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Czechoslovak Mathematical Journal, 23 (98) 1973, Praha 

MIXED PROBLEM FOR SEMILINEAR HYPERBOLIC EQUATION 
OF SECOND ORDER WITH DIRICHLET BOUNDARY CONDITION 

ALEXANDER DOKTOR, Praha 
(Received January 24, 1972) 

L INTRODUCTION 

Mixed problems for hyperbolic equations have been investigated by many authors. 
Various linear and some non-linear problems for hyperbolic equations or systems 
of equations of an arbitrary order v^ere discussed for two independent variables 
(e.g. [1], [2], [3], [13]). In this case more detailed results can be reached by means 
of the method of characteristics. If we consider the case of more independent variables, 
then a similar situation when we can consider equations of arbitrary order (including 
systems of the first order), occurs only in the case of the Cauchy problem (e.g. [10] -r 
in this work we can find some results for semihnear equations). In the case of the 
linear mixed problem some results for systems of the first order ([8]) or for equations 
of higher order ( [И] , [14], [15], [16]) were pubhshed, but a more detailed study 
was done in the case of one equation of second order with the Dirichlet or Neumann 
boundary conditions (e.g. [4], [5], [6], [7], [9], [11]). 

The mixed problem of the Dirichlet type for one equation of the second order is 
considered also in the present work. 

Let ß be a bounded domain in R", 0 < T < + oo, and let Lbe a hnear differential 
operator on g = ß x (0, Т) of the following form: 

(1.1) L = -— + ai(x, t;D)^ + a2{x, t; D) 
dt dt 

where x e Q, t e (0, T), 

(1.2) ai(x, t;D) = j] h{x, t) -— + ф , i), 
» = i ox I 

(1.3) a,(x, t;D)= - t — (a,j{x, 0 ~ ) + £ 4^' 0 ^ + Ф^ 0 • 
i,j=i dXi\ dxj/ i=i ôxi 
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We shall suppose that the coefficients hi (/ = 1, ..., „) are real valued functions, and 
a2(x, t; D) is an elhptic operator satisfying 

(1.4) ' aij{x, t) = äjlx, t), /, 7 = 1, . . . , n , {x, t)eQ 

(1.5) 3(5 > 0 Vz e C" V(x, 0 ^ ß : I a^j{x, t) z^Zj ^ ö\z\^ . 
i . j = l 

For this operator we shall consider the following problem: to find a function и 
satisfying (in a generalized sense which will be described later) the equation 

/, 4̂ r /•/ ^w du du 
(l.oj Lu = J Ix, t, и,— , , ..., — 

\ ôt dxi дх, 
the initial conditions 

(1.7) w(x, 0) = UQ{X) , — (jc, 0) = Mi(x) , xeQ 
dt 

and the boundary condition 

(1.8) w(x, i) = g{x, t) , (x, i)edQ X (0, T) 

(^ß denotes the boundary of the domain ß), where/ , UQ^U^, g are given functions. 

In Theorem 5.1 we shall estabhsh the existence of a unique local solution of this 
problem, and then in Theorem 5.4, under the assumption of an apriori estimate, 
the existence of a unique global solution on the whole domain Q. The regularity of 
these solutions is also included in our results and in §6 some sufficient conditions 
for the existence of apriori estimates are given. 

This paper was inspired by S. Mizohata's work [10] and generalizes his results in 
the semilinear case from the Cauchy to the mixed problem. The results obtained can 
be also considered as a generalization from the linear to the semilinear case of some 
results of S. MizoHATA [11] and M. IKAWA [4] concerning the mixed problem. In 
the examples 1, 2 from §6 we shall show that the results of J. SATHER [17], [18] 
are included as a particular case. 

2. NOTATIONS 

Euclidean n-dimensional space is denoted by R", С denotes the open Gauss 
complex plane. 

Lebesgue spaces Lp{V) on a domain V с W are defined in the usual way; for 
1 ^ jo < 00 and an integer /c ^ 0 we denote by W^^^(y) the Sobolev space of all 
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functions defined on F which have generalized derivatives up to the order к belonging 
to Lp(y). Wp^^ is a Banach space with the norm 

\\i\ukjy 

For p = 2 it is a Hilbert space with the scalar product 

\i\ukjv 

and we shall denote the norm of w G W2'\V) briefly by ||к||^. 
Spaces C^^\V), C^^^'\V), C^iV) are introduced as usual, the space "W^J'XV) is 

defined as the closure of the set Co{V) in W^J'Xv). 
We shall use the definition of smoothness of a domain F c R" (notation Ve Ĉ *̂ "̂ ) 

from [12]. (Roughly speaking it means that there exists a finite system of functions 
of the class C^^^'"^ describing the boundary 5Fof the domain F.) 

We shall often use the following well known 

Gronwall lemma. Let f, g be two non-negative functions defined on the interval 
<(0, a>, a > 0 , / e L i ( 0 , a), g non-decreasing, and let 

f{t)uc{'f{s)âs + g{t) VrG<0,a>. 

Then 
f{i)ue'''g{t) ytE(0,ay, 

For absolutely continuous functions this lemma can be written in the following 
form: 

Lemma. Let f be an absolutely continuous function on <0, a>, a > 0 and let 
g E Li(0, a) be a non-negative function. Let 

f'{t) й Cf{t) + g{t) a.e. in <0, a} . 
Then 

fit) ue'^{fiO) + g(s)ds V^e<0, a>, 

For Q == F X (0, T) (F с R" a bounded domain) let C< '̂'">(ß) be the space of all 
functions/e C(ß) such t ha t / ha s all derivatives of the type {d^ldt^) D'J, 0 ^ p ^ m, 
\i\ й /с, belonging to C(ß). 

Let Б be a Banach space with the norm Ц • Ц̂ , 0 < T < oo, /c ^ 0 an integer. The 
space C^^\0, T; B) is defined as the space of all functions defined on the interval 
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<0, ту with their values in the space В which are /c-times continuously difFerentiable 
in the norm 11 • IL • ^̂ '̂ (̂O, T; B) is the Banach space with the norm 

II r n / A l l max sup ||w '̂̂ (r)||ß» 
i = 0,...,fc re<0 , r> 

For the later use we shall introduce following formal notation: 
let F с R" be a domain, fc ̂  0 an integer. We shall say that a function и belongs 

to the space C(0, T; H\V)), if 

uenC^%0,T;Wr%V)), 
i = 0 

For и G C(0, T; H\V)), t e <0, T> we define 

IIWIIH IKOIk+iKOIk 
For fc ̂  1 we denote 

C(0, T; 'H\V)) = {u€ C(0, T; H\V)); u{t) e 'W^'\V), t e <0, T » . 

It is easily seen that this definition of C(0, T; °H\V)) is equivalent with the conditions 

и e C{0, T; H\V)) ; é%t)e''W^^\V), Ге<0,Т>, f = О, 1,..., fe - 1 • 

The spaces C(0, T; H\V)) and C(0, T; ''H\V)) are evidently Banach spaces with 
the norm sup |||M(^)||L 

f6<0.T> 

Finally, let us formally denote 

C^'\0, T; H\V)) = {ue C(0, T; H\V)); u' e C(0, T; H\V))} . 

