, (x,0)ed.

Then F(x, t, z) < 0 and (6.10) holds. - \
Further, if for some constant C > 0

(6.28) | aa—"’(x, )<C.o(x1) (xi)c0
t
holds (e.g. if ¢(x, .) is a non-increasing function), we have

_?£<c
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and consequently (6.11a) holds. If instead of (6.28) the condition
de

—(x,t
ot (1)

holds, then evidently (6.11b) applies to F.

(6.29) <C, (x,)eQ, a<1

Summary. The problem (6.22) has a unique global solution in the case n = 1,
g = g(x) if (6.24), (6.27) and either (6.28) or (6.29) hold.

Let us consider the case n = 2, 3. Then [n/2] + 1 = 2 and so we must prove the
apriori estimate “of order 2. For this purpose we shall use Theorem 6.7. First, the
above mentioned conditions are supposed in order to establish an estimate in the
norm |||.|||;. Further we have

0 0
S| 2
therefore (6.15) holds if
(6.30) .%(x, N<c, (ni)ed
and
(6.31) 0O<a<ow for n=2; 0<a=<2 for n=23.

Condition (6.16) follows from the condition

(6.32) lo(x, )| = C, (x,t)eQ

and from (6.31), because |0f/0z| < |of[ov,| + |of[ov,| < 2|e| - |2 (1 + 2a). If (6.15)
and (6.16) hold, we can use Theorem 6.7 which implies the required apriori estimate.

Summary. The problem (6.22) has a unique global solution in the case n = 2, 3,
g = g(x) if the conditions (6.24), (6.31)
(6.33) 0= o(x,))2C, (x,t)eQ

and either (6.28), (6.30) or (6.29) hold.

Now we see that our results include the results from [17] (where the same condition
(6.3]) concerning a is required), because ¢ = 1 evidently satisfies our assumptions.
But we can also establish the regularity of the solution..We can prove analogously
as in Appendix

peC™Q), a>k—1=>feCWu(g x C), k=1,2,...

Therefore if a > [n[2] — 1 and if ¢ & C™2)(Q), we have fe C™2Dw(g x C)
and we can obtain a local solution in higher dimensions. On the other hand, in the
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case n <3, a>k—1, k=1,2,..., we obtain smoother global solution ue
€ C(0, T; H**?) — according to the smoothness of u, u;, g, h and the coefficients of
the operator L.

Example 2. In [18] J. Sather proved the existence of a global classical solution of
the problem

(635) Ou+wu’=h, u0) =uy, wW(O0)=u,, u=0 on 02 x (0, T)

in the class of real-valued functions (Q R, n=12 3).

If we consider also only real-valued functions, we can put in Theorem 6.5 sD(z) =
= —z*[4 (we have f(z) = —z?). Then it is easily seen from Theorems 6.5, 6.7 that
the apriori estimate for n = 1, 2, 3 holds. Consequently we have a unique global
solution u € C(0, T; °H?) for

he CM(0, T; L,), uoe Wi n°Wi", u, e°wi, QeC™!
and for
he C(0, T: H) n C™(0, T; L,), uge Wi¥ n°WiP, u; e Wi» n Wi

Q e C! satisfying the compatibility conditions of order 4 we obtain the global
classical solution

ue C(0, T; °H*) = CX(Q).

This fact again includes the results proved in [18].

APPENDIX
Proposition. Let 0 < a < 1. Then functions
A(vy, v5) = (v7 + v3)*, B,(vy,v)) = 03(v] + 03", g=12,
C(vy, v;) = vy0,(v + v3)* !
are locally a-Hélder continuous for (vy, v,) € R%.

Proof. Our assertion is evident for A and we shall prove it only for B;, because
we can apply the same method to prove it for B,, C.

So we must prove the implication

Vb >03C(b):|v,| b, |w|=b, p=12=

Me

= |By(vy, v2) — By(wy, wo)| = C(b) X |v, — Wpla'

1

14
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Taking into account the definition of B, we see that we can consider only v, W, €
€0, b). Now ‘

i

By(vy,v;) — By(vy, wy) =0 if v, =0 or v, =w,

and for v, & 0 we can write (if e.g. v, < wy)

IB1(U1’ Uz) - Bx(Un Wz)l =

' 0B
j — (vg, 03 + s(wy — v,)) (Wy — v;) ds

0 0V3

=

-r2(a — 1) o0} + (v, + s(wa — 02))*)* 2 (v, + s(ws — vy)) (Wo — ;) ds

0

1 wa
<2(1 — a)J (v, + s(wy — 1)) (wy — vy) ds = 2(1 — a)f s2a~1ds =
0 v2
=(1—a)ya '(w3* — v3%) £ (2b)"a™'(1 — a) |w, — v,|".
Analogously

|B1(U1, wy) — By(wy, wy)| =

1 0B,
S (vy + s(wy — vy), wa) (W, — vy)ds
0

1

jlz[(vl + s(wy = 01) + (@ = D (o0 + s(ws = 01))* + w3)7".

[

oy + s(wy = )] ((vr + s(wy — 1)) + w3 (wy — vy)|ds <

< 2wy — v,) U (o0 + s(ws — o)1 ds + (1 — a) f (o1 + s(w, — vl)z"ds] <

0 V]

<21 + (1 — a) b) j (o1 + s(wy = 02))2 (wy = v1) ds < C(b) (wy — v)".

Since moreover
IBl(Un vz) - BI(WI’ Wz)l =
= |B1(Ub 172) - Bl(U]’ Wz)l + IBl(Un Wz) - Bl(Wn Wz)l

we see that the required implication holds.
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