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EQUICONTINUOUS COMMUTATIVE SEMIGROUPS 
OF ONTO FUNCTIONS 

L. S. HUSCH, Knoxville 

(Received November 18, 1971) 

Equicontinuous (or regular) groups of transformations of a space onto itself have 
been studied extensively [1], [2], [5]. In this note we investigate equicontinuous 
commutative semigroups G of functions of a space X into itself. We define a product 
on orbit closures which makes each orbit closure a commutative semigroup. This 
generahzes a result of D. MONTGOMERY on equicontinuous transformation groups [5]. 
If X is compact Hausdorff and each ^ e G is onto, then each ^̂  e G is a homeo-
morphism and each orbit closure is a topological group. This generalizes work of 
P. F. DuvALL, JR. and L. S. HUSCH [1] who considered the case when X is compact 
metric and G is generated by a single function. Finally it is shown that if X is compact 
Hausdorff then the closure of G in the space of continuous maps of X into itself with 
the compact-open topology is a topological group and each orbit closure is the 
continuous homomorphic image of G. 

We shall assume familiarity with [4] whose notation we shall follow. [6] contains 
the definitions and results from the theory of semigroups which we use. Let (Z, %) 
be a uniform space and let C{X) be the semigroup of continuous functions of X into 
itself with the topology of uniform convergence on compacta. If G is a subsemigroup 
of C(X), then G is equicontinuous at x G Z if, for each U e%, there is a neighborhood V 
of X such that g{y) ^ (7[Ö'(X)] for each g eG. G is equicontinuous if it is equicon­
tinuous at each point of X. G is uniformly equicontinuous if, for each U e^, there 
exists Ve % such that (б'(х), g(f)) e V whenever geG and (x, j ) e И If л; e X, let 
0(x) = {g{x) \ g e G}, Henceforth, suppose X is Hausdorff and G is commutative. 

Proposition 1. If X e X such that G is uniformly equicontinuous on 0(x) and if 
the nets {gj^x), осе A} and {gp{x), ße Б}, {б̂ а}аеА U {9р}рев ^ G, ^re Cauchy nets, 
then the net {ga9p{^)^ (̂ > ß) e A x B} is a Cauchy net. (A x В is the product 
directed set [4; p. 68]). 
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Proof. Suppose t/ e ^ and choose Ve % such that F« F £ I/. By uniform equi-
continuity there exists We^ such that ( j , z)eW implies {g{y\ g(z)) e V for all 
g e G. There exists a and ^̂  such that if a^, a2 ^ a and ßx, ßz è Д» then (даХ^)^ дЛ^У) 
and (ö^^X :̂), ö^^/x)) belong to W where a, ai , a2 G Л and ß, ßußi^ В, Note that if 
(«1, ^ i ) , («2, ßi) ^ (a, J5), then {ga,gßix\ о^а^^^гМ) ^ ^• 

Definition. If 0(x) is complete and y, ze 0(x), let {̂ «̂(x), a e Л} and {gß{x), ße В} 
be nets which converge to у and z, respectively. Define j • z to be the hmit of the 
net {^a^^(x), (a, ß)eAx В}, 

Proposition 2. The product у • z is well-defined; — i.e., у • z is independent of the 
choice of nets which converge to у and z. 

Proof. Suppose у is the limit of the nets {go,{x), осе A} and {gy{x), у e Г} and z is 
the limit of the nets {gß{x), ße В} and {о'Дх), ô e A}. Let a and Ь be the limits of the 
nets {^a^/x), (a, ß)e A X B} and {дудз{х), (у, ô)e Г x А], respectively. Let U e^ 
and choose Ve% such that F o F o F o F s I/. By uniform equicontinuity there exists 
We % such that (a, b) G TF imphes (</(a), ö'(b)) G F for all geG, Choose a, ß, y, ^ 
so that {ßyix), gj^x)), {gô{x), gß{x)) e W and {b, gygö{x% {g^gßix), a) e F. It is easily 
seen that (b, d)eU and since U is arbitrary, a = b. 

Proposition 3. If y, z e 0(x) such that z is the limit of the net {z^, осе A] ^ 0(x), 
then the net {y - z^^ae Ä\ converges to у • z. 