3. LINEAR PROBLEM 

We shall solve the semilinear problem (briefly formulated in §1) by means of suc-
cesive approximations. The solvabity of the mixed problem in the linear case plays 
here a basic role. 

In this case we must find a solution of the linear equation 

(3.1) Lu{x,t)=f{x,t) 

on ß = 0 X (0, T), ß c= R" is a bounded domain, 0 < T < oo (Lis the linear dif­
ferential operator introduced in §1 by relations (1.1) —(1.5)) satisfying the initial 
conditions 

(3.2) u(x, 0) = Uo{x), u'{x, 0) = Ui(x) for xe Q 
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and the Dirichlet boundary condition 

(3.3) u{x, t) = g{x, t) for (x, t) e dQx{0, T), 

The classical solution of this problem is a function и e C^^\Q) satisfying the 
equations (3.1) —(3.3) in the usual sense. 

We shall find a generalized solution, more precisely a function и e C(0, T; H^(Q)) 
such that (3.1) holds a.e. in Q, and (3.2) holds a.e. in Q, The equation (3.3) is now 
taken in the sense of traces (which is correct — by the assumption, u{t) e W^^\Q)) 
and because a smooth function defined on ôQ can be extended on the whole domain Q 
(see e.g. [12]), we shall assume the function g to be defined apriori on the whole 
domain Q and to be of the same class as the function u. The boundary condition (3.3) 
can be then written in the form 

(3.4) u-ge C(0, T; ^НЩ) . 

Agreement. For the sake of brevity of notation we shall omit letter Q in the Sobolev 
spaces and write only W^''^ instead of W^^\Q), C (0 , T; H^) instead of C(0, T; H\Q)); 
full notation will be used only for other spaces as e.g. L2{Q), C^^\Q)* 

If M G C(0, T; H^), /c ^ 2, is a generalized solution of our problem, we have fe 
e C(0, T; H^~% щ e Tff >, u^ e PFf "^> from the equations (3.1), (3.2), and by agree­
ment g E C(0, T; H^). From the definition of the generahzed solution it further follows 
that the following necessary conditions for the existence of a generalized solution 
M e C(0, T; Я^) must hold: 

(3.5) и^Щ - д^Щ G °H^i'>, ï = О, 1, . . . , /с - 1 . 

Differentiating with respect to t the equation (3.1) we obtain 

(3.6) и^Щ = f^'-^Щ -'Ç 1^ " ^\ {a^r^-\x, 0; D) м<̂ *̂ >̂(0) + 

+ a^t^~'\^^ 0; D) и^Щ) , i = 2, 3 , . . . , /̂  -- 1 

where we use the notation 

(3.7) aV\x, t;D) = J: hf(x, t)-f + c'i\x, t) , 

af{x, t;D)=-i A (aW(x, 0 f ) + £ Ъ'р{^, t) / - + c«(x, t) . 
p,q=i dXp \ OX J p=i cxp 

Now we see that м '̂̂ (О), z = 2, 3 , . . . , fc — 1 can be successively expressed from the 
relations (3.6) by means of the given functions MQ» ^ i? / and their derivatives, hence the 
condition (3.5) contains only known functions. The necessary conditions (3.5) for the 
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existence of a generaHzed solution of the class C(0, T; H.^){k ^ 2) will be called the 
compatibility conditions of order k. 

Similar mixed linear problems have been solved in various papers, e.g. [4] — [7], 
[11]. By the saine method as in [4] (by means of the theory of analytic semigroups) 
we can prove the following existence theorem for the Hnear problem: 

Theorem 3.1. Let к ^ 2 be an integer and let the following assumptions hold: 

OeC^^+^>'4 a,jeÖ'''^(Q)nC^^-'\Q), hieÖ^'''''^~^\Q), 

Ь,/С^ЕС^'^'ЩПС^'-'Щ, iJ = U,..,n, p = l , 2 . 
Let 

fe C(0, Г; H""-^) n C^*-i>(0, T; L )̂ , 

UOEW^^\ u,eWi'''\ geC^'\0,T;H^), 

be such functions that the compatibility conditions (3.5) of order к hold. 
Then there exists a generalized solution и e C(0, T; Я^) of the problem (3.1), 

(3.2), (3.4) satisfying the energy inequality 

(3.8) • IIKOlll. й С(Г)(|1мо||, + ||«.l|,_i + 111/(0111.-2 + 

+ 111/(0)111.-2 + j j lk ' (^ ) | |Ms + jj|/<-^'(^)l|o d.) . 

Moreover, the solution of this problem is unique. 

4. COMPOSITE FUNCTIONS AND EXTENSIONS OF INITIAL VALUES 

Since we want to solve the semilinear equation (1.6), we shall state here first of all 
some propositions about composite functions of the required type. These propositions 
are of a form similar to that in [10], Chap. V, but the proofs are a bit different and 
we shall give them at least in a brief form. 

We admit also complex-valued solutions of the equation (1.6), therefore we must 
take account of functions of the type /(x, t, v) defined for x e Q cz W, t G <0, T>, 
V e C". Such a function / of n + 1 + m variables can be interpreted in the usual 
way as a function / of n + 1 + 2m real variables (/(x, t, v) = Дх, t. Re f, Im v)). 
We shall say that a function / of the mentioned type is of the class C^^^'\Q x €"*) 
if /e Ö^\Q X R̂ "*) and Df{x, t, .) is the Я-Hölder locally continuous function of 2m 
real variables Vi, ..., t̂2m for each (x, t) e Q, |al = k. 
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For partial derivatives of / with respect to the complex variable we shall use the 
evident notation dfjd Rev, dfjd Im f, dfjov = (ofjo Re v; dfjd Im v). Then if / e 
e C<^>(C), w e C^^>(R )̂, the function F{x) = /(w(x)) is of the class C<i>(Ri) and 

F'{x) = — (w(x)). u'{x) {u'{x) = (Re M'(JC) ; Im и'^х)). 
du 

Let us formulate one lemma which will be used later: 

Lemma 4.1. Let Q a W be a bounded domain of the class C^̂ '̂̂  and UiE 
G C^^\0, T; ^i'^"/2]+^-'^0)^ 1 = 1, . . . , q, where N ^ 1 , fc ^ 0, 0 g k^ й [w/2] + 
+ AT — 1 are integers. Suppose that the n-indices v,- (i = 1, ..., g) are swc/i that 

\vi\ й [n/2] + iV - /ce - 1 anJ ^ |v,| й [nji] + N - ^k^. Then 

D̂ ^Mi . /)"̂ W2 D'^u^ e C^'^XO, T; L^) 

and there exists a constant С > 0 independent of Ui, t such that 

| |D- u,{t) . Z)- u,{t)- • • D'' «.(Olio ucf[ |l«,(0||[„/2]+^-., . 
i = l 

This lemma can be proved by means of imbedding theorems in the Söbölev spaces. 
For function/e C^^\Q X C " ) and Ь ^ 0 let us denote ими; 

(4.1) M{b) = max sup sup \DJ{x,t, v^, ..., i;'")| . 
|«|^fc (x,t)eQ \vi\ub 

Theorem 4.2. L e f / e C^^^Ô x C"*), w/zere ß = О x (0, T), О cz R" is a bounded 
domain of the class C^^^'\ к ^ [«/2] + 1, and let functions UIE C(0 , T; H% i = 
= 1, ..., m, satisfy the estimate ; i 

|i/f(x, t)\^ b, (x, r) e ß , Ï = 1, 2 , . . . , m ^ 

/o r a constant b ^ 0. If we set 

F{x, t) = f(x,t, Ui{x, r), ..., î/Дх, t)) 
then: 

(i) F e C{0, T; H'); 
(ii) the generalized derivatives of the function F may be evaluated formally as 

derivatives of a composite function; 
(iii) there exists a constant С > 0 independent of f, x, t, u^, ..., w^ -swc/i that for 

each t e Ф, ту the estimate 

(4.2) 11И011Мс.м(ь)(1 + х||ко|||о ':;v. 
holds. i;; . ' 
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Proof. Let us denote u{x, t) = (MI(X, t),..., uj^x, t)), 
1. Let f e <0, T> and let us prove F{.,t)e W^^^: We have м,.(., f)eL2, du^jax^ e L2, 

therefore Mi(., f) are absolutely continuous on almost each parallel with the axis x^ 
and (if \ß\dx^ denotes the derivative in the classical sense) dUijdXq = [^MJ/ÖXJ a.e. 
in Q (see e.g. £12]). 

According to our assumptions, for each (x, t)e Q WQ have |F(X, ^)| g M(b) and 
therefore F{.,t)eL2. 

From the above mentioned facts and the assumptions of the theorem we immedi­
ately get: F(., t) is absolutely continuous on almost each parallel with the axis x^ and 
and [dFldx^] (., t) e L2, therefore dFJdXq = [dFJdXq] and consequently F{.,t)e W^^^ 
(and the item (ii) from our theorem holds). 

This process can be repeated up to order k, except that we must use Lemma 4.1 to 
prove that [D^F] (., )̂ e L2, |a| > 1. 

Finally, we obtain F(., r) e Tfî ^ ^^^ from the expression for the derivatives of F 
we obtain (again using Lemma 4.1) the estimate 

iF(0|Mc.M(fc)(i + f iKOilï). 
i = l 

2. F has the generalized derivative with respect to t: The proof is analogous as in 
the item 1, because if м e C^^\0, T; L2), then и has the generalized derivative dujdt e 

3. —(.,<) 6 fri*-»> for f6<0, T>: 

We have 

[f]<-) — (x, r, M(X, t)) + ^ — (x, t, u(x, t)) u'i{x, t) for a.e. x G ß . 
dt du: 

Applying to this expression the same method as in the item 1 we obtain the required 
proposition. 

4. In this way we obtain successively: there exists (йТ/й/')(., i)e P^i'''^ ^ = 
= 0, 1,..., fe and for each t G <0, T> the inequality (4.2) holds. 

5. Continuity and differentiability of F in the required norms can be proved by 
writting the derivatives of F as derivatives of a composite function with the help of 
Lemma 4.1. 

Theorem 4.3. Let Q, Q, к satisfy the assumptions of Theorem 4.2, letfe C *̂̂ '̂ (ß x 
X C"), AG(0, 1> and let functions u^e C(0,T;H''), / = 1,..., m, 7 = 1, 2 satisfy 
the inequality 

max |||M,XO!II* ^ b 
t,ij 
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for some constant b "^ 0. If we set 

^X^' 0 = / ( ^ ' t> ^lj{^^ 0 ' • • •' ^mj{x, t)), j = 1,2, 

then Fj e C(0, T; H'^) and there exists a constant K(b) ^ 0 independent of Uij, t 
such that for each t e <0, T> we have 

m 

(4.3) l||f , (0 - ^2(0111. й K{b). max I \\\щ,{г) - «,,(0|| |ï • 

Proof. Since к ^ [w/2] + 1, the Sobolev imbedding theorem implies that there 
exists a constant S > 0 such that 

max \uij{x, 01 = -̂  • ^^^ IIKvWillfc = -̂ ^ ' i^^ 0 ^ 6 

and hence Theorem 4.2 yields Fj e C(0, T; H^). According to this theorem we also 
obtain an explicit expression for the derivatives of Fj and the estimate (4.3) can be 
derived Ъу direct computation with the help of Lemma 4.1. 

From Theorems 4.2, 4.3 it immediately follows 

Theorem 4,4. Let Q, Q, к satisfy the assumptions of Theorem 4.2, letfe C^^\U x 
X C"^^) and let functions Ui e C(0, T; H^^^), Ï = 1, 2 satisfy the inequality 

max|||w,(f)|||fc+i й b 
t,i 

for a constant Ь ^ 0. If we set 

Fi{x,t)=f(x,t,Ui{x,t), w;(x,f), -^{x,t),..„-:^{x,t)], i = l , 2 , 
V dxi dx„ J 

then 

(i) FjeC{0,T;H%i== 1,2; 

(ii) the generalized derivatives of the functions F,- may be evaluated formally as 
derivatives of a composite function; 

(iii) there exists a constant С > 0 independent of f, x, t, w,- such that for each 
t e <0, r> the estimates 

(4.4) | | | F , ( 0 | | | , ^ C . M ( S b ) ( l + | | W O | | | î . x ) , . - = 1 , 2 

hold; 

(iv) moreover, iffeC^^^'\Q x C^^) for A G ( 0 , l>, then there exists a constant 
K(b) > 0 independent of t, м,- such that for each t e <0, T} we have 

(4.5) \\\F,it) - FMll й K{b). max (|I|«,(r) - u,{t)\\\U,). 
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We shall solve the semilinear problem by means of successive approximations. 
Taking into account the compatibility conditions, we shall have to make a suitable 
choice of the initial approximation. To this purpose we shall use the following 

Theorem 4.5. Let Q a R" be a bounded domain of the class C^^ '̂̂ , let к ^ 1 be 
an integer, T> 0 and let м,е W '̂̂ "*^ i = 0, 1 , . . . , /c — 1. 

Then there exists a function U e C(0, T; H^) such that 

U^^\0) = Ui for i = 0, l , . . . , /c - 1 

and 

i = 0 

where CT^ 0 is a constant independent of и(. 

This theorem can be proved analogpusly as in [19], Chap. Ill and therefore we 
omit the proof. 

5. SEMILINEAR PROBLEM 

In the present paragraph we shall solve the semilinear problem indicated in §1. 
Let Lbe a linear hyperbolic differential operator given by relations (1.1) —(L5) on 

a domain g = ß x (O, T), where ß is a bounded domain in R", 0 < T < oo. Given 
functions Mo(x), Mi(x), g{x, t), h(x, t) and a sufficiently smooth function/(x, t, f^,... 
..., V2+n) (defined on g x C^+") we want to find a function w e C(0, T; H% к ^ 2 
such that 

u(0) = UQ , u'(0) = и I 

(5.1) и - geC{0, Ti^'H^) /'̂  

Lu(x, t) = / (x , t, u{x, t), u'(x, t), (x, t), ..., — (x, t)) + /i(x, r) . 
dxi dx„ 

Naturally, the compatibility conditions must hold also for the semilinear problem 
(5.1), i.e., the relations 

(5.2) и^Щ- g^^e^'Wi'K г = 0, 1 , . . . , fc - 1 v \ 

must be satisfied. If we denote 

F{x,t) =f(x,t,u{x,t), u\x,t), — (x, r ) , . . . ) , 
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we obtain from the equation (5.1): 

(5.3) и^Щ = F('-^>(0) + h^'-Щ - ' X (' ~ ^ ) . 