Proof. Suppose y, z, z^ (осе A) are the limit of the nets {gß{x), ßeB}, {gy{x), 
у e г} and {go,^ô{^), ô e ^(a)}, respectively. Let U e^ and choose Ve 41 such that 
Vo Vo Vo Vo F ç и and We Ш such that (a, b)eW implies (^(a), дЩ e F for all 
g e G. There exists 

i) a^ such that a G Л and a ^ а̂  imphes (z, z j G W, 
ii) (^1. yi) such that {ß,y)eB x Г and (j5, y) ^ (^i, y^) implies ( j • z, б̂ б̂̂ Х )̂) G F, 

iii) y2 such that y G Г and у ^ У2 implies (б^у(^)' ^) ^ ^ ' 
iv) ^1 such that ôeA and 5 ^ (5i implies (z<„ é^a,^^) e PF, 

v) ißi, Ö2) such that (jg, ^) G Б x J and (ß, ô) ^ (i^^, ô,) implies (gßga^^). 

Note that ^^ and (i?25 ^2) depend upon a. Choose J&3 ^ ßi, ßil Уз ^ Уь 72 5 
^3 ^ <5i, ^2- Suppose а ^ ai and choose {ß, 7, <5) ^ (̂ 83, 73, ^3). Then {gßga,ö{^), 

У • ^a) , (ö^^^a), gßgaM)> (dßi^l gß{^aj), (ö^^Ö^yW^ 0^^^)) . {У ' ^ ' Ö^^Ö^yW) ^ ^ ^ Р ^ ^ ^ ^ 
( j . Z, у Ẑ ) G и. 

Proposition 4. If y, ze 0(x) are the limits of the nets {y^, a e 1} and {z^, a e A}, 
respectively, which are contained in 0(x) and ifUe%, then there exists (o-j, a^) e 
el X A such that if {(т,а)е1хА and (a, a) ^ ((TI, a^), then {y„ ' z^, у • z )̂ e U, 
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Proof. In addition to the nets used in the previous proof, let y be the Hmit of the 
net {ga,r{x), T: e T(Ö-)} Ç 0(X). Choose Ve Ш such that F о VoVoVoV ^ U andWe^ 
such that {a, b)eW impHes {g{a), g{b)) e V for all g e G. There exists 

i) (Ti such that a e I and a "^ a^ implies {y, y^) e W\ 
ii) (ßu ^i) such that {ß,o)eB x A and {ß, ô) ^ {ßu <5i) implies {y • z«, gpg^^J^x)) e 

eF, 

iii) ß2 such that ßeB and j5 ^ ]52 implies (̂ /?(̂ ), y) e Ж 
iv) TjL such that т e Tand т ^ т̂  implies (y ,̂ ö â.tW) ^ ^^ 
v) (T2, (52) such that (т, ^) e T x 2J and (т, S) ^ (т2, ^2) implies {да,г9аА^)^ 

Choose ß^ ^ ßi, ß2\ <5з ^ ^1, Ô2', T3 ^ TJ, T2. Let a^e A and suppose (d, a) e 
e I" X Л such that (Ö-, a) ^ (Ö-J, a^). Choose (j5, ^, т) ^ ()?з, ̂ з, Тз) (note that 
)5з, 5з,тз depend on (tr, a)); then {д^^.да^^^х), y^- z„), (ö'a.oW» 6̂ <т,тб̂ а,<5(̂ )). {ЯО^АУ) 

даАУ^% {9a,o9ß{^)> 9<x,ô{y)\ (y • 

(x)) e V impHes ( j ^ * z„, j • z„) e U. 

From Propositions 3 and 4 we get the follow theorem. 
Theorem 5. Let (X, ^) be a Hausdorff uniform space and let G be a commutative 

subsemigroup of C(X). IfxeX such that 0(x) is complete and G is uniformly 
equicontinuous on 0(x), then 0(x) is a commutative topological semigroup. 