. (a^r^~'b, 0; D) и^^^Щ + а^Г'~'\х, 0; D) и^Щ) 

for г = 2, 3 , . . . , /с - 1. But ( i f / i s sufficiently smooth) according to Theorem 4.4 we 
have the expression 

(5.4) F^<-'\x, 0) = / • - ^ ) (x, 0, Uo(x), u,{x), ^ (x),..., ^ (x)] + 
V OXi dx„ J 

+ YC^DlJ{x,Q,Uo{x),..).SXx) 
a 

for the derivatives of F. Here 5Дх) are products containing derivatives of the functions 
M, u\ dujdxi with respect to t of order at most i — 2, i.e. derivatives of the functions 
M(0), W'(0), ..., M '̂""̂ (̂0) with respect to x .̂ Therefore (as well as in the linear case) 
we can successively express м '̂̂ (О) by means of WQ, Wi,/, /i and, consequently, the 
compatibility conditions (5.2) contain only known functions. 

We shall suppose that for the coefficients of the operator L and for the domain Q 
the assumptions of Theorem 3.1 hold for an integer к ^ ["/2] + 2. Further, let 

UOEW^\ 'u,eW^-'\ /eC<^-^>'Xe X C"+^), Я е ( 0 , 1 > , '̂ 

h G C(0, 7^ Я'^-^) n C<*-i>(0, T; L2) , g e C^'\0, T; If) 

be such functions that the compatibility conditions (5.2) hold ^ 
As we said, the solution of the problem (5.1) will be found by means of successive 

approximations. First of all, according to Theorem 4.5 there exists a function 
Vo e C(0, T; H^) such that 

(5.5) v\l\0) = и^Щ , Ï = 0, 1, ..., j^ - 1 

(where м '̂̂ (О) are the known functions from (5.3)). 

Put 

Fo(x, t) =f(x,t, Vo{x, t) , v'o{x, t), - ^ ( x , f), .. . J . 

From Theorem 4.4 it follows that Fo e C(0, T; Я*"" ^), and if we express the derivatives 
of Fo analogously as in (5.4) we see (taking into account (5.5)) that for Мо, u^ g, 
Fo + h the ''linear" compatibility conditions of order к hold. Consequently, Theorem 
3.1 implies the existence of a function v^ e C(0, T; H^) such that 

v,-ge C(0, T; ^H') , v,{0) :Ш u^ , t;i(0) = u, , Lv,{t) = Fo{t) + h{t) . 
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Put Fi(x, t) = /(x, t, Vi(x, t), v[{x, t),...). It is easily seen that for Uo, Uu ̂ > ^i + ^ 
the "linear" compatibility conditions hold again and we can repeat the above rea­
soning. 

Step by step we construct a sequence {vq}^=o <=. C(0, Г; H^) such that 

(5.6) i;,(0) = Mo , t';(0) = wi , v^-ge C(0, T; °Я^), 

Lv^{t) = F,_i(r) + h{t) , q = 1, 2, 3 , . . . 

Here we use the notation 

(5.7) F,(x, t) = ffx, t, vlx, t), ф , t), - ^ (x, f),... J . 

Now we shall prove that there exists a constant В > 0 and Zl e (0, T> such that 

(5.8) I l lü /OIIH^, tG<0,zl>, ^ = 0 , 1 , . . . 

Let us denote 

(5.9) ^ = sup||lro(f)||I., 
<0,T> 

(5.10) у = lluoll. + |lu,||,_, + ||k(0)|||. + 2||lF,(0)|||,., + 

+ f j W I i n ^ + 2sup|||/.(r)|l|,., + r r - ^ > ( . ) | | o d 5 . 
Jo <o>T> Jo 

Since |||F^(0)|j|fc_2 does not depend on ^ = 0, 1? ••• our definition of у is correct. 
Now for Fq G C(0, T; H^" ̂ ) we can write 

IIW01ll.-.g|IWo)|||.-. + £|l№lll.-.ds 

therefore the energy inequality (3.8) implies 

(5-11) ||K(0||l.^C(T)(v+jjl|F,_,(s)|||,_,ds). 

Put 

(5.12) B = C{t){ß + y+i). 

Evidently |||fo(OII1/t = ^ ^'^^ te(0, Г> and then we have from Theorem 4.4 fpr 
S6<0,r> 

|||Fo(s)|||,_, й С. Miss) . (1 + 1||Ы )̂|||*.) è С . M{SB). (1 + В") . 
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Hence we obtain from (5.11) for te (0, A} where A e(Ö, Г>, 

| | W O I I U C ( r ) . ( y + | j | | F o ( s ) | | | , _ , d s ) ^ 

C{T) . (y + A{C . M{SB) (1 + B"))). 
If we put 

(5.13) A = min (T, ^- ^ , 
^ ^ . V С.{1+М{8В)).{1+ВУ 

we have ||lt^i(0|||it й С{Т). (у + I) ^ В. Now we can prove by induction that for 
our B, Л (5.8) holds. 

Further we shall show that {v^} is a Cauchy sequence in C(0, A; Я*): 
From (5.6) we have 

(f,+ i - V,) (0) = 0 , (v,^, - v,y (0) = 0 , v,^, - r, 6 C(0, J ; °H») , 

L{v,+1 - «̂) (0 = 4t) - P,-i{t) ' « = 1,2,... 

Consequently, it follows from the energy inequality (3.8) 

WhUt) - Щ\\\. й С(Г) jj | |F,(^) - f,-iO)lll.-i ds . g = ], 2, . . . . 

Since (5.8) holds, we have from Theorem 4.4 

\\\FM - f,-i(s)|||,_i й X(ß)max ||K(s) - .,_,(.)|||г 

for ^ = 1, 2,.. . , 5 e <0, ̂ > {K{B) does not depend on q, s). Consequently 

|||t;,,i(0 - .,(0111, й С{Т)К(В) Г max \Us) - v,.,{s)\\\iàs 

foi q = 1,2,..., f6<0, J>. 

Now, since the constant С from Theorem 4.4 can be taken ^ 1, we have J ^ 1 and 
if we denote 

A = max (1, e ( r ) JC(ß)) , a = max ( sup \\\vi{s) - Vo{s)\\\1i, 1) 
(1 = Л,1 <0,zl> 

we obtain: 

|||f3(0 - «̂ 2(0111» й Ao^iiaAsY + aAs) ds й « ^ ' j V + s) ds g 

й a . 2Ah'^\X + l)- i ^ fl . 2ЛУ+>(Я + 1)-^ . 
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Let us introduce Â , q = 0, 1,2,... by relations ; : ! 

AQ = 1 ', Л | = л , À2 = л , . . . , AqJf-i = Я^ , . . . 

(evidently A = ŝ i ^ 2̂ ^ ••• ^ !)• 
Now we prove by induction 

(5.14) ||K.,(0 - .,(0111, ̂  a.2-M¥^-^>^)'̂ "^-^^ n'(W''-^ + 1)-') 

ÎOT q = 2,3,4,... For q = 2 (5.14) holds, and if we suppose that (5.14) holds for 
some <î > 2, we have -1 

11Кн-2(о - v.umv ^ ̂  Г I iiK.i(^) - '̂,(̂ )iiiN^ й 'Iv 

€ - 1 

g а.2М«-̂ Ч^ '̂>''"̂ '((̂ Я)̂ «-̂  + ̂ )~\1{ЫУ'~' + 1))" 

((^ - 1) Я)̂ --̂  + 1 ̂  ((^ - 1) A)'--^ + Я'̂ "^ ^ (^Я)^«- .̂ 
F u r t h e r ' '̂  . : ' . ' • • S ;• ' : ; j ! ! i " , 

and immediately we see that (5.14) holds for q + 1. 
From(5.il4)it fbllowsff ^ i J g 1): / .̂ 

^ lll^..i(0 - ^.(^)li|.^^ . 2Г^^^ r i ( (P^^-^ + 1)- ' - ОС, . 
p = i 

for ^ = 2, 3, . . . , and from this relation it is seen that [v^ is a Cauchy sequence in 

C(0, zl; Я^), because ^ a, is a convergent series (we have hm A, = 1). , 
q = 2 q-^cx) 

Therefore there exists и e C(0, A; Щ such that и = lim v^ in C(0, J; Я^). From 
(5.6) it follows «-"«̂  

w ~Ö^GC(0,/1;°Я'^), w(0) = wo, w'(0) = м̂  ' 
and 

(5.15) ' IIKOIIM^ for te<S),Ay. 
Further Lvq -> Lu in C(0, J ; Pfî ~^̂ ) when ^ -> oo, because Lis a continuous operator 
from C(0, zl ; H^) to C(0, J ; Tî f " ̂ )̂. 
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From (5.8), (5.15) and Theorem 4.4 applied to the function 

F{x, t) =f (x, и w(x, i), u'{x, t) — (x, t), ..., — (x, t)] 
\ dxi dx„ J 

we have 
\\F{t) - f , - i ( 0 | | . - 2 й K{B) max \\\u{t) - v,_,{t)\\\rt 

and consequently F(t) = limFq{t) in W^^~^^^ and м is the required solution of our 
problem (5.1) on the interval <0, A}. Hence we completed the proof of the following 

Theorem 5.1 — local existence. Let the coefficients of the operator L (defined 
by (1.1)~(1.5)) and the domain Q (^ R"" satisfy the assumptions of Theorem 3.1 for 
an integer к ^ [̂ /̂2] + 2. Let 

UOEW^'\ u,eW^'-'\ hEC{0,T;H'-')nC^'^'\0,T;L2), 

g G Ö'\0, T; H""), / G C ( ^ - I > ' ^ ( Ô X C"+^), 0 < A ^ 1 

be such functions that the compatibility conditions (5.2) hold. 

Then there exists A e (0, T> such that the mixed semilinear problem (5.1) has on 
<0, ^> a unique solution и G C(0 , A; H^). 

Uniqueness follows from the following more general 

Theorem 5.2 — uniqueness. Let the assumptions of Theorem 5.1 hold. Then the 
mixed semilinear problem (5.1) has at most one solution on an arbitrary interval 
<0, 0 с <0, T>. 

Proof. If M, t; G C(0, t; H^) are two solutions of (5.1), we put w = и — v, b = 
= sup (|||м(5)|||^ + | | |Ф) | | |А ) - Then from the energy inequality and from Theorem 4.4 

<o.O 
we have 

\\\w{s)\\\,^C{T)K{b)Ç max | |Kr ) | | | i : d r . 
Jo J" = ̂ .i 

From this inequality we obtain analogously as in the proof of convergence of 
successive approximations |||w(5)|||fc = 0, i.e. и = v. 

Now we shall consider the question of the existence of a global solution on the 
whole interval <0, T}. First we shall introduce an apriori estimate: 

Definition 5.3. Let L, Q, UQ, U^, h, g,f, к satisfy the assumptions of Theorem 5.1. 
We shall say that the apriori estimate for the semihnear mixed problem (5.1) holds, if 

3 Q ^ 0 Vf G (0, T> : M G C(0, t; Н^) is а solution of (5.1) => 

=>||Ks)|||, ^ C ^ V 5 G < 0 , 0 . 
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Further we shall suppose that the apriori estimate holds. 
A global solution will be found by continuing the known local solution on <0, ЛУ 

by means of Theorem 5.1. 
Using this theorem one can find a local solution on the interval <0, A}, where A 

is given by the relation (5.13). For the constant у from (5.10) we have the estimate 

V й sup |l|u(0||l* + ||KO)|||, + 2C . M{S . sup 1||M(0|||.) • 
<0.4> <0,z<> 

.(1 + SUP1IK0III9 + 
<о,лу 

+ jyMs)\\\.+ W'-'\s)l)às+ 2. sup \\\h{t 

йС^ + С. M{SC^) . (1 + C\) + \\\g{0)\\\, + ... + s Го 

because the apriori estimate holds. The constant уо does not depend on u,t. 
For the initial approximation VQ we have from Theorem 4.5 

ß = sup |||го(0|1|. ^ C(T)i:V'"(0)lkr й C{T) C^. s ß, . 

<0,Т> i = 0 

Therefore we have an estimate for the constant В defined by (5.12): 

В й С{Т) {ßo + Уо+1) = Во 
where BQ does not depend on м, t. 

Then (5.13) implies 

^ C ( l +M{SBo)){l+Bl)^ " 

Now if we have a solution и on some interval <0, t} с <0, T>, then according to 
Theorem 5.1 there exists A{t) > 0 and v e C{t, t + A{t); H^) such that 

v(t) = u{t) , vXt) = u'{t) , V - ge C{t, t + A{t); ""H^) , 

Lv(s) = /(x, s, v{x, s) , i;'(x, s),...) + h(x, s) for se {t,t + A{t)y 

(in fact, we can use Theorem 5.1 because the compatibility conditions at the point t 
are automatically satisfied as a necessary conditions for the existence of the solution 
of the problem (5.1) on the interval <0, t}). 

But for A(t) we have the expression 

A(t) = minlT-t; 1 
^^ V \c{l+M{SB{t)))il + B{tf)) 

where B{t) is given in the same way as В from (5.12). 
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As the function 

''^'^~\v{s) for se{t,t-^ A{t)y 

is apparently a solution of (5.1) on <0, t 4- ^(^)>, it follows again from the apriori 
estimate that A(t) ^ AQ. 