Definition. И g e G, let 0(x; g) = {g^x) | / is a positive integer} and K(x; g) = 
00 

= П 0(g\x); g). We omit the proof of the following. 
i = 0 

Proposition 6. If z e 0{x; g), then either z = g\x) for some positive integer i 
or z e K{X; g). z e K(x; g) if and only if there exists a strictly monotone increasing 
sequence of positive integers {/„}̂ =i such that z = lim g^%x). 

n-> + 00 

Theorem 7. Let (X, %), G and x e X be as in Theorem 5. / / К(х; g) is nonempty 
for some g e G, then K[x; g) is an ideal in 0(x; g). If 0[x; g) is compact, then 
K(X; g) is a minimal ideal in 0(x; g) and is a topological group. 

Proof. The first part is a consequence of Proposition 6 and the second part follows 
from [6; p. 109]. 

Proposition 8. / / z G 0{x) and g e G, then g(z) = g(x) • z. 

Proof. Let {gj[x), a e Л} be a net which converges to z. Then g(z) is the limit of 
the net {ggo{x), cce A} and the proposition follows from the definition of multi­
plication in 0(x). 
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Theorem 9. Let S be a compact Hausdorff space and let G be a commutative 
equicontinuous subsemigroup of C(X) such that each g e G is onto. Then each 
g e G is a homeomorphism and x e 0[x; g) = X(x; g). 

Proof. Having developed the necessary machinery above, the proof of this 
theorem can be gotten by mimicing the proof of Theorem 33 of [1]. Since [ l ] has 
not yet appeared, we sketch a proof for completeness. 

If y G К{х; g), then К{у; g) ç 0{g; g) ^ K{x; g) and it is easily seen that K{y; g) 
(with the multiplication from 0(x) is an ideal in 0(x; g). By Theorem 7, K{y\ g) = 
= K{x; g). It follows that iC(w; g) n K{z; g) Ф 0 if and only if K{w; g) = K{z\ g), 
w, z eX. By using the group structure of K{x; g) and Propositions 6 and 8, one sees 
that g I K{x\ g) is a homeomorphism of K{x\ g) onto itself. To finish the proof it 
suffices to show that X = f) ^(^? o)-

xeX 
This is shown by noting that, for each i, 0(g^[x); g) is an upper semicontinuous 

compact set-valued function X -^ 2^ [3]. Since, for each i, X = f) 0(g'(x); g) and 
00 xeX 

K(X; g) = f) 0(g'(^x); g), it follows from a shght modification of arguments in [3] 
i = 0 

that Z = C\K{x;g). 
xeX 

Definition. By [6; p. 18], 0(x; g) is contained in a unique maximal subgroup 
M(x; g) of 0{x). If g, he G, then x e M(x; g) n M(x; h) and, hence, by [6; p. 18], 
M(x; g) = M(x; h). Let M{x) = M(x; g). 

Theorem 10. Let X be a compact Hausdorff space and let G be a commutative 
equicontinuous subsemigroup of C{X) such that each of g e G is onto. Then a) for 
each xeX, 0{x) is a topological group, b) if 0{x) n 0(y) Ф 0, then 0(x) = 0(y) 
and c) the closure of G in C{X) is an equicontinuous compact topological group and 
the mapping Я : G -> 0(x) defined by À{g) = g{x) is a continuous epimorphism. 

Proof, a) Let geG and xeX. Since g{x) e 0{x; g), g(x)EM(x). Suppose z e 
E M{x); by Proposition 8, g(z) = g{x) • z and hence g{z) e M{x). Since g{M{x)) Я 
Ç M(x), it follows that 0{x) ^ M(x) and hence 0{x) = M(x) is a topological group. 

b) Suppose z G 0(x) and geG. Since g{z) = g(x) • z g{x) e 0{z). Therefore 
0(x; g) ^ 0{z); since x G 0 ( X ; g), 0{x) = 0{z). 

c) By [4; p. 240], the closure of G in C{X) with respect to the topology of pointwise 
convergence is uniformly equicontinuous; hence the closure of G, G, with respect to 
the topology of uniform convergence on compacta is also uniformly equicontinuous. 
Note that each element of G is an onto map and hence by Theorem 9 is a homeo­
morphism. By Ascoh's Theorem [4; p. 233], G is compact and by Theorem 1.1.15 
of [6], G is a topological group. We leave to the reader the verification of the second 
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