Thus we have established the existence of a solution v[t) of (5.1) on (AQ, 2AQ) and 
the function 

^^ \v{t) for rG<zlo, 2zl( > 

is the solution of (5.1) on <0, 2zio>. We can continue the described process, and 
because A(t) ^ AQ for each t, after a finite number of steps we obtain a solution on the 
whole interval <0, T>. So we have 

Theorem 5.4 — global existence. Let the assumptions of Theorem 5.1 be satisfied 
and let, moreover, the apriori estimate holds. Then there exists a unique solution 
и e C(0, T; H^) of the semilinear mixed problem (5.1) on the whole interval <0, T>. 

Remark 5.5. In the special case when our non-linear term / has the simpler form 
/ = / (x , t, w), Theorems 5.1 — 5.4 hold also for к = [n/2] + 1. 

6. APRIORI ESTIMATE 

In the present paragraph we shall prove some sufficient conditions on the non­
linear term / which establish that the apriori estimate holds (and consequently there 
exists a global solution). 

The apriori estimate was introduced in Definition 5.3. In this definition we ought 
to have spoken more precisely about "the apriori estimate of order /c" — according 
to the norm for which the estimate is required. Therefore we shall prove first that it 
is enough to obtain "the apriori estimate of order [n/2] + 2 " : 

Theorem 6.1. The apriori estimate for the problem (5.1) holds if and only if 

(6.1) 3C^ > 0 Vr e (0, T> : M e C(0, t; H^) is a solution of (5.1) => 

=^11Ж111[п/2]Н-2^^ V5G<0,O. 

Remark 6.2. We can see, analogously as in Remark 5.5 that for the simpler equation 
Lu(t) = f(x, t, u(x, t)) it is enough to verify the apriori estimate for к = [n/2] + 1. 

P r o o f of Theorem 6.1: 

As ||iw(^)|||fe' й Ill̂ Wlllfc ^^^ ^' = ^' ^^^ ^^^^ implication of Theorem is evident. 
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Let (6.1) hold and let к > [n/2] + 2 be an integer. We have from (3.8) for the solu­
tion и of (5.1) on <0, t} 

(6.2) |}Ks)| | | , SCiT)(j + | | |F(5)| | | ,_, + J j | f < - ^ > ( r ) | | o d r ) 

where у is the constant from (5.10), F(x, t) = f{x,t, u{x;t),...). But from Theorem 
4.4 it follows 

(6.3) |liF(5)|||,_, ^ C . M ( S . s u p l | K r ) | | | , _ 0 ( l + \\Hs)\\r-l). 
<0,O 

If we express F^^ ^\r) as the derivative of a composite function (according to 
Theorem 4.4), with help of Lemma 4.1 we get the estimate 

(6.4) | | f<'-i>(r)| |o^ С M ( S . sup | |1M(T)1 | | ,_0 . 

.(l+(sup||K.)|||-?)(H-||I«(r)|l|,) 
Substituting (6.4) and (6.3) into (6.2) and using the Gronwall Lemma we see that 
|||w(5)|||ft can be estimated by means of |||м(5)|||;^-1- Now we prove our assertion by 
repeating this procedure. 

Following two propositions are easy to see: 

Theorem 6.3. Let n = 1 and let us suppose that there exists a constant С ^ 0 such 
that 

(6.5) 

(6.6) 

— (x, t, z) 

dz 

uc{i + j:\z,\), 
i=l 

(x, t,z)uC, i = 1,2,3 

for each (x, t, z) e Q x C^. 

Then the apriori estimate for the problem (5.1) holds. 

Proof. According to Theorem 6.1 it is enough to estimate |||w(0|||2- From (3.8) 
we have for the solution u: 

(6.7) | | | u ( 0 | | M C ( T ) ( r + j j | F ( 5 ) | | o d s 

{y is the constant from (5.10)). But 

,̂ df df , df „ df du' 
dt dzi dz2 dz2 dx 
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therefore using (6.5), (6.6) we immediately see 

| |F(.)| |^ g C(l + 1||«(5)|||^) 

and our assertion follows from the Gronwall Lemma. 

Theorem 6.4. Let Q, L, UQ, Ui,f, h satisfy the assumptions of Theorem 5.1 and 
let f be bounded on Q x C"^^^ together with all derivatives up to order [n/2] + 1. 
Then the apriori estimate for the problem (5.1) holds. 

We shall omit the proof because it can be carried out by almost the same method 
as the proofs of Theorems 6.1, 6.3. 

Theorem 6.5. Let g = 0 and let Q, L, UQ, W ,̂ h,f{x, Г, z) satisfy the assumptions 
of Theorem 5.1. Let for и E C{0, ti^'H^) (r e (0, T » be 

(6.8) Lu{s) = / (x , 5, u{x, s)) + h(s) , w(0) = UQ , u'{Ö) = u^ . 

Let there exist a real-valued function Ф(х, t, z) defined on Q x С such that for 
each (x, t, z)e Q x C, 

(6.9) (x, f, z) = Re/(x, t, z ) , ~ (x, t, z) = Im/(x , r, z) , 
5(Re z) ^(Im z) 

(6.10) Ф(х, ,̂ z ) ^ C ф , С ф > 0 

anJ either 

(6.11a) - — (x, f, z) ^ Сф{Сф ~ Ф(х, r, z)) , Сф>0 
dt 

or 
\ОФ (6.11b) (x, t, z) 

dt 
^C(l + |zH, 

Then there exists a constant C^ > 0 such that 

(6.12) |||u(s)||l, йС, 5 6<0,(> 

fl/iJ consequently the apriori in the case n = 1 holds. 

Proof. If we put 

£(5) = («'(4«'(^))o+ t (a,j{s)^{s),^{s)) 
i,j = i \ dXj dXi / o 

then from the elipticity of a^ and from the equivalence of norms in °]^(i) (Friedrich's 
inequality) we have 

(6.13)^ £(5) ^ c | | K 5 ) | | | ^ 
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Further 

(6.14) HF 
^ ( 5 ) = 2Re(«"(5),45))o + 
as 

+ 
^Г/ , du ди\ / du' ди\ 
ij W '^ dxj ' dxjo \ '^ dxj ' dxJo + а 

du du' 
dx/ dXijo_ 

The second term on the right hand side is 

^C\\\u{s)\\\lSC.E{s). 

The last two terms are 

du' du 
dxi dXi 7/0 \ Sxj dxjo \ dXi ôxjjo 

_ / du ди'\ 
\ '•' dxj ' dxJo 

As M'(S) e °W2^\ the integration by parts yields 

(a ^ —\ =. -(— (a ~ \ '\ 
\ '•' ôxj ' dxJo \dXi V " dxj ' /o ' 

+ 

Therefore 

dE 

ds 
(s) è CE(s) + 2 Re (u" - ^ £ (^a,, ^ ) , u'"j = 

, w 

- (C^U', U% - (C2M, U% + {K U% + ( / (5 , 1/(5)), W%) ^ 

^ C{E{s) + ||й(5)||^) + 2 Re (/(5,1/(5)), t/t^))o 

because h^ are real-valued functions and w' e °Ж^^1 Taking into account (6.9) we 
have 

Re (/, u')o = I (Re/ Re w' + Im/Im u') dx = 

Ф(х, 5, u{x, s)) dx - \ — (x, 5, w(x, 5)) dx . d̂  
d5 

Finally we obtain 

^ Г45) + Г 2(Сф - Ф(х, s, t/(x, s))) dx] ^ С /"c + £(5) ^ 2 Г ^ dsV 
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If (6.11a) holds, the right hand side is 

йс(с + E{s) + 2 C ; Г (Сф - Ф) dx\ <cfl + E{s) + \ 2 ( Q - Ф) dx\ 

If (6.11b) holds, the right hand side is 

^ C{C + E{s) + C;(2 mes Q + 2\\u{s)\\l)) й C(l + E{s) + \\\u{s)\\\l) й 

й C(l + E{s)) Scfl + £(s) + f 2(Сф - Ф) dx j 

because from (6.10) it follows Сф — Ф ^ 0. 
Using the Gronwall Lemma we obtain in both cases 

E{s) + 2 (Сф - Ф) dx ^ с ; , se <0, ty 

and because Сф — Ф ^ 0, we have £(s) ^ C[ for s e <0, t}. But then (6.13) implies 
(6.12). 

Remark 6.6. Theorem 6.5 can be modified also for some non-homogeneous 
boundary conditions g ^ 0. Then we must use a function Ei(s) = E[s) + ||w(5)||o, 
because now (6.13) need not hold. Further we must somehow eliminate integrals 
over the boundary dQ, generally appearing in the integration by parts. These integrals 
vanish, if e.g. g = g(x) does not depend on time t, because then u'(s)e°W2^^ for 
each s e <0, t}. 

Theorem 6.7. Let O, L, UQ^U^, h, g,f(x, t, z) satisfy the assumptions of Theorem 
5.1 and let и e C(0, t; H^) he such a solution of the problem (5.1) that (6.12) holds. 
Suppose that the function f(x, t, z) satisfy further 

(6.15) 

(6.16) df 

(л-, t, z) й Cj{\ + Izr») 

^ ( x , f , z ) < C , ( l + |z|'") 
OZ 

for each (x, t, z)eQ x C, where 

2 
a = n -2 

for n > 2 , 0 ^ a < o o for n ^ 2 , 

Cy ^ 0 15 a constant. 
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Then there exists a constant C2 > 0 such that • 

(6.17) |l|u(s)|||2 ^ C2 , s€<0,t> 

and consequently the apriori estimate in the cases n = 2, n = 3 holds. 

Proof. From the energy inequaUty we have again 

(6.18) | | |u(5)i | |3^C(T)(^y+jj |f '( '-) | |odry 

Now \F'{x, r)\^ й 2(|(a//ar) (x, r, u{x, r))\^ + \dfjdz\^ \uf), therefore 

(6.19) |lF(r)|l^ S 2 ( j j | f dx + М | Г \uf dx) = 2(J, + J,) , 

From (6.15) it follows 
J,gC,(mesß+l|u(r) | | i<;V.!) 

but because и e W^^K the choice of a implies the imbedding W^^^ <= L2(a-i)» conse­
quently 

(6.20) Ji ^ C(mesO+ ||u(r)|lJ^''+^>)^ 
й C(mes ß + |||«(r)|l|f''+^>) й C(mes Q + d^"^'^) 

because (6.12) holds. Further, from (6.16) it follows 

J2 uCffi |M'(X, r)\^ dx + I \u{x, r)|̂ « |w'(x, r)\^ dx I . 

By ineans of Holder inequality we obtain 
in-2)In 

J, й с, (\\u'(r)\\l + ( f l«(x, r ) | - d x j ' " ( f \и'(х, r)|̂ "/<"-̂ > 

But an = 2nl(n — 2) and because u{r), u'{r) e W2^\ the imbedding TF̂ -̂̂  c: L2„/(„-2) 
implies 

(6.21) J ,^C( | l« ' ( r ) | l^+ | |u ( r ) | | f -> | i« ' ( r ) | |D^ 
gC(l + Cr"->)|lKr)||l^ 

Now from (6.18)-(6.21) it follows 

|||„(5)l|Uc(l+jj|Kr)||l,dr) 

and we obtain our assertion again by means of the Gronwall Lemma. 
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Example 1. We shall consider the following mixed semilinear problem of the special 
form: 

(6.22) Lu{t) + (p{x, t) u{t) \u(t)\'' = h{x, t) , a > 0, 

M(0) = Wo , w'(0) = "i . и - ge C(0, T; ^Я^) 

on a domain Q = Q x (O, T), where f2 c: R" is a bounded domain of the class C^^^'^, 
и = 1,2, 3, 0 < r < 00. 

Here Lis an operator defined by (1.1) —(1.5), its coefficients are assumed to fulfil 

a,;GC<^'^>(ö), /i,eC<^>(ß), b„c,GC<«'^)(ô), /,7 = 1 , . . . , n,q = 1,2. 

Let further 

Uç,eWf\ u^eW^^\ /? e C^̂ >(0, T; L^), ^ 6 C^̂ >(0, T; Я ^ ) . ' 

If (p = 0, then the problem (6.22) is linear and from Theorem 3.1 the existence of 
a unique solution и G C(0 , T; Я ^ ) follows, if only the compatibility conditions of 
order 2 

(6.23) Wo G ^(0) + PFf > n °Ж1^>, u^ G ^'(0) + °^Г^ 

hold. 
For (p = \, g = ^ and the particular case of the operator L = П = ë^\bt^ — Л, 

the problem (6.22) was solved in [17] by J. SATHER. There the existence and unique­
ness of a weak global solution was shown (even for higher dimensions). 

Let us show that the existence of a global solution of more general problem (6.22) 
follows from Theorem 5.3. 

Since we consider only the case « ^ 3, the compatibility conditions of order 
[n/2] + 1 ^ 2 are the same as in the linear case, i.e. (6.23). We must only show the 
required smoothness of the non-Hnear term and the apriori estimate. Therefore we 
shall consider the function 

/ (x , t.z) = -<^(x, i)z\z\^ 

defined on g x С which can be taken as a function 

/ (x , и Vu Vz) = - ф , t) {v^ + iv2) {vi + viy^^ 

defined on Q x R^. For the existence of a local solution. Theorem 5.1 requires 
/ G C^^^'\Q X C) for some Я G (О, 1>. If we suppose 

(6.24) (Р^С^'Щ 
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then / G C^^XQ X С) because 

(6.25) ^ = i^ = - ,(x. о (̂ ï + .Э-" (' + - ^ + < 4 ^ ) 
О Re z ovi \ v^ -\- V2 1̂1 + V2J 

df ^ df 
д Im z dvo 

(and obviously = 0 for {v^, V2) = (0, 0)) are continuous functions in g x R^ for 
each a > 0. If a ^ 2, we can differentiate / at least once more with respect to v^, V2 
and therefore then fe C^^^'^{Q x C) (if a is big enough, we can obtain the local 
existence also for higher dimensions). But even for a < 2 the functions from (6.25) 
are locally a/2 — Holder continuous (see Appendix) and so we h a v e / e €^^^'"^^(6 x 
x C). Consequently, for each 0 > 0 the assumptions of Theorem 5.1 are satisfied 
and the problem (6.22) has a unique local solution. 

If we define a function F for (x, t, z)e Q x С by the relation 

(6.26) .(,,,.)= _îfeiltt! 
2(a + 1) 

we see that 

dF _ . dF ^ „ 
= R e / , = I m / 

and 

^ Re z dim z 

dF dcp . . 

dt dt 2{a + 1) 

Thus, if the conditions (6.10) and either (6.11a) or (6.11b) held for F, then we should 
obtain from Theorem 6.5 the apriori estimate in the case n = 1, g = 0 (or g = g(x) 

according to Remark 6.6). 
Let 

(6.27) ' ç{x,t) ^ 0 , {x,t)eQ. 

Then F{x, t,z) SO and (6.10) holds. \ 

Further, if for some constant С > 0 

(6.28) ^{x,t)SC. (p{x, t) (x, t)eQ 
dt 

holds (e.g. if (p(x, .) is a non-increasing function), we have 

dF Izh"^^ 
- - — ^ С (p-JJ = -C.F 

dt 2{a + 1) 
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and consequently (6.11a) holds. If instead of (6.28) the condition 

(6.29) d(p (x,0 йС, (x, f) G ß , aui 

holds, then evidently (6.11b) applies to F. 

Summary . The problem (6.22) has a unique global solution in the case n = 1, 
g = g{x) if (6.24), (6.27) and either (6.28) or (6.29) hold. 

Let us consider the case n = 2,3. Then [n/2] + 1 = 2 and so we must prove the 
apriori estimate "of order 2". For this purpose we shall use Theorem 6.7. First, the 
above mentioned conditions are supposed in order to estabHsh an estimate in the 
norm 111 • 1111. Further we have 

(x, t, z) ^ ( x , 0 
dt ^ ^ 

dcp 

~dt 
(x, r ) ^ C , {x,i)eQ 

therefore (6.15) holds if 

(6.30) 

and 

(6.31) 0 < a < o o for n = 2; 0 < a ^ 2 for n = Ъ, 

Condition (6.16) follows from the condition 

(6.32) \(p{x,i)\uC, ( x , f ) e Ö 

and from (6.31), because \dfldz\ й Wlôv^] + \dfldv2\ й 2\(p\ . [z|'^(l + 2a). If (6.15) 
and (6.16) hold, we can use Theorem 6.7 which implies the required apriori estimate. 

Summary . The problem (6.22) has a unique global solution in the case n = 2, 3, 
g = g(^x) if the conditions (6.24), (6.31) 

(6.33) 0 й (p{x, t)uC, {x,t)eQ 

and either (6.28), (6.30) or (6.29) hold. 
Now we see that our results include the results from [17] (where the same condition 

(6.31) concerning a is required), because (p = 1 evidently satisfies our assumptions. 
But we can also estabHsh the regularity of the solution..We can prove analogously 
as in Appendix 

(реС^'Щ, a > ^ - l=>/GC<^)'«/2(g X С ) , i ^ = l , 2 , . . . 

Therefore if a > [n/2] - 1 and if cp e C^^''^^\Q)^ we have f ^ c^W2i),a/2^Q ̂  ç.^^ 

and we can obtain a local solution in higher dimensions. On the other hand, in the 
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case n S 3, a > fc — 1, /с = 1,2,..., we obtain smoother global solution ue 
e C(0, T; Я*̂ "*"̂ ) — according to the smoothness of UQ.U^, g, h and the coefficients of 
the operator L. 

Example 2. In [18] J. Sather proved the existence of a global classical solution of 
the problem 

(6.35) Dw + ŵ  = / i , w(0) = Mo , w'(0) = Ml , M = 0 on ôQ x (0, T) 

in the class of real-valued functions (ß с R", n = 1, 2, 3). 
If we consider also only real-valued functions, we can put in Theorem 6.5 Ф{г) == 

= —2̂ *̂ /4 (we have/(z) = — z^). Then it is easily seen from Theorems 6.5, 6.7 that 
the apriori estimate for n = 1, 2, 3 holds. Consequently we have a unique global 
solution M 6 C(0, T; °Я^) for 

h 6 Ö^\0, T; L2) , Mo e ]^f > n °Ж^^>, MJ e °^ i '> , ß e C^^>'' 

and for 

/1 G C(0, Г; Я^) n C^^>(0, Г; L2) , Mo e Ж]̂ > n °Pfi^\ м̂  G Ж ^ ' М °Ж1̂ > 

ß G C^^ '̂̂  satisfying the compatibility conditions of order 4 we obtain the global 
classical solution 

M G C(0, T; °Я^) с: О^Щ . 

This fact again includes the results proved in [18]. 

APPENDIX 

Proposition. Leï 0 < a < 1. Then functions 

A{v„ V2) = {vl + viy, B^{v„ V2) = v\(v\ + r^)«-^ , ^ = 1,2, 

C{v^,v^ = v^V2{vl + t;2)^"^ 

are locally a-Holder continuous for (r^, V2) G R^ . 

Proof. Our assertion is evident for A and we shall prove it only for B^, because 
we can apply the same method to prove it for В2, С. 

So we must prove the implication 

Vb > 0 3C{b) : \v^\ й b , \w^\ ^ Ь , p = 1, 2 => 

=> Mvu V2) - B,{w,, w,)| ^ C{b) f \v^ - w ^ . 
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Taking into account the definition of JB^ we see that we can consider only Vp, Wp e 

e <0, by. Now 

-^1(^1? ^2) — ^ i ( ^ b ^2) = 0 ïf ^1 = 0 or V2 = W2 

and for Vi Ф 0 we can write (if e.g. V2 < W2) 

\Bi{Vi, V2) - ßi(l^i, W2)| = — ^ i^U ^1 + K^2 - 1̂ 2)) (W2 - 1̂ 2) d5 == 
| jo^î^2 I 

= l{a - 1) v\(v\ + (1̂ 2 + s(w2 - ^^2))^)'"^ (t̂ 2 + 5(^2 - t̂ 2)) (w2 - v^ ds 

^ 2(1 - a) (t;2 + 5(w2 - 1^2))^""' (^2 - 1̂2) ds = 2(1 - a) s^«"^ ds = 

Jo ] V2 

< 

= (1 - a) a-\wl" - v"^) й {2ЬУа-\1 - a) |w2 - V2\''. 

Analogously 

|^l(t^l, >V2) - ^ i (Wi, W2)| = V ^ (^1 + K ^ l - ^1)' ^2) (Wi - Üi) ds 
, I J o ^î^i I 

.{v, H- s{w, - i^i))']((î^i + s{w, ~ v,)y + w^)^-^ (wi - Î;I) 

^ 2(wi - î̂ i) 11 Ĉ i + s{w, - v,)y'-'ds + (1 - a) I (v, + s(wi - v,y^s\ S 

и 2 \ - 1 

d5 < 

й 2(1 + (1 ~ a) fe) 

Since moreover 

{v, + 5(wi - v,)y^-' (wi - t;,) d5 й C{b) (w, - v,y. 

|Bi(z;i, Ï;2) - B,{w„ W2)| ^ 

g |Bi(i;i, V2) - Bi(i;i, W2)| + \B^{v,, W2) - B^{wi, W2)| 

we see that the required implication holds. 
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